
Acc
ep

te
d

m
an

us
cr

ip
t

 ACCEPTED MANUSCRIPT

Deep ensemble learning of tactics to control the main force in a
real-time strategy game

This Accepted Manuscript (AM) is a PDF file of the manuscript accepted for publication after
peer review, when applicable, but does not reflect post-acceptance improvements, or any
corrections. Use of this AM is subject to the publisher's embargo period and AM terms of use.
Under no circumstances may this AM be shared or distributed under a Creative Commons or
other form of open access license, nor may it be reformatted or enhanced, whether by the
Author or third parties. By using this AM (for example, by accessing or downloading) you
agree to abide by Springer Nature's terms of use for AM versions of subscription articles:
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

The Version of Record (VOR) of this article, as published and maintained by the publisher, is
available online at: https://doi.org/10.1007/s11042-023-15742-x. The VOR is the version of
the article after copy-editing and typesetting, and connected to open research data, open
protocols, and open code where available. Any supplementary information can be found on
the journal website, connected to the VOR.

For research integrity purposes it is best practice to cite the published Version of Record
(VOR), where available (for example, see ICMJE’s guidelines on overlapping publications).
Where users do not have access to the VOR, any citation must clearly indicate that the
reference is to an Accepted Manuscript (AM) version.

https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://doi.org/10.1007/s11042-023-15742-x

 ACCEPTED MANUSCRIPT
Springer Nature 2021 LATEX template

Deep Ensemble Learning of Tactics to Control
the Main Force in a Real-time Strategy Game

Isaac Han1 and Kyung-Joong Kim1*

1*School of Integrated Technology, Gwangju Institute of Science
and Technology, 123, Cheomdangwagi-ro, Buk-gu, 61005,

Gwangju, South Korea.

*Corresponding author(s). E-mail(s): kjkim@gist.ac.kr;
Contributing authors: lssac7778@gm.gist.ac.kr;

Abstract
Professional StarCraft game players are likely to focus on the manage-
ment of the most important group of units (called the main force) during
gameplay. Although macro-level skills have been observed in human
game replays, there has been little study of the high-level knowledge
used for tactical decision-making, nor exploitation thereof to create AI
modules. In this paper, we propose a novel tactical decision-making
model that makes decisions to control the main force. We categorized
the future movement direction of the main force into six classes (e.g.,
toward the enemy’s main base). The model learned to predict the next
destination of the main force based on the large amount of experience
represented in replays of human games. To obtain training data, we
extracted information from 12,057 replay files produced by human play-
ers and obtained the position and movement direction of the main forces
through a novel detection algorithm. We applied convolutional neural
networks and a Vision Transformer to deal with the high-dimensional
state representation and large state spaces. Furthermore, we analyzed
human tactics relating to the main force. Model learning success rates
of 88.5%, 76.8%, and 56.9% were achieved for the top-3, -2, and -1
accuracies, respectively. The results show that our method is capable
of learning human macro-level intentions in real-time strategy games.

Keywords: Decision-making, Deep learning, Real-time strategy game,
StarCraft

1

 ACCEPTED MANUSCRIPT
Springer Nature 2021 LATEX template

1

2

 ACCEPTED MANUSCRIPT

2 -

1 Introduction

Fig. 1 Illustration of the main base, main force, and expansion base. Tactical decisions
include the future direction of movement of the player’s main force with respect to six
categories (main base, expansion base, and ”Stop”, as well as the enemy’s main force, main
base, and expansion base). Typically, any expansion close to the main base is known as a
”front yard” and it is considered part of the main base in this study. For illustrative purposes,
we do not depict the fog of war, which limits the view to the immediate surroundings of the
player’s units and buildings.

In the last decade, artificial intelligence (AI) has been extensively studied
for real-time strategy (RTS) games, because these games pose various chal-
lenging problems owing to their large state and action spaces and real-time
actions. In RTS games, players perform several decisions simultaneously, such
as managing resources, scouting an opponent’s territory, controlling units, con-
structing buildings, and engaging in combat [1]. The most popular series of
RTS games include StarCraft, Warcraft, Company of Heroes, Total War, and
Command & Conquer.

In RTS gameplay, players need to enact tactical decisions regarding where,
when, and how to attack enemy units and structures under uncertain condi-
tions. As such, devising tactical decisions while managing the enemy’s tactics
with limited information is an extremely challenging problem [2]. To this end,
previous studies have proposed a tactical decision-making method for RTS
games, such as a Bayesian approach [3] and a Monte Carlo tree search [4];
however, these methods have yielded only simple heuristics-based models. In
contrast, deep learning can manage high-dimensional data, to create complex
models that can overcome the weaknesses of such heuristics-based models. Few
studies have applied deep learning to predict the tactical decisions in RTS
games. In particular, each of these studies considered various kinds of tactical
decisions such as predicting where to attack or defend [5], types of units or
buildings to attack [6], and selecting one of the handcrafted scripts [7].

This study focused on the tactics related to the main force, i.e., managing
units grouped as forces is a common strategy in RTS games. Thus, determining

3

 ACCEPTED MANUSCRIPT

- 3

the actions of forces is an essential tactical aspect and controlling the main
force is particularly important, because it is the strongest force. We interviewed
a professional human player, which revealed that the decision-making processes
related to the main force were the most important after the very early stage of
the initial build order execution in StarCraft. In addition, the present analysis
of human replay data revealed that 40% of the units pertain to the main force
and account for 60% of the influence.

The proposed method employed deep learning models to learn the decision-
making skills of expert human players from replay files and predict the
upcoming movement direction of the main force. We acquired nearly 12,000
replays from online sources and extracted 3 million data tuples. Moreover, we
provided a comprehensive analysis of the data, and the results revealed that
the main force is essential for the game. To efficiently predict the movement
direction, we categorized the destination of the main force into six categories.
We trained an ensemble model comprising CNNs, a ViT, and decision tree,
and the proposed model outperformed all the existing deep learning-based tac-
tical decision-making methods. To the best of our knowledge, this is the first
demonstration of direct machine learning of tactical decisions pertaining to
the main force based on replays.

The contributions of this study are stated as follows:
• We propose a novel approach for learning vital human skills from replay

files, namely, deciding the upcoming direction of the main force. We devel-
oped an ensemble model comprising CNNs, a ViT, and a decision tree using
approximately 3 million data tuples. The difficulty of learning was mini-
mized through a new input data representation, including the considerations
of match type (Protoss [P] vs. Terran [T], P vs. Zerg [Z], etc.). The experi-
mental results revealed that the proposed method achieved learning success
rates of up to 92.9%, 81.4%, and 63.3% for the top-3, -2, and -1 accuracies,
respectively.

• We analyzed human decision-making processes related to the main force
and developed a novel algorithm for main force detection. In addition,
we extracted approximately 3 million data samples from 12,057 replays of
human games and constructed a dataset to predict the direct of the main
force.

2 Background
2.1 StarCraft AI
StarCraft has been important for RTS game research since 2010. The Brood
War Application Programming Interface (BWAPI) allows researchers to imple-
ment customizable AI players into StarCraft: Brood War, which is one of
the most successful RTS games. BWAPI is not an official interface provided
by the developer of StarCraft, Blizzard, but it nevertheless allows for the

4

 ACCEPTED MANUSCRIPT

4 -

creation of AI players. Since 2010, the AI community has organized interna-
tional StarCraft AI competitions and conferences, which have helped promote
the development of AI techniques for the RTS game community [8] [9]. RTS
researchers have used StarCraft to test their algorithms [10] [11]. The game’s
popularity has attracted many researchers. Also, it is easy to access replays
of human games on gaming portals, and it is possible to extract game states
and the actions of human players from replay files using BWAPI. Several plat-
forms are available for RTS research, each with its own unique properties [12]
[13] [14] [15]. StarCraft is renowned for its popularity, commercial success,
and international AI competitions. Due to its popularity since the 1990s, large
volumes of replay files are available, of games involving players ranging from
novice to professional. Unlike other RTS platforms, Blizzard developed Star-
Craft for commercial purposes. Recently, Blizzard and DeepMind released a
programming interface for the StarCraft II game environment [16].

To build an AI player for StarCraft, many different skills are required. The
player should make high-level decisions, such as strategy or tactics, but also
undertake low-level control like micromanagement. Due to this wide range of
required skills, StarCraft AI research has been conducted to develop modules
that perform well in each task and have integrated them into a complete AI
agent. These are the skills mostly studied in the StarCraft AI community:
build order, tactics, macromanagement, and micromanagement.

In the early stage of a match, it is important to select a build order (the
sequence of player actions for producing buildings and units). Professional
players usually optimize their actions in this stage, where small mistakes can
make a match difficult to win. Early methods are usually based on heuristic
search algorithms [17]. Another line of research is using evolutionary compu-
tation, which treats a list of build orders as individuals of a population [18]
[19]. Recent works have dealt with more challenging tasks, such as considering
diversity [20] or planning the build order in an online manner [21].

Making tactical decisions is determining when, where, and how to attack
enemy buildings and units. Early approaches for tactics have proposed simple
models based on heuristics [3] [4]. Deep learning has been used in recent works,
with RL [6] [5]. Although the main force plays an essential role in tactics,
previous approaches have not addressed tactics with regard to the main force.
Organizing units into a number of forces is a natural way to control units
efficiently for StarCraft players. In addition, professional players often run the
main force, which is the strongest one among the forces. They create the main
force by putting more units and stronger units in a certain force. According
to the analysis in this study, the main force takes about 60% of the influences
of the total number of units.

Macromanagement is managing high-level strategies, which may include
build order optimization or tactics. Various tasks belonging to macromanage-
ment have been addressed in previous works. The authors of [22] have used
deep RL to decide what unit to produce in a certain state. Initial strategy has
a big influence in StarCraft. Accordingly, the Bayesian approach has been used

5

 ACCEPTED MANUSCRIPT

- 5

to predict the opponent’s initial strategy [23]. Also, effects of the fog of war
have been studied in terms of the opponent’s strategy prediction [24]. Replays
have been used to train a model that predicts strategy and build order [25].
The probabilistic approach is pervasive in macromanagement [26] [23], but
recent works commonly use deep learning [27].

In combat situations, micro-level management of attack units can make a
critical difference to the outcome. Micromanagement, involving rapid manip-
ulation of individual units to win in combat is an essential skill when playing
StarCraft. A variety of methods have been applied for micromanagement.
One of the approaches used is the search-based method. Many studies have
proposed search-based algorithms for micromanagement.

The earlier approach is based on Alpha-Beta search, which is an efficient
technique relying upon heuristic-based state evaluation function [28]. The
authors have made improvements through transposition tables and iterative
deepening. The algorithm applied on RTS game bots and achieved enhanced
results [29]. Also they have proposed an improved version of UCT (Upper
Confidence Bound) search method and a novel search algorithm that greedly
search number of portfolios [30]. However, search-based methods suffer from
low speed, making them unusable in real time. Hierarchical Adversarial Search
(HAS) has been proposed to solve this issue [31]. HAS deals with large state-
action space through a hierarchical search paradigm. Another line of research
optimizes policies using evolutionary computation or RL. The policies can
be represented as potential fields [32], and neural networks [33] [34]. In an
aspect of RL, micromanagement is primarily considered a multi-agent problem,
which deems each unit as an agent [35]. According to this, micromanagement
problems have been used as an evaluation environment for multi-agent RL [36].

In addition to these approaches for developing intelligent modules for a
variety of tasks, a comprehensive method has been proposed to achieve expert-
level gameplay in StarCraft. An easy way to develop comprehensive AI is to
integrate each module into a single agent [37] [5]. Another way is to train using
a single comprehensive policy. Multi-agent RL was used to realize AI with
Grandmaster level StarCraft II ability [38]. Moreover, StarCraft is also being
used for many application domains, such as web-based interface [39], and an
algorithm for automatically spectating games [40].

2.1.1 StarCraft AI using Replays
Replays of human StarCraft games have great potential for overcoming the
weaknesses of AI bots. Thousands of replay files for StarCraft are readily
available on gaming portals, and they include games involving players with
different ability levels. Replay extraction software allows AI researchers to
extract all the actions taken by human players from these replay files. Mas-
sive amounts of sample data allow machine learning models to imitate the
decision-making processes of human players. Many studies have utilized replays
of human games to build machine learning models to address various problems
in RTS games. For example, RL has been applied to micromanagement, with

6

 ACCEPTED MANUSCRIPT

6 -

supervised pre-training performed based on replays of human games [41], and
a neural network trained with 2,005 replays from professional human players
was used for macromanagement [42]. In macromanagement, more recent works
have utilized a transformer [43] and replays [27] to train the models. The Defog-
GAN model, which reveals hidden information in StarCraft, was trained with
replays of human games [44]. Facebook has also obtained 65,000 replays (360
GB of data; the STARDATA project [45]). From these data, a team working at
Facebook extracted the total number of units created, match lengths, ratios of
resources mined by each player, and opening clusters. Furthermore the authors
of [46] have proposed feature extraction method to predict the outcome of
the StarCraft league. Despite replays frequently being used for building AI for
StarCraft, direct learning of tactics from replays of human games has not been
studied previously.

2.2 Tactical Decision-Making
Making tactical decisions using machine learning models has been widely stud-
ied in various domains. The representative one among the domains is RTS
games, which require strategic planning and tactics for the gameplay. The
authors of [5] proposed a modular architecture that can be trained by rein-
forcement learning and a fully convolutional network (FCN) as their tactics
module. However, it considers where to move all units, not just the main force.
In addition, the authors of [6] selected macro action using RL. They set 54
macro actions, with 17 of them related to tactics. But those actions are to
attack certain types of enemy units or buildings and are not related to the
attack location nor the main force. Also, there has been an approach based on
supervised learning, not RL. The authors of [7] proposed a tactical decision-
making module supervised by a search algorithm, which selects one of the
handcrafted scripts.

On the other hand, there have been many works on computational
approaches for tactical decision-making in various domains. For autonomous
vehicles, the decisions should be made carefully for safety purposes. Many
recent studies in tactical decision-making for autonomous driving address this
issue using deep learning along with RL [47] [48]. Tactical decisions also play
an essential role in team sports. Few studies have used deep neural networks to
support tactical decisions for team sports, such as rugby [49] and football [50].
In contrast, deep learning is relatively less applied to make tactical decisions
in StarCaft AI research.

2.3 Deep learning for games
CNNs effectively process image data and are thus widely used in game AI,
to build machine learning models for games. Also, a Vision Transformer has
recently been used for image processing, and it performs much better than
CNNs.

7

 ACCEPTED MANUSCRIPT

- 7

Many studies have used CNNs to train AI players for various games.
Recently, successful results have been obtained using CNNs as approximat-
ing functions for game state–action evaluation. For example, DeepMind used
a CNN as a Q value approximation function in its deep Q-Learning algorithm.
This algorithm can learn how to play Atari games at human levels of skill [51].
Unlike the traditional AI approach, the algorithm uses the raw game screen
as input for the CNN. In 2016, DeepMind trained a CNN to predict the deci-
sions of professional Go players, achieving an accuracy of 57% [52]. The Alpha
Go system beat a professional Go player in March 2016, thus demonstrating
superior performance of the CNN. CNNs that involve RL have been used to
play various games. A CNN that involves asynchronous RL was used to eval-
uate the racing game known as Torcs [53]. RL with a recurrent convolutional
architecture was used to play a first-person shooter game [54]. The well-known
Minecraft game is used to train RL agents [55]. The multiplayer online battle
arena (MOBA) game is both complex and challenging in terms of AI. MOBA
has been played using deep RL [56]. Text-based games are also used to test
the performance of novel RL agents [57]. Montezuma’s Revenge is used to
evaluate the exploratory capacities of RL agents [58]. CNNs are used to build
human-like AI agents for automated game testing [59]. Human player datasets
have been used to train CNN agents in match-3 gaming. The RL approach
has been used for the strategic play of match-3 games [60]. CNNs are used to
build an AI agent for the Othello game [61]. The authors of [62] used CNNs
as an evaluation function to train an RL agent.

Buro et al. [63] used an RTS as a simplified testbed for AI algorithms. The
cited authors used twenty-five 10 × 10 planes (“channels” in our study) as
inputs for the CNN; they attempted to predict the winner of a match using
match data from 15 AI bots. They also tested the CNN as an evaluation
function for search algorithms. Justesen et al. trained a neural network using
2,005 replays and achieved a prediction accuracy of 45.4% with respect to the
next build action [42]. CNNs have been used to predict the winners of the RTS
game [64].

CNN-based generative models have recently been used to improve auto-
matic game content generation. A generative adversarial network [65] is a
representative deep generative model widely used in various fields of AI. A
generative adversarial network has been used to generate game content and
to automatically create game levels [66]. The authors of [67] used CNNs to
procedurally generate such levels, then compared them to manually designed
levels. The model successfully generated content. The authors of [68] used an
RL-based approach to create procedural content [68]; generation was regarded
as a sequential problem. In the present work, a CNN was used as a perception
module for the RL agent. The quality of the generated content was optimized
by the RL; two-dimensional levels were successfully generated.

CNNs are used to perform various game-related tasks, such as that of pre-
dicting human behavior in size-variant repeated games [69], or game difficulty.
CNNs can also detect residual glitches in video games [70].

8

 ACCEPTED MANUSCRIPT

8 -

“Transformer” [43] was initially developed for natural language processing,
but it has found applications in image processing [71] and RL [72]. Transformer
has been applied in games like text adventure games [73], Go [74], and Viz-
Doom [75]. For StarCraft, Transformer has been used for macromanagement
[27] and micromanagement. The authors of [27] used Transformer to predict
macro actions. They show that Transformer generalizes well to unseen data,
like an unseen match type (Terran vs Protoss). Transformer has also been
used with RL for micromanagement in which the method approximates to the
transformer-based joint action-value function that shows better performance
in micromanagement scenarios. However, ViT is very recent and has found
only a few applications in games [72].

Compared with these previous investigations, our study differs in certain
respects. Unlike previous works, we consider the main force in tactics because,
according to our results, it plays an essential role in this area. We apply state-
of-the-art deep learning models like CNN and ViT to handle high- dimensional
data.

3 Methods
During gameplay, human players gather information, such as the current
combat situation, enemy location, and buildings constructed. They then use
this information to assess the situation and make decisions. We conducted
interviews with a single professional human player to understand their decision-
making strategies. The interviews were semi-structured and consisted of a
series of open-ended questions designed to elicit information about the play-
ers’ decision-making strategies related to the main force. We have found that
the main force plays an important role in tactical decision-making in Star-
Craft, especially after the very early stage of the initial build order execution
in StarCraft. Also, we have found that the movement of the main force can be
categorized into several directions.

Recently, the ability of CNNs to process high-dimensional data at the level
that can be processed by humans has been confirmed in terms of both object
recognition and gameplay [51]. Notably, the ViT has shown promise when used
for image recognition [71]. Thus, in the present study, we used a CNN and ViT
to develop a tactical decision-making model, in which the CNN and Trans-
former process high-dimensional input, namely information from StarCraft.
We present an effective decision-making model that operates in a manner
similar to a human player.

3.1 Detecting the Main Force
Attack strength differs according to the positions and numbers of attack units.
For example, a group of strong attack units is likely to constitute a powerful
army if concentrated in one location. However, it also differs by type of the
units, like in case one forces consist of many weak units and another consist
of few powerful units. In this case it is ambiguous to determine which is the

9

 ACCEPTED MANUSCRIPT

- 9

Fig. 2 Example of a main force (the strongest group of attack units).

main force. This is because each unit has a different attack power and range,
and is subject to various factors that decrease power. Thus, it is necessary
to integrate the contributions of all units in each location to understand the
total attack power. We define a location’s power as the sum of all units’ con-
tributions (total power). In some cases, the contribution of one strong unit
is greater than the contributions of many weak units. A customized influence
map is used to determine the positions of the main forces. Influence maps have
been used widely in RTS research to calculate the attack force of an army
[76] [77], where each unit’s influence is calculated and integrated into a single
value. The main force’s position is simply determined as that with the highest
influence. The unit’s total influence considers the unit’s influence power (IP),
discount factor (DF), and influence range (IR); professional players determine
these parameter values for each unit, considering each unit’s characteristics
(see Supplementary Materials). Each unit’s influence is maximized in the area
around it and decreases gradually with distance. The main force detection
algorithm is described in Algorithm 1.

3.2 Categorization of Movement Directions for the Main
Force

Due to the limited vision caused by the fog of war, a player can make no obser-
vations beyond their units and buildings. In the very early stages of the match,
the players focus on their initial build orders (constructing buildings and pro-
ducing units) and exploration of the game world using scouting units. After
several minutes, the players start to produce attack units and develop new
expansion bases to obtain more resources. It soon becomes important to man-
age many attack units as a single group to simplify the control tasks. Human
players usually group attack units into a main force and several relatively small

10

 ACCEPTED MANUSCRIPT

10 -

Algorithm 1 Pseudo-code of the main force detection algorithm.
Require: array of units P
Ensure: position of main force

1: Initialize influence map M , n×n matrix
2: for unit in P do
3: for i = 1, 2, ..., n do
4: for j = 1, 2, ..., n do
5: (x, y) = position of the unit
6: set I P , DF and I R depend on type of unit
7: dist = distance((x, y), (i, j))
8: if dist ≤ I R then
9: M (i, j) += I P − DF × dist

10: end if
11: end for
12: end for
13: end for
14: position of main force = argmaxk,l M

forces; it is not common to divide forces into equally sized armies. After the
early build order stage, players start to control their main force as it moves
into their opponent’s area, returns to the home area, or stops at its current
location. These strategic decisions are made based on all the different types of
visual information available to the players. If it is beneficial, players can wait
until an opponent is in close proximity to their base and simply accumulate
attack units to build a large army. However, it is not always desirable to wait
until opponents act because this allows them to perform many tasks without
intervention. Thus, it is important to move the main force to the appropriate
place at the right time. According to professional players, the movement direc-
tion of the main force can be categorized into six main types (Fig. 3), where
the main force can stop at its current location, move to the opponent’s area,
or return to the home area. The opponent’s area includes the main base, an
expansion base, and their main force. The home area includes the main base
and an expansion base.

The six movement actions for the main force are classified as:
• Stop: An absence of movement; the troops remain at their current position

without receiving any commands.
• Player’s main base (PMB): Toward the allied main base; mainly applied

when retreating from a battle or when the base is under attack.
• Player’s expanded bases (PEBs): To an area far away from the main

base; applied when an expansion base is under enemy attack or needs more
defensive forces.

• Enemy’s main force (EMF): Toward the location identified as the posi-
tion of the EMF, for an attack; applied when the allied force is deemed
superior and capable of beating the enemy’s troops.

11

 ACCEPTED MANUSCRIPT

- 11

Fig. 3 Hierarchical categorization of the movement directions of the main force. Green
nodes are labeled according to the task classification.

• Enemy’s main base (EMB): Taken when the EMF has either been forced
to retreat, is positioned far away from their main base or, on rare occasions,
for an assault on the base.

• Enemy’s expanded bases (EEBs): To attack an EEB that is far away
from the EMB; typically applied when the EMF is positioned far from it.

3.3 Data Labeling for Human Replays
The replay files produced by human players contain all of the actions and
game states that occur during gameplay. The duration of a match can range
from several minutes to > 1 h. In each replay, it is possible to observe the
decisions made by human players regarding the movements of their main force.
We categorized these into the six groups delineated above. It is also possible
to extract the locations of the main bases, expansion bases, and main forces
for all of the players in the recorded match. Each player has only one main
base and force, but the number of expansion bases can vary from zero to
the maximum allowed by the map being played upon. Algorithm 2 describes
the pseudo-code used to label each time step in the human replay data. The
goal of the algorithm is to assign one of the six categories by analyzing the
decisions made by human players regarding the target directions of the main
force. In our experiment, MAX TIME was set to 30 min and STEP was set to
5 s. According to the initial analysis, we found that clarifying the main force’s
target direction required ≥ 3 s. If the time was excessively short, the analysis
could be hindered by noise due to physical movement delays or unexpected
behavior by the units. If STEP was excessively long (e.g., 10 s), the analysis was

12

 ACCEPTED MANUSCRIPT

12 -

likely to miss changes in the decisions made by the human players regarding
the main force’s direction of movement.

Algorithm 2 Pseudo-code of the tactical intention labeling algorithm for
human replays (the player’s main force [PMF] corresponds to the Stop class).
Require: Replays P
Ensure: Labels

for each replay do
EMB = Find an enemy’s main base
PMB = Find a player’s main base
for time = 1, 2, ..., M AX T I M E do

EEBs = Find all of an enemy’s expanded bases
PEBs = Find all of a player’s expanded bases
EMF = Find an enemy’s main force
PMF = Find a player’s main force

PMF Units = Find all attack units around the PMF

for each PMF Unit do
for each order assigned by Player from time to time+STEP do

Positions += unit → getOrderTargetPosition()1

end for
end for

Target Position = Average(Positions)
Select Closest Location with the Target Position

from EMB, PMB, EEBs, PEBs, EMF, and PMF 2

Label the current time as the closest location
end for

end for

3.4 Deep learning for Decision Making
In StarCraft, there are three “races”, and each player selects one for each
match. The three races each have their own units and buildings. For experi-
enced human players, it is natural to play better with, and thus favor, one
of the three races. However, proficient players typically also play well with
the other two races. Considering two-player matches, there are nine possible
match combinations in the game because each player selects one of the three

1 The getOrderTargetPosition() function retrieves the target position for the unit’s order (from
https://bwapi.github.io), which comprises the location to which the unit is trying to move or
attack

2 This function determines the Target Position based on all commands assigned to the units in
the main force over a specific time (e.g., 5 s). It averages the locations where units are trying to
move or attack

13

 ACCEPTED MANUSCRIPT

- 13

Table 1 Number of input channels in the CNNs and ViTs.

Player Opponent Terrain
Channels

Total # of
Channels

Race # of
channels Race # of

channels
Protos
s

15 Protos
s

15 3 33
Protos
s

15 Terran 16 3 34
Protos
s

15 Zerg 13 3 31
Terran 16 Protos

s
15 3 34

Terran 16 Terran 16 3 35
Terran 16 Zerg 13 3 32
Zerg 13 Protos

s
15 3 31

Zerg 13 Terran 16 3 32
Zerg 13 Zerg 13 3 29

Fig. 4 Example input data for the CNNs and ViT: the ”Enemy Building Base” channel,
stores main buildings (”hatchery”) for a Zerg player (upper left). The ”Ally Goliath” channel,
stores attack units (”goliaths”) (upper right). The grid shows the relative locations of the
units in the map. The numbers are the ”influences” of units at each position.

14

 ACCEPTED MANUSCRIPT

14 -

Fig. 5 Overall architecture of the proposed ensemble approach.

races; therefore, nine models can cover all match-ups (Table 1). The input
data have 29-35 channels, with maps measuring 32 × 32 (the name of each
channel is listed in the Supplementary Materials). For the unit channels, infor-
mation about the position of a unit is received, and the influence of the unit
is added to the value corresponding to its position on the map. In the case
of enemy units, only units that have been seen at least once are added to the
map. We used perfect information during the data preprocessing stage, the
proposed ensemble model was trained and tested with imperfect information
and did not require hidden information in either stage. The information about
the enemy is imperfect because the fog of war restricts the visibility of enemy
units and buildings, such that they are only visible when close to allied ones.
This means that the information observed and fed into the model will be incor-
rect if the enemy moves their units or destroys buildings. The channels after
unit one store information about the buildings built by both players. The first
building channels record the positions of the main buildings used for storing
resources for each race. And the second building channels record the buildings
that the enemy’s units can reach and attack. Finally, the third building chan-
nels store the details of all buildings other than the main and at-risk ones. The
last three channels contain details of the terrain on the map; for each position,
flat, hill, and blocked (except for airborne units) areas are represented. Fig. 4
shows examples of channels inputted to the model, where the ”Enemy Build-
ing Base” channel (upper left) stores information concerning the presence of
main bases (Hatchery), while the ”Ally Goliath” channel (upper right) stores
the influences of the attack unit (Goliath).

We built an ensemble model using three models: CNN, ViT, and deci-
sion tree. The majority voting rule is used to ensemble these models. The
visualization of overall architecture is shown in Fig. 5.

For our CNN architecture, we used ResNet 18 [78] and fed the output to
three fully connected layers, which consisted of 1,024, 256, and 6 neurons; the
last layer used Softmax as its activation function. Moreover, the network used
rectified linear units as the activation function for the convolution and fully
connected layers. We used the cross-entropy loss function; the mini-batch size
was 2,048. Dropout (p = 0.5) was applied to the fully connected layers. The
CNN was optimized using the Adam optimizer. The learning rate depended on

15

 ACCEPTED MANUSCRIPT

- 15

the validation loss, and it was reduced when improvement ceased. If there was
no improvement over 10 epochs, the learning rate was reduced by the decay
rate; the initial learning rate was 0.0001, whereas the initial decay rate was 0.3.

Our ViT architecture contains three Transformer blocks followed by two
fully connected layers with 1,024 and 6 neurons, respectively. The Transformer
block contains an 8 × 8 patch, 1,024 hidden dimensions, and 16 attention
heads. For the CNN, we used the cross-entropy loss function; the mini-batch
size was 2,048. Dropout (p = 0.5) was applied to the fully connected layers.
The Adam optimizer was used for optimization. However, the learning rate
was not scheduled; it was fixed at 0.0001 for all training.

The CNN and ViT inputs are images. The size of the input channel is 32 ×
32, and each set of data comprised 29–35 channels. The size of the StarCraft
map is 128 × 128 but human players typically view this map by breaking it
into smaller sections, so we used a map size of 32 × 32. This reduced size
also had the advantage of decreasing the amount of input data. A vector of
size 4 (game time, minerals, gas, and population) was directly fed to the fully
connected layers of the CNN and ViT. These layers concatenated the image
features and fed them to the fully connected layers.

The decision tree was the Classification and Regression Tree (CART) algo-
rithm included in Scikit-learn. We used the Gini impurity to measure the
quality of each split. Unlike a CNN and a ViT, a decision tree cannot accept
image inputs. Thus, we flattened each image input to a vector and fed this
to the decision tree. The data used to train the decision tree were therefore
identical to the data used to train the other models, but their shapes differed.

3.5 Comparative evaluation
For comparative evaluation, we applied several baseline methods to our task.
Since our method is based on the supervision of human demonstrations, it
is proper to use previous methods supervised with human replay data as
baselines. However, most previous tactical decision-making methods [5] [6]
are based on RL with no utilization of human data, which is inappropriate
for baselines. Therefore, we use two similar supervised learning approaches
proposed for the macromanagement problem as baselines rather than those
methods. The first method utilizes Multi Layer Perceptron (MLP) to decide
the next build action [42]. The second method uses a transformer along with
CNNs (Transformer with CNN) [27] to predict the winner and build order.
Both methods use human replays as training data. On the other hand, our
approach is based on the ensemble method [79]. Since our approach adopts
the ensemble method, other ensemble methods should be used as baselines,
such as meta-learning which is a model that makes predictions based on that
of other models. Thus we trained two meta models, the decision tree and sup-
port vector machine (SVM). The meta model accepts yc , yt and yd as inputs;
it predicts the true label y, where yc , yt and yd are the predictions of the
CNN, ViT, and the decision tree, respectively. Finally, to evaluate the effect

16

 ACCEPTED MANUSCRIPT

16 -

of the ensemble, we also included component models of the proposed ensemble
approach: CNN, ViT, and the decision tree.

4 Results and Discussion
For our experiment, we designed the proposed model using a well-known
deep learning framework known as Torch, along with the well-known machine
learning framework known as scikit learn.

4.1 Data Analysis
We downloaded StarCraft replays from two well-known game community
portal sites, Ygosu and BWReplays, which include 1,408 replays of Korean pro-
fessional and semi-professional players, and 10,649 replays where the player’s
actions per minute, (an important measure of a player’s skill) were ≥ 250,
respectively (Table 2). In total, the data comprised 12,057 replays of games
played by experienced humans on various maps, with different match combina-
tions of the Protoss, Terran, and Zerg races. While collecting replays, we made
every effort to preserve the privacy of players to the highest possible extent.
We only collected replay files and did not obtain any additional information
that could identify the players.

Three million data samples were extracted at a sampling rate of 5 s and
labeled as one of the six classes. Fig. 6 shows the main force detected in a
scene from one match (resolution = 128 × 128); the supplementary video
shows the main force detected throughout a full match. Our CNN model made
predictions based on each sample and the accuracy was calculated as the ratio
of correctly classified samples to all test samples.

To ensure that the replays were of matches played properly (i.e., without
hacking or cheating), we used ”minerals”, one of the resources in StarCraft, as
a criterion. For example, replays were not included if the mineral count was
over 5,000 within 30 min. Typically, it is difficult to gather this many minerals
while also constructing buildings and generating units. Data were excluded
if the main force was not in the scene. At the beginning, only workers are
available to collect minerals or gas, and some time is typically required to
produce attacking units from buildings and resources. Thus, samples started
from approximately 100 s and reached a maximum at 300 s (5 min), gradually

Table 2 Replay data collection (Sources: http://ygosu.com/replays and
http://bwreplays.com). Both sources provide full match replays.

Site name Number
of
replays

Proficiency Note

Ygosu 1,408
(Semi-)
Professional
players

Full game replays

BWReplays 10,649 Amateur players
over APM 250

Full game
replays

17

http://ygosu.com/replays

 ACCEPTED MANUSCRIPT

- 17

Fig. 6 Detection of a player’s main force (circle) at a resolution of 128 × 128 (from sup-
plementary video).

decreasing thereafter. Thus, most of the matches were played for at least 5
min and terminated at some point after this time.

Fig. 7 Distribution of data samples according to match time

Figs. 7 - 9 show the basic statistics. The distribution of the six classes shows
that the Stop class was the most common (approximately 25%). Fig. 10 shows
the transition probabilities for the six movement decisions. For example, if the
decision at time t was to Stop, the next decision was Stop 74% of the time,
PMB 10% of the time, etc. Using the table, we constructed a simple predictor
to estimate the next decision based only on the current one. For example, if
the current decision was Stop, then the next decision was predicted as Stop.
Using the statistics in the decision transition table, an accuracy of 49% was
achieved.

If we simplify the decision-making problem, players may choose to continue
or change the current movement direction for their main force. For the Stop

18

 ACCEPTED MANUSCRIPT

4

t

t

18 -

Fig. 8 Distribution of main force movement classes

Fig. 9 Number of replays for each match type. P: Protoss, T: Terran, v: versus, Z: Zerg

decision, there was a high probability that the next decision was to continue
with that action. Thus, the main force usually waited at a location for the
player to make a decision, before moving to a target position with a probability
of only 1 . When the main forces to the compared with all force was moving
somewhere, stopping had a probability of approximately 1 - 1 , indicating that3 2
players frequently cancelled moves as the situation changed. The PMB →
PMB sequence (40%) denotes a return to the main base, most often because
of a need to defend it. The EMF → EMF sequence (32%) was likely to be the
precursor to large-scale combat between the two main forces. Some sequences
represent attacks, such as EMB → EEB (20%) and EMF → EEB (17%).

To explore how humans control the power of the main force, we calculated
the ratios of the main forces to the compared with all units in terms of both
the number of units and the sum of the influences. The average number ratio
of the main force is RatioN at tth s, obtained by averaging the ratio of the
main force at the tth s of the ith replay. Similarly, the average ratio of the main
force in terms of influence is RatioI at tth s, obtained by averaging the ratio
of the main force at tth s of the ith replay. The exact formula is as follows:

main total

RatioN = i(Ni,t /Ni,t)
t K

main total

RatioI = i(Ii,t /Ii,t)
t K

19

 ACCEPTED MANUSCRIPT

- 19

Fig. 10 Transition probability table (x-axis: time t+5 s, y-axis: time t) based on the ground
truth data.

While N main and N total are the numbers of the main force units and alli,t i,t
units respectively, at tth s of the ith replay. Where I main and I total are thei,t i,t
summed influences of the main force units and all units respectively, at tth s
of the ith replay. K is the total number of replays.

The RatioI and RatioN are shown over time in Figs. 11 and 12, respectively.t t
In the early stage, both ratios are near 1, which means that only one force
exists (most units belong to the main force). Both ratios decrease sharply until
approximately 250 s, then decrease slowly thereafter. It is noteworthy that the
ratio of the number of units (Fig. 12) is above the ratio for the influence (Fig.
11) after 250 s, but similar before then. This is because, in the early stage, most
units are workers, and so they have similar influences. Subsequently, however,
various battle units have been produced, so the unit influence becomes more
diverse. Because strong units (which have high influence) typically belong to
the main force, the RatioI is higher than the RatioN . Generally, after the earlyt t
stage of a match, approximately 40% of units belong to the main force and
account for approximately 60% of the influence. This indicates that managing
units using one strong main force is a common strategy for human players,
and thus the main force plays an essential role in tactics.

4.2 Learning and Evaluation of the Deep learning model
Tables 3-5 list the test accuracies of the proposed model and the baseline
models for the nine match types. We trained the nine ensemble models (CNNs,

20

 ACCEPTED MANUSCRIPT

20 -

Table 3 Top-1 test accuracy of the proposed model and baseline models. P: Protoss, T:
Terran, Z: Zerg.

Ensemble
of CNN, DT,

and ViT
(proposed)

CNN
Decision

tree (DT)

ViT
(Vision
Trans

-former)

Meta
decision

tree

Meta
SVM MLP

[42]

Trans
-former with
CNN [27]

P vs
P

59.5 53.3 52.9 55.1 52.9 52.9 48.5 47.8
P vs
T

57.9 53.4 51.2 52.6 51.2 51.2 44.3 39.3
P vs
Z

55.6 49.8 50.9 50.8 50.9 50.9 41.8 36.4
T vs
P

63.3 56.4 57.4 58.8 57.4 57.4 46.7 37.9
T vs
T

58.7 52.3 55.5 51.5 55.5 55.5 45.5 33.2
T vs
Z

55.4 48.6 49.8 50.3 49.8 49.8 41.6 35.5
Z vs
P

54.1 49.1 49.3 49.1 49.3 49.3 40.3 38.5
Z vs
T

51.6 44.3 46.5 46.1 46.5 46.5 40.8 35.5
Z vs
Z

55.7 51.6 50.1 50.2 50.1 50.1 38.9 38.4
Avg. 56.9 51 51.5 51.6 51.5 51.5 43.2 38.1

Table 4 Top-2 test accuracy of the proposed model and baseline models. P: Protoss, T:
Terran, Z: Zerg.

Ensemble
of CNN, DT, and
ViT (proposed) CNN

ViT
(Vision
Trans

-former)

MLP [42]

Trans
-former with
CNN [27]

P vs
P

79.9 71.8 77.9 67.5 65.6
P vs
T

76.8 67.1 73.9 60.7 58.2
P vs
Z

74.9 67.1 72.1 58.5 55.5
T vs
P

81.4 69 79.1 61.8 55.6
T vs
T

77.3 67.9 73.2 61.5 58.3
T vs
Z

76.5 57.2 73.8 61.4 58.3
Z vs
P

73.5 67.1 70.3 57.7 59.1
Z vs
T

72.2 58.9 69.1 61.3 59.1
Z vs
Z

78.8 73.4 75.9 61 64.5
Avg. 76.8 66.6 73.9 61.3 59.4

Table 5 Top-3 test accuracy of the proposed model and baseline models. P: Protoss, T:
Terran, Z: Zerg.

Ensemble
of CNN, DT, and
ViT (proposed) CNN

ViT
(Vision
Trans

-former)

MLP [42]

Trans
-former with
CNN [27]

P vs
P

91.5 85.6 91 79.
6

79.3
P vs
T

87.9 75.9 86.8 72.
9

72.5
P vs
Z

85.9 78.8 84.6 71.
6

71.3
T vs
P

90.6 79.2 89.7 73.
8

74.5
T vs
T

88.4 77.1 86.8 75.
5

73.3
T vs
Z

88.4 72.3 87.4 75.
1

73.8
Z vs
P

85.4 79.4 83.7 69.
9

74.5
Z vs
T

85.7 73.5 84.4 77.
5

76
Z vs
Z

92.9 87.8 92.1 78.
3

85.1
Avg. 88.5 78.8 87.4 74.

9
75.6

21

 ACCEPTED MANUSCRIPT

t

- 21

Fig. 11 Average ratios of the influences (RatioI) of units belonging to the main force
compared with the influences of all units. The light yellow area is the standard deviation.
The x-axis is game time (in s, t), and y-axis is the ratio.

a ViT, and a decision tree). Our model outperforms the baseline models in
terms of all nine match types. The test top-1, -2, and -3 accuracies of the
proposed model were 51.6–63.3%, 72.2–81.4%, and 85.4–92.9%, respectively.
Among the nine match types, the proposed model for the Terran vs. Protoss
match achieved the best top-1 accuracy for predicting the main force’s direction
5 s later, at 63.3%. The performance of non-ensemble models (CNN, ViT,
and decision tree) varied according to the match type. In the Protoss vs.
Protoss match, the ViT outperformed the others; in the Terran vs. Terran
match, the decision tree yielded the best result. The accuracies of the meta
ensemble models (meta decision tree and meta SVM) are almost identical to
the maximum accuracy of the three models (CNN, decision tree, and ViT)
that form the ensemble. The two methods from previous works, MLP and the
Transformer with CNN show relatively poor performance compared to other
baselines. The average accuracies of MLP and the Transformer with CNN
are 43.2 and 38.1, respectively, in contrast to the average accuracies of other
baselines which are higher than 50. The average accuracies of the 7 baseline
models over the nine match types were 51%, 51.5%, 51.6%, 51.5%, 51.5%,
43.2%, and 38.1% respectively. However, the proposed model, which is built
through a simple ensemble technique (majority voting of three models), yields
an average accuracy of 56.9%. In addition, in terms of the top-2 accuracy,
the proposed model for the Terran vs. Protoss match performed best, with
an accuracy of 81.4%. In terms of top-3 accuracy, the model achieved the
highest accuracy for the Zerg vs. Zerg match, at 92.9%. Also throughout top-2

22

 ACCEPTED MANUSCRIPT

t

22 -

Fig. 12 Average ratio of the number (RatioN) of units belonging to the main force com-
pared with the numbers of all units. The light blue area is the standard deviation. The x-axis
is game time (in s, t), and the y-axis is the ratio.

and top-3 accuracies, the ViT shows high performance, close to the proposed
method’s accuracies. Because neither the decision tree nor the SVM delivered
probabilities according to classes, we analyzed only the top-2 and -3 accuracies
yielded by the proposed model, the CNN, and the ViT.

The phenomenon that the proposed ensemble model outperforms all base-
lines means that each module of the proposed ensemble model learned a
different representation of the data. Each module has unique advantages and
limitations. CNNs are specialized for image processing; they have strong induc-
tive biases in terms of translation invariance and locality. CNNs thus perform
well when image data are sparse. However, the inductive bias can disturb train-
ing if the data are large. The ViT exhibits less inductive bias and can thus
learn unbiased representations if the data are adequate. Unlike the first two
models, a decision tree performs poorly when fed high-dimensional data such
as images. However, it is a simpler model. The combination processes data in
a complex and diverse manner.

In a comparative view with similar existing methods (MLP[42] and Trans-
former with CNN [27]), our model shows the best performance. A further novel
finding is that similar existing methods are worse than other baselines. The
average top-1 accuracies of the other baselines are above 50%, but the MLP
and the Transformer with CNN have top-1 accuracies approaching 40. This
poor performance can be explained by their inappropriate network architec-
ture. In the case of MLP, it shows poor performance since it is unsuitable for
processing image data. However, although the Transformer with CNN is more

23

 ACCEPTED MANUSCRIPT

- 23

Fig. 13 Confusion matrix of the proposed model, for all test data samples of the nine
match types. The number in each cell is the ratio of the sample number to the total number
of samples. EEB: enemy’s expansion base, EMB: enemy’s main base, EMF: enemy’s main
force, PEB: player’s expansion base, PMB: player’s main base. The model often confuses
non-Stop labels and Stop labels. Also, the model usually predicts Stop, PMB, EMB, and
EMF correctly, but often confuses PEB and EEB.

Table 6 Inference time and number of parameters of proposed and similar existing models.

Ensemble
of CNN, DT,

and ViT
(proposed)

CNN
Decision

tree (DT)

ViT
(Vision
Trans

-former)

MLP
[42]

Trans
-former with
CNN [27]

Inference
time
(ms)

24.91 16.9 0.17 7.84 1.63 35.42

of
parameters
(million)

34 11 0 22 4 11

appropriate for processing image data, it shows a poorer performance than
that of MLP. This may be explained by the excessively deep network of the
Transformer with CNN. Since CNN and transformer sequentially process data,
the network can be overfitted to the data.

Moreover, our approach focuses on predicting the future movements of
the main force, while another approach aim to decide the destination of all
armies [5]. Both approaches can have their advantages and disadvantages. For
instance, in the early stages of a game, where the number of units is relatively

24

 ACCEPTED MANUSCRIPT

24 -

Fig. 14 Test accuracy of the proposed model for all test data samples over time.

small, predicting the movements of all units may be more feasible and useful.
Nonetheless, as the game progresses and the number of units increases, it may
become more practical and effective to focus on predicting the movements of
the main force.

Although our method outperforms baselines, several limitations must be
considered. First, our method is an ensemble approach that requires more
computational resources during training and inferring. Table 6 shows inference
times and the number of parameters of the proposed model and non-ensemble
baselines. We produced this result using the NVIDIA V100 GPU. Except for
the Transformer with CNN, the other four models were 8.01–24.74 ms faster
than the proposed method. Also, the proposed model has 34 million param-
eters, which is larger than all baselines. However, this slow inference will not
be a problem when applying it to real-time gameplay, because it can still infer
more than 30 times in a second. In addition, unlike previous approaches for
tactical decision making that have used RL [3] [4], our method is a super-
vised learning scheme. Thus, our approach requires a large amount of training
data. Also, the performance of the trained model depends on the data quality.
This is a double-edged sword because the performance can be easily improved
using data of good quality but with poor quality data, the performance will
deteriorate. Furthermore, since our approach simply imitates demonstrations
from the data, the trained model is less likely to outperform the best human
policy represented in the data. Future work can address this issue using the

25

 ACCEPTED MANUSCRIPT

- 25

self-supervised method [80] or offline RL [81] to make the model outperform
human policies from the data.

In the case of meta-ensemble models (meta decision tree and meta SVM),
they exhibited poorer performance, compared with the proposed majority
voting approach. However, the SVM accuracy was almost identical to the max-
imum accuracy of the three models used in the ensemble (CNN, decision tree,
and ViT). Because the meta models are trained using the same data, they
appear to imitate the prediction of the model that was most accurate when
using the training data.

The confusion matrix of the proposed model for all data samples is shown
in Fig. 13. The proposed model typically predicted Stop, PMB, EMB, and
EMF accurately, but it was correct less often for PEB and EEB. The model
often confused labels of extended bases; the accuracies for both PEB and EEB
are low. This result is explained by the uncertainties in base positions. Unlike
the position of the main base, the positions of extended bases depend on the
players, and there can be more than one extended base. Decisions related
to such bases differ according to the players and their strategies. Therefore,
from a modeling viewpoint, it is challenging to infer a human decision about
an extended base. Also, the model often predicted non-Stop labels as Stop,
reflecting label imbalance. As shown in Fig. 8, Stop is the most common label
(25.26%).

Figure 14 shows the test accuracy for all data samples over time. In the
early stage of a match, the accuracy is very high because most units are work-
ers, and they typically stay near their base. It then decreases sharply due
to the production of battle units, which are then organized into a new main
force. After approximately 250 s, the accuracy gradually decreases. This can
be interpreted as reflecting insufficient training data because the number of
samples decreases over time, as shown in Fig. 7. This might also be caused
by the simultaneous and gradual reduction in the ratio of the main force, as
shown in Figs. 11 and 12.

4.3 Generalization over other RTS games
In this section, we discuss the potential challenges of applying the proposed
approach to other RTS games. Although we implemented the proposed method
on StarCraft, the proposed approach can be generalized onto other RTS games.
To apply the proposed approach, three steps are required: collecting replays
and extracting data from them, detecting the main force and labeling its future
direction, and training the ensemble model using proper input encoding.

As most RTS games are repayable and use the available extraction software,
collecting and processing the replays is typically straightforward. Considering
the replays, the labels for the main force can be determined using the main
force detection algorithm (Algorithm 1). However, this algorithm requires the
parameters of each unit (IP, DF, IR), which the user must manually define
based on the game. Finally, to train the model, the user must provide proper
input encoding. This study encoded the game scene into a stack of each unit’s

26

 ACCEPTED MANUSCRIPT

26 -

and building’s influence maps, which were automatically generated based on
their parameters. Therefore, the influence maps can be readily created after
defining the parameters, and the user needs to select only the appropriate unit
parameters to apply the proposed method.

Moreover, an essential consideration of applying this method to other RTS
games is the significance of the main force in that game. As the Lanchester’s
laws are applicable to the RTS games, managing several units by clustering
them into forces is a common strategy. Thus, the main force is likely to exist in
the replays of the players. However, the effectiveness of the proposed approach
may differ depending on the ratio of the main force in the game. In the analysis
of the StarCraft replay data, approximately 40% of units pertained to the
main force and account for approximately 60% of the influence. This suggests
that the main force requires a substantial part of the military power, and its
operation is a critical part of the game. However, the proposed method may be
less effective in a game in which the ratio of the main force is less than that in
the StarCraft. This is a potential limitation of the proposed approach, and a
possible future direction is to address this issue by predicting the movements of
the multiple forces. Another potential limitation is that the proposed method
cannot handle tactical aspects that are not related to the main force. For
instance, at the start of a game, a player might employ various tactics to
disrupt their opponent’s progress, such as harassing them with a scattered
group of units as part of a “rush” strategy or deliberately obstructing the
opponent’s base development to force them to rethink their approach.

4.4 Applications
In this section, we discuss the mechanisms through which the proposed
approach can improve the gameplay of RTS game agents. A potential appli-
cation is to incorporate our approach as a module within AI bots, where the
agent can determine the future direction of the main force based on the pre-
dictions of the ensemble model. Considering the fog of war, the model can be
seamlessly integrated into the gameplay. The trained ensemble model can be
directly used without additional training or be trained online while playing
games to efficiently adapt to new games and strategies of the RTS agent. How-
ever, the online approach appears with the risk of overfitting. Applying our
approach to the RTS game agents is an interesting avenue for future research.

Another possible application of the proposed approach is to predict the
movements of the enemy main force. Although the proposed approach focuses
on the allied main force, it can be applied to the main force of the enemy.
To this end, the model needs to handle partial information, thereby creating
challenges in training. The prediction techniques such as those presented in [44]
reveal the fog of war can address this issue. Therefore, successful prediction of
the movements of the main force of the enemy can enable the agent to infer
the opponent’s strategy and employ appropriate precautions.

27

 ACCEPTED MANUSCRIPT

5 Conclusion
- 27

Recently, StarCraft became an appealing environment for AI research because
it provides varied and complex problems. Although tactics are an important
part of RTS games, previous studies were based on heuristics and replays were
not utilized for learning tactics.

In this work, we proposed a tactical decision-making method based on
learning to control a main force using deep learning from replays of human
games. We extracted approximately 3 million data samples from replays, then
labeled them according to six categories defined by professional human play-
ers. Each data sample was converted into 29–35 channels as the input for our
learning model. We used CNNs and ViTs—some of the most widely used tech-
niques in deep learning research—to process this large among of data and its
high-dimensional inputs. We built ensemble models using CNNs, ViTs and a
decision tree to successfully guess the future movements of the main forces
of players. We trained nine ensemble models to cover the different types of
matches. The experimental results showed that the proposed method success-
fully estimated the six-class problem, with top-3, -2, and -1 accuracies of 92.9%,
81.4%, and 63.3%, respectively. The proposed model outperformed the base-
line models for all nine match types in terms of the top-3, -2, and -1 accuracies.
Also, we analyzed human decision-making processes related to the main force
and showed that it accounts for approximately 60% of all units’ influence and
is thus essential for tactics. We formulated the main force detection problem
according to the suggestions of professional human players, for whom handling
the main force is critical throughout the match. Interpretation of the inten-
tions of human players in the complex environments of RTS games can be very
demanding. Traditional methods of learning encounter many difficulties when
applied to these environments, due to the vast search space and endless num-
ber of possible actions. One advantage of our model is that replay data do not
require complex pre-processing before the learning process.

We believe that our method could lead to new macro-level tactical decision-
making problems in RTSs based on the perspective of human players. In
addition, StarCraft AI research may benefit from the application of our
model for building systems in terms of the build order, scouting, resource
management, etc.

However, although our method successfully inferred human intentions when
dealing with the main force, there is potential for improvement. Current image
processing CNNs and a ViT do not perfectly learn human StarCraft tactics.
Because neural networks are increasingly applied to various domains, they are
being transformed, improved, and developed to suit such domains. In addi-
tion, although our analysis suggests that players have a single main force in
most cases, however, there could be a case where the units are equally dis-
tributed among multiple forces rather than concentrated on a single main force.
Considering such cases is one of the possible future improvements.

Future work should focus on the improvement of deep neural networks
that learn human intentions in complex environments. One such example is

28

 ACCEPTED MANUSCRIPT

28 -

that of handling the relationships among forces. In this work, we only focused
on the main force; however, strategy and tactics include setting the roles of
forces and managing relations between them. In deep learning, graph neural
networks (GNNs) are widely used for handling such relations through their
strong inductive bias. GNNs have already been applied to micromanagement
by focusing on the relations between units [82]. Thus, it may be useful for
managing the relations among forces.

One direction for future work is the automation of the handcrafted parts of
our approach. Currently, we determine each unit’s parameters and categorize
the main force movement based on heuristics, which may be suboptimal and
may limit the performance of our approach. Automating these processes could
lead to more efficient learning and better overall performance.

Another area for improvement is the consideration of the Rock Scissor
Paper (RSP) relationships between units. Although our approach focuses on
the main force, the composition of the enemy forces can greatly impact the
effectiveness of the main force. For instance, a small cluster of certain units
might be able to defeat a force of strong units, which could render the main
force less impactful. By accounting for RSP relationships and other strategic
considerations, our approach could be enhanced to better adapt to different
game situations and improve its overall performance.

On the other hand, our method could be improved in a more practical
way. In this work, we classified the destination of the main force into six
categories. Instead of this, directly predicting the trajectory would allow for
more continuous and flexible control for the main force. Furthermore, not only
movement but also the composition of the forces is important in terms of
strategy. Relations among forces may be affected by their unit composition.
This point of view provides a path for future research. We used simple pre-
processing methods based on timing and the amount of minerals to exclude
non-informative data from the replays; however, this process must be modified
to include a mechanism for identifying only the critical moments in matches
(e.g., combat).

Supplementary information. Please see attached ”Supplementary.pdf”
and ”video.wmv”.

Acknowledgements. This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korean government Ministry
of Science and ICT (MSIT) (2021R1A4A1030075).

Data Availability. The datasets generated during and/or analysed during
the current study are available from the corresponding author on reasonable
request.

Declarations
Conflict of Interests Authors have no conflicts of interest.

29

 ACCEPTED MANUSCRIPT

References
- 29

[1] Buro, M.: Real-time strategy games: A new ai research challenge. In:
IJCAI, vol. 2003, pp. 1534–1535 (2003)

[2] Adil, K., Jiang, F., Liu, S., Jifara, W., Tian, Z., Fu, Y.: State-of-the-art
and open challenges in rts game-ai and starcraft. Int. J. Adv. Comput.
Sci. Appl 8(12), 16–24 (2017)

[3] Synnaeve, G., Bessiere, P.: Special tactics: A bayesian approach to tactical
decision-making. In: 2012 IEEE Conference on Computational Intelligence
and Games (CIG), pp. 409–416 (2012). IEEE

[4] Soemers, D.: Tactical planning using mcts in the game of starcraft.
Master’s thesis, Maastricht University (2014)

[5] Lee, D., Tang, H., Zhang, J.O., Xu, H., Darrell, T., Abbeel, P.: Mod-
ular architecture for starcraft ii with deep reinforcement learning. In:
Fourteenth Artificial Intelligence and Interactive Digital Entertainment
Conference (2018)

[6] Xu, S., Kuang, H., Zhi, Z., Hu, R., Liu, Y., Sun, H.: Macro action selec-
tion with deep reinforcement learning in starcraft. In: Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, vol. 15, pp. 94–99 (2019)

[7] Barriga, N.A., Stanescu, M., Besoain, F., Buro, M.: Improving rts game
ai by supervised policy learning, tactical search, and deep reinforcement
learning. IEEE Computational Intelligence Magazine 14(3), 8–18 (2019).
https://doi.org/10.1109/MCI.2019.2919363

[8] Farooq, S.S., Oh, I.-S., Kim, M.-J., Kim, K.J.: Starcraft ai competition
report. AI Magazine 37(2), 102–107 (2016)

[9] Č ertickỳ, M., Churchill, D., Kim, K.-J., Č ertickỳ, M., Kelly, R.: Star-
craft ai competitions, bots, and tournament manager software. IEEE
Transactions on Games 11(3), 227–237 (2018)

[10] Ontanon, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., Preuss,
M.: A survey of real-time strategy game ai research and competition in
starcraft. IEEE Transactions on Computational Intelligence and AI in
games 5(4), 293–311 (2013)

[11] Robertson, G., Watson, I.: A review of real-time strategy game ai. Ai
Magazine 35(4), 75–104 (2014)

[12] Olesen, J.K., Yannakakis, G.N., Hallam, J.: Real-time challenge balance
in an rts game using rtneat. In: 2008 IEEE Symposium On Computational

30

https://doi.org/10.1109/MCI.2019.2919363

 ACCEPTED MANUSCRIPT

30 -

Intelligence and Games, pp. 87–94 (2008). IEEE

[13] Andersen, P.-A., Goodwin, M., Granmo, O.-C.: Deep rts: a game envi-
ronment for deep reinforcement learning in real-time strategy games. In:
2018 IEEE Conference on Computational Intelligence and Games (CIG),
pp. 1–8 (2018). IEEE

[14] Buro, M.: Orts: A hack-free rts game environment. In: International
Conference on Computers and Games, pp. 280–291 (2002). Springer

[15] Ontañon, S., Barriga, N.A., Silva, C.R., Moraes, R.O., Lelis, L.H.: The
first microrts artificial intelligence competition. AI Magazine 39(1), 75–83
(2018)

[16] Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A.S.,
Yeo, M., Makhzani, A., Küttler, H., Agapiou, J., Schrittwieser, J., et al.:
Starcraft ii: A new challenge for reinforcement learning. arXiv preprint
arXiv:1708.04782 (2017)

[17] Churchill, D., Buro, M.: Build order optimization in starcraft. In: Seventh
Artificial Intelligence and Interactive Digital Entertainment Conference
(2011)

[18] Young, J., Hawes, N.: Evolutionary learning of goal priorities in a real-time
strategy game. In: Eighth Artificial Intelligence and Interactive Digital
Entertainment Conference (2012)

[19] Garćıa-Sanchez, P., Tonda, A., Mora, A.M., Squillero, G., Merelo, J.:
Towards automatic starcraft strategy generation using genetic program-
ming. In: 2015 IEEE Conference on Computational Intelligence and
Games (CIG), pp. 284–291 (2015). IEEE

[20] Kostler, H., Gmeiner, B.: A multi-objective genetic algorithm for build
order optimization in starcraft ii. KI-Künstliche Intelligenz 27(3), 221–233
(2013)

[21] Justesen, N., Risi, S.: Continual online evolutionary planning for in-game
build order adaptation in starcraft. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 187–194 (2017)

[22] Huang, W., Yin, Q., Zhang, J., Huang, K.: Learning macromanagement
in starcraft by deep reinforcement learning. Sensors 21(10) (2021). https:
//doi.org/10.3390/s21103332

[23] Synnaeve, G., Bessiere, P.: A bayesian model for opening prediction in
rts games with application to starcraft. In: 2011 IEEE Conference on
Computational Intelligence and Games (CIG’11), pp. 281–288 (2011).

31

https://doi.org/10.3390/s21103332
https://doi.org/10.3390/s21103332

 ACCEPTED MANUSCRIPT

- 31

IEEE

[24] Cho, H., Park, H., Kim, C.-Y., Kim, K.-J.: Investigation of the effect of
“fog of war” in the prediction of starcraft strategy using machine learning.
Computers in Entertainment (CIE) 14(1), 1–16 (2016)

[25] Cho, H.-C., Kim, K.-J., Cho, S.-B.: Replay-based strategy prediction and
build order adaptation for starcraft ai bots. In: 2013 IEEE Conference on
Computational Inteligence in Games (CIG), pp. 1–7 (2013). IEEE

[26] Dereszynski, E., Hostetler, J., Fern, A., Dietterich, T., Hoang, T.-T.,
Udarbe, M.: Learning probabilistic behavior models in real-time strat-
egy games. In: Seventh Artificial Intelligence and Interactive Digital
Entertainment Conference (2011)

[27] Khan, M.J., Hassan, S., Sukthankar, G.: Leveraging transformers for
starcraft macromanagement prediction. In: 2021 20th IEEE Interna-
tional Conference on Machine Learning and Applications (ICMLA), pp.
1229–1234 (2021). IEEE

[28] Churchill, D., Saffidine, A., Buro, M.: Fast heuristic search for rts game
combat scenarios. In: Eighth Artificial Intelligence and Interactive Digital
Entertainment Conference (2012)

[29] Churchill, D., Buro, M.: Incorporating search algorithms into rts game
agents. In: Eighth Artificial Intelligence and Interactive Digital Entertain-
ment Conference (2012)

[30] Churchill, D., Buro, M.: Portfolio greedy search and simulation for large-
scale combat in starcraft. In: 2013 IEEE Conference on Computational
Inteligence in Games (CIG), pp. 1–8 (2013). IEEE

[31] Stanescu, M., Barriga, N.A., Buro, M.: Hierarchical adversarial search
applied to real-time strategy games. In: Tenth Artificial Intelligence and
Interactive Digital Entertainment Conference (2014)

[32] Rathe, E.A., Svendsen, J.B.: Micromanagement in starcraft using poten-
tial fields tuned with a multi-objective genetic algorithm. Master’s thesis,
Institutt for datateknikk og informasjonsvitenskap (2012)

[33] Gabriel, I., Negru, V., Zaharie, D.: Neuroevolution based multi-agent sys-
tem for micromanagement in real-time strategy games. In: Proceedings of
the Fifth Balkan Conference in Informatics, pp. 32–39 (2012)

[34] Zhen, J.S., Watson, I.: Neuroevolution for micromanagement in the
real-time strategy game starcraft: Brood war. In: Australasian Joint
Conference on Artificial Intelligence, pp. 259–270 (2013). Springer

32

 ACCEPTED MANUSCRIPT

32 -

[35] Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J.,
Whiteson, S.: Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning. In: International Conference on
Machine Learning, pp. 4295–4304 (2018). PMLR

[36] Foerster, J., Nardelli, N., Farquhar, G., Afouras, T., Torr, P.H., Kohli,
P., Whiteson, S.: Stabilising experience replay for deep multi-agent rein-
forcement learning. In: International Conference on Machine Learning,
pp. 1146–1155 (2017). PMLR

[37] Young, J., Smith, F., Atkinson, C., Poyner, K., Chothia, T.: Scail: An inte-
grated starcraft ai system. In: 2012 IEEE Conference on Computational
Intelligence and Games (CIG), pp. 438–445 (2012). IEEE

[38] Vinyals, O., Babuschkin, I., Czarnecki, W.M., Mathieu, M., Dudzik,
A., Chung, J., Choi, D.H., Powell, R., Ewalds, T., Georgiev, P., et al.:
Grandmaster level in starcraft ii using multi-agent reinforcement learning.
Nature 575(7782), 350–354 (2019)

[39] Baek, I.-C., Kim, K.-J.: Web-based interface for data labeling in starcraft.
In: 2018 IEEE Conference on Computational Intelligence and Games
(CIG), pp. 1–2 (2018). IEEE

[40] Joo, H.-T., Lee, S.-H., Bae, C.-m., Kim, K.-J.: Learning to automati-
cally spectate games for esports using object detection mechanism. Expert
Systems with Applications 213, 118979 (2023)

[41] Hu, Y., Li, J., Li, X., Pan, G., Xu, M.: Knowledge-guided agent-tactic-
aware learning for starcraft micromanagement. In: IJCAI, pp. 1471–1477
(2018)

[42] Justesen, N., Risi, S.: Learning macromanagement in starcraft from
replays using deep learning. In: 2017 IEEE Conference on Computational
Intelligence and Games (CIG), pp. 162–169 (2017). IEEE

[43] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, / ., Polosukhin, I.: Attention is all you need. Advances in
neural information processing systems 30 (2017)

[44] Jeong, Y., Choi, H., Kim, B., Gwon, Y.: Defoggan: Predicting hidden
information in the starcraft fog of war with generative adversarial nets.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
pp. 4296–4303 (2020)

[45] Lin, Z., Gehring, J., Khalidov, V., Synnaeve, G.: Stardata: A starcraft
ai research dataset. In: Thirteenth Artificial Intelligence and Interactive
Digital Entertainment Conference (2017)

33

 ACCEPTED MANUSCRIPT

- 33

[46] Lee, C.M., Ahn, C.W.: Feature extraction for starcraft ii league prediction.
Electronics 10(8), 909 (2021)

[47] Zhang, S., Wu, Y., Ogai, H., Inujima, H., Tateno, S.: Tactical decision-
making for autonomous driving using dueling double deep q network with
double attention. IEEE Access 9, 151983–151992 (2021)

[48] Hoel, C.-J., Driggs-Campbell, K., Wolff, K., Laine, L., Kochenderfer, M.J.:
Combining planning and deep reinforcement learning in tactical decision
making for autonomous driving. IEEE transactions on intelligent vehicles
5(2), 294–305 (2019)

[49] Watson, N., Hendricks, S., Stewart, T., Durbach, I.: Integrating machine
learning and decision support in tactical decision-making in rugby union.
Journal of the operational research society 72(10), 2274–2285 (2021)

[50] Beal, R., Chalkiadakis, G., Norman, T.J., Ramchurn, S.D.: Optimising
game tactics for football. arXiv preprint arXiv:2003.10294 (2020)

[51] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Belle-
mare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G.,
et al.: Human-level control through deep reinforcement learning. nature
518(7540), 529–533 (2015)

[52] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driess-
che, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot,
M., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

[53] Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T.,
Silver, D., Kavukcuoglu, K.: Asynchronous methods for deep reinforce-
ment learning. In: International Conference on Machine Learning, pp.
1928–1937 (2016). PMLR

[54] Lample, G., Chaplot, D.S.: Playing fps games with deep reinforcement
learning. In: Thirty-First AAAI Conference on Artificial Intelligence
(2017)

[55] Oh, J., Chockalingam, V., Lee, H., et al.: Control of memory, active per-
ception, and action in minecraft. In: International Conference on Machine
Learning, pp. 2790–2799 (2016). PMLR

[56] Ye, D., Chen, G., Zhang, W., Chen, S., Yuan, B., Liu, B., Chen, J.,
Liu, Z., Qiu, F., Yu, H., et al.: Towards playing full moba games with
deep reinforcement learning. Advances in Neural Information Processing
Systems 33, 621–632 (2020)

34

 ACCEPTED MANUSCRIPT

34 -

[57] Zahavy, T., Haroush, M., Merlis, N., Mankowitz, D.J., Mannor, S.: Learn
what not to learn: Action elimination with deep reinforcement learning.
Advances in Neural Information Processing Systems 31 (2018)

[58] Burda, Y., Edwards, H., Storkey, A., Klimov, O.: Exploration by random
network distillation. In: International Conference on Learning Represen-
tations (2018)

[59] Gudmundsson, S.F., Eisen, P., Poromaa, E., Nodet, A., Purmonen, S.,
Kozakowski, B., Meurling, R., Cao, L.: Human-like playtesting with deep
learning. In: 2018 IEEE Conference on Computational Intelligence and
Games (CIG), pp. 1–8 (2018). IEEE

[60] Shin, Y., Kim, J., Jin, K., Kim, Y.B.: Playtesting in match 3 game using
strategic plays via reinforcement learning. IEEE Access 8, 51593–51600
(2020)

[61] Liskowski, P., Jaśkowski, W., Krawiec, K.: Learning to play othello
with deep neural networks. IEEE Transactions on Games 10(4), 354–364
(2018)

[62] Takada, K., Iizuka, H., Yamamoto, M.: Reinforcement learning for creat-
ing evaluation function using convolutional neural network in hex. In: 2017
Conference on Technologies and Applications of Artificial Intelligence
(TAAI), pp. 196–201 (2017). IEEE

[63] Stanescu, M., Barriga, N.A., Hess, A., Buro, M.: Evaluating real-time
strategy game states using convolutional neural networks. In: 2016 IEEE
Conference on Computational Intelligence and Games (CIG), pp. 1–7
(2016). IEEE

[64] Huang, J., Yang, W.: A multi-size convolution neural network for rts
games winner prediction. In: MATEC Web of Conferences, vol. 232, p.
01054 (2018). EDP Sciences

[65] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances
in neural information processing systems 27 (2014)

[66] Irfan, A., Zafar, A., Hassan, S.: Evolving levels for general games using
deep convolutional generative adversarial networks. In: 2019 11th Com-
puter Science and Electronic Engineering (CEEC), pp. 96–101 (2019).
IEEE

[67] Karavolos, D., Liapis, A., Yannakakis, G.N.: Pairing character classes
in a deathmatch shooter game via a deep-learning surrogate model. In:
Proceedings of the 13th International Conference on the Foundations of

35

 ACCEPTED MANUSCRIPT

- 35

Digital Games, pp. 1–10 (2018)

[68] Khalifa, A., Bontrager, P., Earle, S., Togelius, J.: Pcgrl: Procedural con-
tent generation via reinforcement learning. In: Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertain-
ment, vol. 16, pp. 95–101 (2020)

[69] Vazifedan, A., Izadi, M.: Predicting human behavior in size-variant
repeated games through deep convolutional neural networks. Progress in
artificial intelligence 11(1), 15–28 (2022)

[70] Ling, C., Tollmar, K., Gisslén, L.: Using deep convolutional neural net-
works to detect rendered glitches in video games. In: Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, vol. 16, pp. 66–73 (2020)

[71] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S.,
Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Trans-
formers for image recognition at scale. In: International Conference
on Learning Representations (2021). https://openreview.net/forum?id=
YicbFdNTTy

[72] Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel,
P., Srinivas, A., Mordatch, I.: Decision transformer: Reinforcement learn-
ing via sequence modeling. Advances in neural information processing
systems 34, 15084–15097 (2021)

[73] Xu, Y., Chen, L., Fang, M., Wang, Y., Zhang, C.: Deep reinforcement
learning with transformers for text adventure games. In: 2020 IEEE
Conference on Games (CoG), pp. 65–72 (2020). IEEE

[74] Ciolino, M., Kalin, J., Noever, D.: The go transformer: Natural lan-
guage modeling for game play. In: 2020 Third International Conference
on Artificial Intelligence for Industries (AI4I), pp. 23–26 (2020). IEEE

[75] Sopov, V., Makarov, I.: Transformer-based deep reinforcement learning
in vizdoom. In: International Conference on Analysis of Images, Social
Networks and Texts, pp. 96–110 (2022). Springer

[76] Sanchez-Ruiz, A.A., Miranda, M.: A machine learning approach to pre-
dict the winner in starcraft based on influence maps. Entertainment
Computing 19, 29–41 (2017)

[77] Uriarte, A., Ontanon, S.: Kiting in rts games using influence maps.
In: Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, vol. 8, pp. 31–36 (2012)

36

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

 ACCEPTED MANUSCRIPT

36 -

[78] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image
recognition. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 770–778 (2016)

[79] Dietterich, T.G.: Ensemble methods in machine learning. In: Multiple
Classifier Systems: First International Workshop, MCS 2000 Cagliari,
Italy, June 21–23, 2000 Proceedings 1, pp. 1–15 (2000). Springer

[80] Ho, J., Ermon, S.: Generative adversarial imitation learning. Advances in
neural information processing systems 29 (2016)

[81] Agarwal, R., Schuurmans, D., Norouzi, M.: An optimistic perspective on
offline reinforcement learning. In: International Conference on Machine
Learning, pp. 104–114 (2020). PMLR

[82] Shen, S., Fu, Y., Su, H., Pan, H., Qiao, P., Dou, Y., Wang, C.:
Graphcomm: A graph neural network based method for multi-agent rein-
forcement learning. In: ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 3510–3514
(2021). IEEE

37

	Deep ensemble learning of tactics to control the main force in a real-time strategy game

