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Abstract1 
 Recently, procedural content generation (PCG) shows a diverse approach to generating content in the game research 

community. The game map generation task has been one of the famous areas for PCG researchers. However, most works 
are studied on a single-player game, and few are studied on multi-player games. So, we opt to extend single-player studies 
into a multi-player problem using controllable PCG technique. In this paper, we propose an evolutionary approach to 
generate cooperative game maps for a multi-player game, Overcooked. Our contribution can be summarized into two-fold: 
(1) design a representative method to apply the procedural generation method for the game, and (2) generate maps with a 
parameterized fitness function. To demonstrate our method, we use a genetic algorithm as an evolutionary algorithm and 
analyze the results in qualitative and quantitative ways. In conclusion, our method successfully generates cooperative game 
maps with controllable parameters. 

1. Introduction 
Procedural content generation (PCG), which automatically generates 

game contents to guarantee cost-efficiency, has been studied for several 
years to generate a wide range of content such as images and music, and 
design architectures and circuits. In this community, various strategy has 
been used to enrich the content's quality and diversity. Among these 
strategies, controllable PCG allows the player or designer to utilize some 
set of parameters as the controller of the generator. Generators can be 
capable of producing content which layout diversely designed by the set 
of parameters. One of the approaches of controllable PCG is a genetic 
algorithm which generation occurs through the search space modified by 
the designer [1]. 

However, many of previous works are studied on single-player games, 
and few are studied on multi-player games. Compared with single-player 
case, a multi-player game has different types of relationships such as 
competition [2] and cooperation [3] so that content generator should be 
concerned with this interaction issue. For example, the generator can 
make the composition of the map become inefficient and asymmetric to 
intend more cooperative play from the players. Overcooked game, which 
goal is to prepare meals along with another player under a time limit, 
requires high-level joint strategy or motion coordination. In practice, 
several works employed this cooperative environment to improve multi-
agent or human-robot coordination [3, 4, 5]. 
We suggest a new map generator for the Overcooked game based on a 

genetic algorithm in which genotypes represent the composition of the 
map. The algorithm is applied to research in the form of controllable 
PCG, which parameter of fitness function related to the composition of 
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the map. The objective of this algorithm is to create various types of 
maps according to the set of fitness functions and parameters. 

The experiment in this paper focuses on the analysis of the 
performance of the genetic algorithm as controllable map generation and 
the suitability of the evolutionary approach for multi-player games. We 
find the frequency of each block to ensure that the blocks are created 
with the condition we intend. Additionally, we visually check how the 
map is changed according to the set of parameters or the number of 
rooms. 
2. Background 
2.1 Genetic Algorithm 

Genetic algorithm (GA) is one of the evolutionary algorithms for 
effectively searching for an optimal solution in several problems. To find 
an optimal, GA repeats four sequences (selection, crossover, mutation, 
and replacement) for a population. The population consists of various 
chromosomes as solution to the problem, and the optimality is calculated 
with a fitness function. Repeating the sequence, weak chromosomes are 
eliminated naturally, and the suboptimal chromosome becomes close to 
optimal with genetic variants. To apply this mechanism, we newly design 
our chromosome and fitness function for our task. From the perspective 
of controllable PCG, genetic algorithm has the advantage of being able 
to create various maps with its robust exploration. 
2.2 Overcooked! Game 

Overcooked! game is a multi-player video game available on online2. 
This game has a simple goal, cooking several foods in as many orders as 
possible under a set period time. To complete the order, each player 
should work together to prepare ingredients, cook them, and serve them 
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on a plate. That would be enough as is, but the difficulty comes from 
how limited player abilities are. Players can only be carrying one item at 
a time, and the player can’t move around everything in the kitchen to 
expedite things. Also, the composition of the kitchen is designed in 
asymmetric ways, so their success or failure will almost entirely depend 
on how effectively the player can communicate with another player.  

Employing this cooperative environment, several machine learning 
research used this game to evaluate their collaborative agents or 
coordination algorithms of agents [4, 5]. Instead of agent policies, 
another work [3] emphasized the significant effect of the environment 
on human-robot coordination. In this paper, the cooperative environment 
can be divided into compositions which can be numerically parameterize. 
Then, we can combine these various numbers of items to interact and 
paths to travel. For example, a combination of various item sets leads to 
different strategies, and the number of rooms induces new path planning 
and motion coordination for various player number. 
3. Proposed Method  
3.1 Layout Representation To apply PCG methods to 2D game maps, 
lots of studies have been used tabular representation, encoding visual 2D 
game layout to easily transformable data. As shown in Fig. 1, we define 
six game blocks into numbers and encode the game layout using them. 
We consider the game layout can be represented to the numeric matrix 
and flatten it into an array of a chromosome. Once we generate the game 
layout with a genetic algorithm, we can reshape to 1D array into a 2D 
matrix reversely and load it on the game. 

3.2 Population Initialization The initial population is helpful to search 
for an optimal chromosome in GA. A carefully designed initializer 
remarkably reduces the searching space in this domain [1]. We also 
define an initializer to reduce searching space, initializing genes with a 
pre-defined rule (i.e., used domain knowledge) for selecting game blocks. 
Instead of uniform random distribution, the weights set to [0.7, 0.1, 0.05, 
0.05, 0.05, 0.05] for six blocks, respectively. The probability is set how 
many each block is used in general. This method helps to generate 
reasonable maps in the lower evolution step.  
3.3 Evolutionary Method As aforementioned, GA repeats four 

sequences to enhance a population. In each step, we select tournament 
selection, two-point crossover, and random-resetting mutation as our 
baseline. To evaluate individuals, we build a fitness function for 
generating the game map and can be found on Eq. 1~4. Fitness for 
conditional generation 𝑓𝑖𝑡𝑛𝑒𝑠𝑠  is a summation of room count 𝑓!" , 
room size 𝑓!#, and block count 𝑓$", respectively. 

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓!" + 𝑓!# + 𝑓$" (1) 
 𝑓!" = −|𝑐 − 𝐶| (2) 
 𝑓!# = −𝑠𝑡𝑑𝑒𝑣(𝑠%, 𝑠&, 𝑠', … , 𝑠()	 (3) 
 

𝑓$" = −
1
46

|𝑏) − 	𝐵)|
*

)+&

	 (4) 

The important point to a generate cooperation map is to design game 
maps into separate rooms to make the interaction between players, and 
the room size should be enough to get around. To satisfy these conditions, 
we calculate the room counts and size of each individual (Fig. 3) and 
build 𝑓!"  to room count 𝑐  close to 𝐶  and 𝑓!#  lower variance of 
room sizes (𝑠%, 𝑠&, … ) into zero. 

 

 

 
Figure 3 Divided rooms and placed blocks. Left is an original game 
screen and the right shows how we divide the map into two rooms. 

Generating diverse maps is one of the main issues in PCG research. 
There are two ways in our problem, one is scaling the layout and the 
other is placing the resources (block 2, 3, 4, and 5) in various ways. In 
our paper, we fix the layout size to 10 × 10 and regulate the number of 
resources that makes diverse game strategy and difficulty. So, we build 
the term 𝑓$" to regulate the four blocks with a block number 𝑖, current 
block count 𝑏) and target count 𝐵). We build this equation similarly to 
𝑓!" and this term makes the population to fit the block count parameters. 
Additionally, we regularize this term by dividing to 4 blocks so that 𝑓$" 
do not overwhelm other terms when types of blocks increase. 
3.4 Heuristic Fixing To enhance the quality of generated maps, we 
remove unavailable resources (unreachable to both players), replacing 
the genes to Wall blocks as post-processing. This process is taken after 
the generation task is done and makes it fancier when visualizing the 
chromosome, not harming the generating process. 
4. Experiments 

The main goal of our experiment is to generate game maps with the 
number of players and resource placement in various settings. In this 
paper, we define five parameters that account for the number of rooms 
𝑐 and number of block 2~5 𝐵&~* . We set these parameters for 𝑐 =
2, 3, 4  (2~4 players) and 𝐵&~- = 3, 5, 7  as shown in Fig 4. 𝐵*  is 
always set to 1 because there is no need for variations in this game. We 
conduct the experiment in the following steps: (1) Create a population 
that has 100 chromosomes. Each individual has 100 genes and initializes 
with weighted random function in Section 3.2. (2) Conduct the GA 

 
Figure 1 Six blocks to build the layout. We define the genotype 
into an integer value range from 0 to 5. 

 
Figure 2 Representing a game layout into a chromosome. 
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process by calculating our fitness function in Section 3.3. (3) Repeat 
previous steps during 500 generations. (4) Save the best chromosome in 
the population with parameters. We repeat the above process a hundred 
times for six parameter sets. Additionally, probability of crossover set to 
0.9 and probability of mutation to 0.01 for GA hyper-parameters. 
5. Result and Discussion 

In this section, we discuss how the maps are generated in qualitative 
and quantitative ways. There are a total of 6 cases for comparison, 3 
cases on variations on block count, and remains for variations on room 
count. We visualize the best chromosomes in each experiment in Fig. 4 
and summarize the quantitative results in Fig. 5 and 6.  

 
Figure 5 Quantitative results for variations on block counts. Red 
dashed lines mean our experimental parameter. 

 
Figure 6 Quantitative results for variations on room count. 

As quantitative analysis, the room counts (𝐶)  strictly fit our 
parameters in well, and block count (𝐵)) is approximately closed to ours, 
even if the condition 𝐵) is different from each other. It is because the 
term 𝑓!"  accounts larger potion than 𝑓$" , and it means that we can 
utilize these sub-optimal chromosomes as variously generated maps 
when we make a constraint on player number. 

However, as shown in Fig. 4, the quality of maps is getting low when 
the constraint values are increasing, in both cases of 𝐶 and 𝐵). In the 

case of 𝐵), the increasing resource blocks placed between the rooms, 
and disturb the interaction between players. In the case of 𝐶, each room 
gets far away so that makes the maps un-playable when room count is 
increasing (especially on 𝐶 = 3). In our empirical analysis, it’s easier to 
make room small when making the term 𝑓!#  lower, in terms of the 
variance. To solve this problem, it may need an additional fitness term 
to make the outputs more feasible. 
6. Conclusion and Future Work 

We propose a new approach for generating map layouts with a genetic 
algorithm. To generate the game maps, some parameters for multi- 
player and placing game resources are formularized into fitness function. 
And it successfully generates diverse layouts with some conditions that 
regulate difficulty and strategic diversity. As our limitation, we simply 
assume that the cooperation is accrued from an asymmetric condition 
between players and designed into fitness function with our domain 
knowledge. In future work, we will regard several cooperation methods 
and generate maps regarding various playing strategies. Also, generating 
more feasible (playable) maps could be valuable work. 
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Figure 4 Generated maps for each parameter. Left-side images show variations of block counts (pot, dish, and onion) and right-side images 
are variations on room count (number of players). 
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