
An Evolutionary Approach for Procedural Content
Generation in Cooperative Game Overcooked

In-Chang BaekO, Tae-Gwan Ha, Kyung-Joong Kim*
Gwangju Institute of Science and Technology

{inchang.baek@gm., hataegwan@gm., kjkim@}gist.ac.kr

협력 게임 Overcooked에서 절차적 컨텐츠 생성을 위한 진화적 접근
백인창O, 하태관, 김경중*

광주과학기술원

Abstract1
 Recently, procedural content generation (PCG) shows a diverse approach to generating content in the game research

community. The game map generation task has been one of the famous areas for PCG researchers. However, most works
are studied on a single-player game, and few are studied on multi-player games. So, we opt to extend single-player studies
into a multi-player problem using controllable PCG technique. In this paper, we propose an evolutionary approach to
generate cooperative game maps for a multi-player game, Overcooked. Our contribution can be summarized into two-fold:
(1) design a representative method to apply the procedural generation method for the game, and (2) generate maps with a
parameterized fitness function. To demonstrate our method, we use a genetic algorithm as an evolutionary algorithm and
analyze the results in qualitative and quantitative ways. In conclusion, our method successfully generates cooperative game
maps with controllable parameters.

1. Introduction
Procedural content generation (PCG), which automatically generates

game contents to guarantee cost-efficiency, has been studied for several
years to generate a wide range of content such as images and music, and
design architectures and circuits. In this community, various strategy has
been used to enrich the content's quality and diversity. Among these
strategies, controllable PCG allows the player or designer to utilize some
set of parameters as the controller of the generator. Generators can be
capable of producing content which layout diversely designed by the set
of parameters. One of the approaches of controllable PCG is a genetic
algorithm which generation occurs through the search space modified by
the designer [1].

However, many of previous works are studied on single-player games,
and few are studied on multi-player games. Compared with single-player
case, a multi-player game has different types of relationships such as
competition [2] and cooperation [3] so that content generator should be
concerned with this interaction issue. For example, the generator can
make the composition of the map become inefficient and asymmetric to
intend more cooperative play from the players. Overcooked game, which
goal is to prepare meals along with another player under a time limit,
requires high-level joint strategy or motion coordination. In practice,
several works employed this cooperative environment to improve multi-
agent or human-robot coordination [3, 4, 5].
We suggest a new map generator for the Overcooked game based on a

genetic algorithm in which genotypes represent the composition of the
map. The algorithm is applied to research in the form of controllable
PCG, which parameter of fitness function related to the composition of

1 This research was supported the National Research Foundation of Korea (NRF) funded by the MSIT (2021R1A4A1030075). *Corresponding Author
2 https://www.team17.com/games/overcooked/

the map. The objective of this algorithm is to create various types of
maps according to the set of fitness functions and parameters.

The experiment in this paper focuses on the analysis of the
performance of the genetic algorithm as controllable map generation and
the suitability of the evolutionary approach for multi-player games. We
find the frequency of each block to ensure that the blocks are created
with the condition we intend. Additionally, we visually check how the
map is changed according to the set of parameters or the number of
rooms.
2. Background
2.1 Genetic Algorithm

Genetic algorithm (GA) is one of the evolutionary algorithms for
effectively searching for an optimal solution in several problems. To find
an optimal, GA repeats four sequences (selection, crossover, mutation,
and replacement) for a population. The population consists of various
chromosomes as solution to the problem, and the optimality is calculated
with a fitness function. Repeating the sequence, weak chromosomes are
eliminated naturally, and the suboptimal chromosome becomes close to
optimal with genetic variants. To apply this mechanism, we newly design
our chromosome and fitness function for our task. From the perspective
of controllable PCG, genetic algorithm has the advantage of being able
to create various maps with its robust exploration.
2.2 Overcooked! Game

Overcooked! game is a multi-player video game available on online2.
This game has a simple goal, cooking several foods in as many orders as
possible under a set period time. To complete the order, each player
should work together to prepare ingredients, cook them, and serve them

2021년 한국소프트웨어종합학술대회 논문집

611

on a plate. That would be enough as is, but the difficulty comes from
how limited player abilities are. Players can only be carrying one item at
a time, and the player can’t move around everything in the kitchen to
expedite things. Also, the composition of the kitchen is designed in
asymmetric ways, so their success or failure will almost entirely depend
on how effectively the player can communicate with another player.

Employing this cooperative environment, several machine learning
research used this game to evaluate their collaborative agents or
coordination algorithms of agents [4, 5]. Instead of agent policies,
another work [3] emphasized the significant effect of the environment
on human-robot coordination. In this paper, the cooperative environment
can be divided into compositions which can be numerically parameterize.
Then, we can combine these various numbers of items to interact and
paths to travel. For example, a combination of various item sets leads to
different strategies, and the number of rooms induces new path planning
and motion coordination for various player number.
3. Proposed Method
3.1 Layout Representation To apply PCG methods to 2D game maps,
lots of studies have been used tabular representation, encoding visual 2D
game layout to easily transformable data. As shown in Fig. 1, we define
six game blocks into numbers and encode the game layout using them.
We consider the game layout can be represented to the numeric matrix
and flatten it into an array of a chromosome. Once we generate the game
layout with a genetic algorithm, we can reshape to 1D array into a 2D
matrix reversely and load it on the game.

3.2 Population Initialization The initial population is helpful to search
for an optimal chromosome in GA. A carefully designed initializer
remarkably reduces the searching space in this domain [1]. We also
define an initializer to reduce searching space, initializing genes with a
pre-defined rule (i.e., used domain knowledge) for selecting game blocks.
Instead of uniform random distribution, the weights set to [0.7, 0.1, 0.05,
0.05, 0.05, 0.05] for six blocks, respectively. The probability is set how
many each block is used in general. This method helps to generate
reasonable maps in the lower evolution step.
3.3 Evolutionary Method As aforementioned, GA repeats four

sequences to enhance a population. In each step, we select tournament
selection, two-point crossover, and random-resetting mutation as our
baseline. To evaluate individuals, we build a fitness function for
generating the game map and can be found on Eq. 1~4. Fitness for
conditional generation 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 is a summation of room count 𝑓!" ,
room size 𝑓!#, and block count 𝑓$", respectively.

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓!" + 𝑓!# + 𝑓$" (1)
 𝑓!" = −|𝑐 − 𝐶| (2)
 𝑓!# = −𝑠𝑡𝑑𝑒𝑣(𝑠%, 𝑠&, 𝑠', … , 𝑠()	 (3)

𝑓$" = −
1
46

|𝑏) − 	𝐵)|
*

)+&

	 (4)

The important point to a generate cooperation map is to design game
maps into separate rooms to make the interaction between players, and
the room size should be enough to get around. To satisfy these conditions,
we calculate the room counts and size of each individual (Fig. 3) and
build 𝑓!" to room count 𝑐 close to 𝐶 and 𝑓!# lower variance of
room sizes (𝑠%, 𝑠&, …) into zero.

Figure 3 Divided rooms and placed blocks. Left is an original game
screen and the right shows how we divide the map into two rooms.

Generating diverse maps is one of the main issues in PCG research.
There are two ways in our problem, one is scaling the layout and the
other is placing the resources (block 2, 3, 4, and 5) in various ways. In
our paper, we fix the layout size to 10 × 10 and regulate the number of
resources that makes diverse game strategy and difficulty. So, we build
the term 𝑓$" to regulate the four blocks with a block number 𝑖, current
block count 𝑏) and target count 𝐵). We build this equation similarly to
𝑓!" and this term makes the population to fit the block count parameters.
Additionally, we regularize this term by dividing to 4 blocks so that 𝑓$"
do not overwhelm other terms when types of blocks increase.
3.4 Heuristic Fixing To enhance the quality of generated maps, we
remove unavailable resources (unreachable to both players), replacing
the genes to Wall blocks as post-processing. This process is taken after
the generation task is done and makes it fancier when visualizing the
chromosome, not harming the generating process.
4. Experiments

The main goal of our experiment is to generate game maps with the
number of players and resource placement in various settings. In this
paper, we define five parameters that account for the number of rooms
𝑐 and number of block 2~5 𝐵&~* . We set these parameters for 𝑐 =
2, 3, 4 (2~4 players) and 𝐵&~- = 3, 5, 7 as shown in Fig 4. 𝐵* is
always set to 1 because there is no need for variations in this game. We
conduct the experiment in the following steps: (1) Create a population
that has 100 chromosomes. Each individual has 100 genes and initializes
with weighted random function in Section 3.2. (2) Conduct the GA

Figure 1 Six blocks to build the layout. We define the genotype
into an integer value range from 0 to 5.

Figure 2 Representing a game layout into a chromosome.

%ORFNV��*HQHV�

��
�(PSW\�

��
�:DOO�

��
�3RW�

��
�'LVKHV�

��
�2QLRQV�

��
�2XWOHW�

� � � � � � � � � � � � ���

1XPHULF�
(QFRGLQJ�
���;���

)ODWWHQ���;����

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

&KURPRVRPH

(QFRGHG�/D\RXW

*DPH

2021년 한국소프트웨어종합학술대회 논문집

612

process by calculating our fitness function in Section 3.3. (3) Repeat
previous steps during 500 generations. (4) Save the best chromosome in
the population with parameters. We repeat the above process a hundred
times for six parameter sets. Additionally, probability of crossover set to
0.9 and probability of mutation to 0.01 for GA hyper-parameters.
5. Result and Discussion

In this section, we discuss how the maps are generated in qualitative
and quantitative ways. There are a total of 6 cases for comparison, 3
cases on variations on block count, and remains for variations on room
count. We visualize the best chromosomes in each experiment in Fig. 4
and summarize the quantitative results in Fig. 5 and 6.

Figure 5 Quantitative results for variations on block counts. Red
dashed lines mean our experimental parameter.

Figure 6 Quantitative results for variations on room count.

As quantitative analysis, the room counts (𝐶) strictly fit our
parameters in well, and block count (𝐵)) is approximately closed to ours,
even if the condition 𝐵) is different from each other. It is because the
term 𝑓!" accounts larger potion than 𝑓$" , and it means that we can
utilize these sub-optimal chromosomes as variously generated maps
when we make a constraint on player number.

However, as shown in Fig. 4, the quality of maps is getting low when
the constraint values are increasing, in both cases of 𝐶 and 𝐵). In the

case of 𝐵), the increasing resource blocks placed between the rooms,
and disturb the interaction between players. In the case of 𝐶, each room
gets far away so that makes the maps un-playable when room count is
increasing (especially on 𝐶 = 3). In our empirical analysis, it’s easier to
make room small when making the term 𝑓!# lower, in terms of the
variance. To solve this problem, it may need an additional fitness term
to make the outputs more feasible.
6. Conclusion and Future Work

We propose a new approach for generating map layouts with a genetic
algorithm. To generate the game maps, some parameters for multi-
player and placing game resources are formularized into fitness function.
And it successfully generates diverse layouts with some conditions that
regulate difficulty and strategic diversity. As our limitation, we simply
assume that the cooperation is accrued from an asymmetric condition
between players and designed into fitness function with our domain
knowledge. In future work, we will regard several cooperation methods
and generate maps regarding various playing strategies. Also, generating
more feasible (playable) maps could be valuable work.
References
[1] Lucas Ferreira, Claudio Toledo, et al. “A Search-based Approach for
Generating Angry Birds Levels.” Proceedings of 2014 IEEE Conference
on Computational Intelligence and Games (2014): 1-8.
[2] Georg Volkmar, Nikolas Mählmann, et al. “Procedural Content
Generation in Competitive Multiplayer Platform Games.” International
Conference on Entertainment Computing and Serious Games (2019):
228–234.
[3] Fontaine, Matthew C., et al. "On the Importance of Environments in
Human-Robot Coordination." arXiv preprint arXiv:2106.10853 (2021).
[4] Carroll, Micah, et al. "On the utility of learning about humans for
human-ai coordination." Advances in Neural Information Processing
Systems 32 (2019): 5174-5185.
[5] Sarah A Wu, et al. “Too many cooks: Bayesian inference for
coordinating multi-agent collaboration.” Topics in Cognitive Science
(2021), 13(2): 414–432.

#Rooms #Blocks 3 of Generated Results #Rooms #Blocks 3 of Generated Results

𝐶 = 2 𝐵& = 3
𝐵' = 3
𝐵- = 3

𝐶 = 1 𝐵& = 5
𝐵' = 5
𝐵- = 5

𝐶 = 2 𝐵& = 3

𝐵' = 5
𝐵- = 7

𝐶 = 2 𝐵& = 5
𝐵' = 5
𝐵- = 5

𝐶 = 2 𝐵& = 7

𝐵' = 7
𝐵- = 7

𝐶 = 3 𝐵& = 5
𝐵' = 5
𝐵- = 5

Figure 4 Generated maps for each parameter. Left-side images show variations of block counts (pot, dish, and onion) and right-side images
are variations on room count (number of players).

2021년 한국소프트웨어종합학술대회 논문집

613

	An Evolutionary Approach for Procedural Content Generation in Cooperative Game Overcooked

