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Abstract
Professional StarCraft  game players are likely  to focus on the manage- 
ment of the most important group of units (called the main force) during 
gameplay. Although  macro-level skills  have  been observed in  human 
game replays, there has been little  study  of the high-level knowledge 
used for tactical  decision-making, nor exploitation  thereof to create AI 
modules. In  this  paper, we  propose a novel tactical  decision-making 
model that  makes decisions to control  the main force. We  categorized 
the future  movement  direction  of the main force into  six classes (e.g., 
toward the enemy’s main base). The model learned to predict the next 
destination of the main force based on the large amount of experience 
represented in  replays of human games. To  obtain  training  data,  we 
extracted information from 12,057 replay files produced by human play- 
ers and obtained the position and movement direction of the main forces 
through a novel detection algorithm. We applied convolutional neural 
networks and a Vision Transformer to deal with  the high-dimensional 
state representation and large state spaces. Furthermore,  we analyzed 
human tactics relating to the main force. Model learning success rates 
of 88.5%, 76.8%, and 56.9% were achieved for  the  top-3,  -2, and -1 
accuracies, respectively. The results show that  our method is capable 
of learning human macro-level intentions  in real-time  strategy games.

Keywords: Decision-making, Deep learning, Real-time strategy game, 
StarCraft
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1  Introduction

Fig.  1  Illustration of the main  base, main  force, and expansion base. Tactical  decisions 
include  the  future  direction  of movement  of the  player’s  main  force with  respect to  six 
categories (main base, expansion base, and ”Stop”, as well as the enemy’s main force, main 
base, and expansion base). Typically, any expansion close to the main base is known as a
”front yard”  and it is considered part of the main base in this study. For illustrative purposes, 
we do not depict the fog of war, which limits  the view to the immediate surroundings of the 
player’s units and buildings.

In the last decade, artificial  intelligence (AI)  has been extensively  studied 
for real-time strategy (RTS) games, because these games pose various chal- 
lenging problems owing to their large state and action spaces and real-time 
actions. In RTS games, players perform several decisions simultaneously,  such 
as managing resources, scouting an opponent’s territory, controlling units, con- 
structing buildings, and engaging in combat [1]. The most popular series of 
RTS games include StarCraft, Warcraft, Company of Heroes, Total War, and 
Command & Conquer.

In RTS gameplay, players need to enact tactical decisions regarding where, 
when, and how to attack enemy units and structures under uncertain condi- 
tions. As such, devising tactical decisions while managing the enemy’s tactics 
with limited information is an extremely challenging problem [2]. To this end, 
previous studies have proposed a tactical  decision-making method for RTS 
games, such as a Bayesian approach [3] and a Monte Carlo tree search [4]; 
however, these methods have yielded only simple heuristics-based models. In 
contrast, deep learning can manage high-dimensional  data, to create complex 
models that can overcome the weaknesses of such heuristics-based models. Few 
studies have applied deep learning to predict the tactical decisions in RTS 
games. In particular, each of these studies considered various kinds of tactical 
decisions such as predicting where to attack or defend [5], types of units or 
buildings to attack [6], and selecting one of the handcrafted scripts [7].

This study focused on the tactics related to the main force, i.e., managing 
units grouped as forces is a common strategy in RTS games. Thus, determining
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the actions of forces is an essential tactical aspect and controlling the main 
force is particularly important, because it is the strongest force. We interviewed 
a professional human player, which revealed that the decision-making processes 
related to the main force were the most important after the very early stage of 
the initial build order execution in StarCraft. In addition, the present analysis 
of human replay data revealed that  40% of the units pertain to the main force 
and account for  60% of the influence.

The proposed method employed deep learning models to learn the decision- 
making skills of expert human players from replay files and predict the 
upcoming movement direction of the main force. We acquired nearly 12,000 
replays from online sources and extracted 3 million data tuples. Moreover, we 
provided a comprehensive analysis of the data, and the results revealed that 
the main force is essential for the game. To efficiently predict the movement 
direction, we categorized the destination of the main force into six categories. 
We trained an ensemble model comprising CNNs, a ViT,  and decision tree, 
and the proposed model outperformed all the existing deep learning-based tac- 
tical decision-making methods. To the best of our knowledge, this is the first 
demonstration of direct machine learning of tactical decisions pertaining to 
the main force based on replays.

The contributions of this study are stated as follows:
• We  propose a novel approach for learning vital  human skills from replay 

files, namely, deciding the upcoming direction of the main force. We devel- 
oped an ensemble model comprising CNNs, a ViT, and a decision tree using 
approximately 3 million  data tuples. The difficulty  of learning was mini- 
mized through a new input data representation, including the considerations 
of match type (Protoss [P] vs. Terran [T], P vs. Zerg [Z], etc.). The experi- 
mental results revealed that the proposed method achieved learning success 
rates of up to 92.9%, 81.4%, and 63.3% for the top-3, -2, and -1 accuracies, 
respectively.

• We  analyzed human decision-making processes  related to the main force
and developed a novel algorithm  for  main force detection. In  addition, 
we extracted approximately 3 million data samples from 12,057 replays of 
human games and constructed a dataset to predict the direct of the main 
force.

2  Background
2.1  StarCraft AI
StarCraft has been important for RTS game research since 2010. The Brood 
War Application Programming Interface (BWAPI) allows researchers to imple- 
ment  customizable AI  players into  StarCraft:  Brood War,  which is one of 
the most successful RTS games. BWAPI  is not an official interface provided 
by the developer of StarCraft,  Blizzard, but  it nevertheless  allows for the

4            



                                          ACCEPTED MANUSCRIPT                                      

4      -

creation of AI players. Since 2010, the AI community has organized interna- 
tional StarCraft AI competitions and conferences, which have helped promote 
the development of AI techniques for the RTS game community [8] [9]. RTS 
researchers have used StarCraft to test their algorithms [10] [11]. The game’s 
popularity has attracted many researchers. Also, it is easy to access replays 
of human games on gaming portals, and it is possible to extract game states 
and the actions of human players from replay files using BWAPI.  Several plat- 
forms are available for RTS research, each with its own unique properties [12] 
[13] [14] [15]. StarCraft  is renowned for its popularity,  commercial success, 
and international AI competitions. Due to its popularity since the 1990s, large 
volumes of replay files are available, of games involving players ranging from 
novice to professional. Unlike other RTS platforms, Blizzard developed Star- 
Craft for commercial purposes. Recently, Blizzard and DeepMind released a 
programming interface for the StarCraft II game environment [16].

To build an AI player for StarCraft, many different skills are required. The 
player should make high-level decisions, such as strategy or tactics, but also 
undertake low-level control like micromanagement. Due to this wide range of 
required skills, StarCraft AI research has been conducted  to develop modules 
that perform well in each task and have integrated them into a complete AI 
agent. These are the skills mostly studied in the StarCraft  AI  community: 
build order, tactics, macromanagement, and micromanagement.

In the early stage of a match, it is important to select a build order (the 
sequence  of player actions for producing buildings and units).  Professional 
players usually optimize their actions in this stage, where small mistakes can 
make a match difficult  to win. Early methods are usually based on heuristic 
search algorithms [17]. Another line of research is using evolutionary compu- 
tation, which treats a list of build orders as individuals of a population [18] 
[19]. Recent works have dealt with more challenging  tasks, such as considering 
diversity [20] or planning the build order in an online manner [21].

Making tactical decisions is determining when, where, and how to attack 
enemy buildings and units. Early approaches for tactics have proposed simple 
models based on heuristics [3] [4]. Deep learning has been used in recent works, 
with  RL [6] [5]. Although the  main force plays an essential role in tactics, 
previous approaches have not addressed tactics with regard to the main force. 
Organizing units into  a number of forces is a natural way to control units 
efficiently for StarCraft players. In addition, professional players often run the 
main force, which is the strongest one among the forces. They create the main 
force by putting  more units and stronger units in a certain force. According 
to the analysis in this study, the main force takes about 60% of the influences 
of the total number of units.

Macromanagement  is managing high-level strategies, which may include 
build order optimization or tactics. Various tasks belonging to macromanage- 
ment have been addressed in previous works. The authors of [22] have used 
deep RL to decide what unit to produce in a certain state. Initial  strategy has 
a big influence in StarCraft. Accordingly, the Bayesian approach has been used
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to predict the opponent’s initial  strategy [23]. Also, effects of the fog of war 
have been studied in terms of the opponent’s strategy prediction [24]. Replays 
have been used to train a model that predicts strategy and build order [25]. 
The probabilistic  approach is pervasive in macromanagement  [26] [23], but 
recent works commonly use deep learning [27].

In combat situations, micro-level management of attack units can make a 
critical difference to the outcome. Micromanagement, involving rapid manip- 
ulation of individual units to win in combat is an essential skill when playing 
StarCraft.  A  variety  of methods have  been applied for micromanagement. 
One of the approaches used is the search-based method. Many studies have 
proposed search-based algorithms for micromanagement.

The earlier approach is based on Alpha-Beta search, which is an efficient 
technique relying upon heuristic-based state evaluation function  [28]. The 
authors have made improvements through transposition tables and iterative 
deepening. The algorithm applied on RTS game bots and achieved enhanced 
results [29]. Also they have proposed an improved version of UCT  (Upper 
Confidence Bound) search method and a novel search algorithm that greedly 
search number of portfolios [30]. However, search-based methods suffer from 
low speed, making them unusable in real time. Hierarchical Adversarial Search 
(HAS) has been proposed to solve this issue [31]. HAS deals with large state- 
action space through a hierarchical search paradigm. Another line of research 
optimizes policies using evolutionary computation or RL. The policies can 
be represented  as potential fields [32], and neural networks [33] [34]. In an 
aspect of RL, micromanagement is primarily considered a multi-agent problem, 
which deems each unit as an agent [35]. According to this, micromanagement 
problems have been used as an evaluation environment for multi-agent RL [36].

In addition to these approaches for developing intelligent  modules for a 
variety of tasks, a comprehensive method has been proposed to achieve expert- 
level gameplay in StarCraft. An easy way to develop comprehensive AI is to 
integrate each module into a single agent [37] [5]. Another way is to train using 
a single comprehensive policy. Multi-agent  RL was used to realize AI  with 
Grandmaster level StarCraft II ability  [38]. Moreover, StarCraft is also being 
used for many application domains, such as web-based interface [39], and an 
algorithm for automatically spectating games [40].

2.1.1  StarCraft AI using Replays
Replays of human StarCraft  games have great potential for overcoming the 
weaknesses  of AI  bots. Thousands of replay files for StarCraft  are readily 
available on gaming portals, and they include games involving players with 
different  ability  levels. Replay extraction software allows AI  researchers  to 
extract all the actions taken by human players from these replay files. Mas- 
sive amounts of sample data allow machine learning models to imitate  the 
decision-making processes of human players. Many studies have utilized replays 
of human games to build machine learning models to address various problems 
in RTS games. For example, RL has been applied to micromanagement, with
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supervised pre-training performed  based on replays of human games [41], and 
a neural network trained with 2,005 replays from professional human players 
was used for macromanagement [42]. In macromanagement, more recent works 
have utilized a transformer [43] and replays [27] to train the models. The Defog- 
GAN model, which reveals hidden information in StarCraft, was trained with 
replays of human games [44]. Facebook has also obtained 65,000 replays (360
GB of data; the STARDATA project [45]). From these data, a team working at 
Facebook extracted the total number of units created, match lengths, ratios of 
resources mined by each player, and opening clusters. Furthermore the authors 
of [46] have proposed feature  extraction method to predict the  outcome of 
the StarCraft league. Despite replays frequently being used for building AI for 
StarCraft, direct learning of tactics from replays of human games has not been 
studied previously.

2.2  Tactical Decision-Making
Making tactical decisions using machine learning models has been widely stud- 
ied in various domains. The representative  one among the domains is RTS 
games, which require strategic planning and tactics for the gameplay. The 
authors of [5] proposed a modular architecture that  can be trained by rein- 
forcement learning and a fully convolutional network (FCN)  as their tactics 
module. However, it considers where to move all units, not just the main force. 
In addition, the authors of [6] selected macro action using RL. They set 54 
macro actions, with  17 of them related to tactics. But  those actions are to 
attack certain types  of enemy units or buildings and are not related to the 
attack location nor the main force. Also, there has been an approach based on 
supervised learning, not RL. The authors of [7] proposed a tactical decision- 
making module supervised by a search algorithm,  which selects one of the 
handcrafted scripts.

On  the  other  hand,  there  have  been many  works on  computational 
approaches for tactical decision-making in various domains. For autonomous 
vehicles, the decisions should be made  carefully for safety purposes.  Many 
recent studies in tactical decision-making for autonomous driving address this 
issue using deep learning along with RL [47] [48]. Tactical decisions also play 
an essential role in team sports. Few studies have used deep neural networks to 
support tactical decisions for team sports, such as rugby [49] and football [50]. 
In contrast, deep learning is relatively less applied to make tactical decisions 
in StarCaft AI research.

2.3  Deep learning for games
CNNs effectively process image data and are thus widely used in game AI, 
to build machine learning models for games. Also, a Vision Transformer has 
recently been used for image processing, and it performs much better than 
CNNs.
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Many  studies have  used CNNs to  train  AI  players for  various games. 
Recently, successful results have been obtained using CNNs as approximat- 
ing functions for game state–action evaluation. For example, DeepMind used 
a CNN as a Q value approximation function in its deep Q-Learning algorithm. 
This algorithm can learn how to play Atari games at human levels of skill [51]. 
Unlike the traditional  AI approach, the algorithm uses the raw game screen 
as input for the CNN. In 2016, DeepMind trained a CNN to predict the deci- 
sions of professional Go players, achieving an accuracy of 57% [52]. The Alpha 
Go system beat a professional Go player in March 2016, thus demonstrating 
superior performance of the CNN. CNNs that involve RL have been used to 
play various games. A CNN that involves asynchronous RL was used to eval- 
uate the racing game known as Torcs [53]. RL with a recurrent convolutional 
architecture was used to play a first-person shooter game [54]. The well-known 
Minecraft game is used to train RL agents [55]. The multiplayer online battle 
arena (MOBA)  game is both complex and challenging in terms of AI. MOBA 
has been played using deep RL [56]. Text-based games are also used to test 
the performance of novel RL agents [57]. Montezuma’s Revenge is used to 
evaluate the exploratory capacities of RL agents [58]. CNNs are used to build 
human-like AI agents for automated game testing [59]. Human player datasets 
have been used to train  CNN agents in match-3 gaming. The RL approach 
has been used for the strategic play of match-3 games [60]. CNNs are used to 
build an AI agent for the Othello game [61]. The authors of [62] used CNNs 
as an evaluation function to train an RL agent.

Buro et al. [63] used an RTS as a simplified testbed for AI algorithms. The 
cited authors used twenty-five  10 × 10 planes (“channels” in our study) as 
inputs for the CNN; they attempted to predict the winner of a match using 
match data from 15 AI  bots. They  also tested the  CNN as an evaluation 
function for search algorithms. Justesen et al. trained a neural network using
2,005 replays and achieved a prediction accuracy of 45.4% with respect to the 
next build action [42]. CNNs have been used to predict the winners of the RTS 
game [64].

CNN-based generative models have recently been used to improve  auto- 
matic game content  generation. A  generative  adversarial network  [65] is a 
representative  deep generative model  widely used in various  fields of AI.  A 
generative adversarial network has been used to generate game content and 
to automatically create game levels [66]. The authors of [67] used CNNs to 
procedurally generate such levels, then compared them to manually designed 
levels. The model successfully generated content. The authors of [68] used an 
RL-based approach to create procedural content [68]; generation was regarded 
as a sequential problem. In the present work, a CNN was used as a perception 
module for the RL agent. The quality of the generated content was optimized 
by the RL; two-dimensional levels were successfully generated.

CNNs are used to perform various game-related  tasks, such as that of pre- 
dicting human behavior in size-variant repeated games [69], or game difficulty. 
CNNs can also detect residual glitches in video games [70].
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“Transformer” [43] was initially  developed for natural language processing, 
but it has found applications in image processing [71] and RL [72]. Transformer 
has been applied in games like text adventure games [73], Go [74], and Viz- 
Doom [75]. For StarCraft, Transformer has been used for macromanagement 
[27] and micromanagement. The authors of [27] used Transformer to predict 
macro actions. They show that Transformer generalizes well to unseen data, 
like  an unseen match type  (Terran  vs Protoss). Transformer has also been 
used with RL for micromanagement in which the method approximates to the 
transformer-based joint action-value function that shows better performance 
in micromanagement  scenarios. However, ViT  is very recent  and has found 
only a few applications in games [72].

Compared with these previous investigations, our study differs in certain 
respects. Unlike previous works, we consider the main force in tactics because, 
according to our results, it plays an essential role in this area. We apply state- 
of-the-art deep learning models like CNN and ViT to handle high- dimensional 
data.

3  Methods
During  gameplay, human players gather information,  such as the current 
combat situation, enemy location, and buildings constructed. They then use 
this information  to assess  the situation and make decisions. We  conducted 
interviews with a single professional human player to understand their decision- 
making strategies. The interviews were semi-structured and consisted of a 
series of open-ended questions designed to elicit information about the play- 
ers’ decision-making  strategies related to the main force. We have found that 
the main force plays an important  role in tactical decision-making in Star- 
Craft, especially after the very early stage of the initial  build order execution 
in StarCraft. Also, we have found that the movement of the main force can be 
categorized into several directions.

Recently, the ability of CNNs to process high-dimensional data at the level 
that can be processed by humans  has been confirmed in terms of both object 
recognition and gameplay [51]. Notably, the ViT has shown promise when used 
for image recognition [71]. Thus, in the present study, we used a CNN and ViT 
to develop  a tactical decision-making model, in which the  CNN and Trans- 
former process high-dimensional input,  namely information from StarCraft. 
We  present  an effective decision-making  model that  operates in a manner 
similar to a human player.

3.1  Detecting  the Main  Force
Attack strength differs according to the positions and numbers of attack units. 
For example, a group of strong attack units is likely to constitute a powerful 
army if concentrated in one location. However, it also differs by type of the 
units, like in case one forces consist of many weak units and another consist 
of few powerful units. In this case it is ambiguous to determine which is the
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Fig.  2  Example of a main force (the strongest group of attack  units).

main force. This is because each unit has a different attack power and range, 
and is subject to various factors that  decrease power. Thus, it is necessary 
to integrate the contributions of all units in each location to understand the 
total attack power. We define a location’s power as the sum of all units’ con- 
tributions  (total  power). In some  cases, the contribution of one strong unit 
is greater than the contributions of many weak units. A customized influence 
map is used to determine the positions of the main forces. Influence maps have 
been used widely in RTS research to calculate the attack force of an army 
[76] [77], where each unit’s influence is calculated and integrated into a single 
value. The main force’s position is simply determined  as that with the highest 
influence. The unit’s total influence considers the unit’s influence power (IP), 
discount factor (DF), and influence range (IR); professional players determine 
these parameter values for each unit,  considering each unit’s characteristics 
(see Supplementary Materials). Each unit’s influence is maximized in the area 
around it and decreases gradually with  distance. The main force detection 
algorithm is described in Algorithm 1.

3.2  Categorization  of Movement Directions for the Main
Force

Due to the limited vision caused by the fog of war, a player can make no obser- 
vations beyond their units and buildings. In the very early stages of the match, 
the players focus on their initial  build orders (constructing buildings and pro- 
ducing units) and exploration of the game world using scouting units. After 
several minutes, the players start to produce attack units and develop new 
expansion  bases to obtain more resources. It soon becomes important to man- 
age many attack units as a single group to simplify the control tasks. Human 
players usually group attack units into a main force and several relatively small
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Algorithm 1 Pseudo-code of the main force detection algorithm.
Require:  array of units P
Ensure: position of main force

1:  Initialize influence map M , n×n matrix
2:  for unit in P do
3: for i = 1, 2, ..., n do
4: for j = 1, 2, ..., n do
5: (x, y) = position of the unit
6: set I P , DF  and I R depend on type of unit
7: dist = distance((x, y), (i, j))
8: if dist ≤ I R then
9: M (i, j) += I P − DF × dist

10: end if
11: end for
12: end for
13:  end for
14:  position of main force = argmaxk,l M

forces; it is not common to divide forces into equally sized armies. After the 
early build order stage, players start to control their main force as it moves 
into their opponent’s area, returns to the home area, or stops at its current 
location. These strategic decisions are made based on all the different types of 
visual information available to the players. If it is beneficial, players can wait 
until an opponent is in close proximity  to their base and simply accumulate 
attack units to build a large army. However, it is not always desirable to wait 
until opponents act because this allows them to perform many tasks without 
intervention. Thus, it is important to move the main force to the appropriate 
place at the right time. According to professional players, the movement direc- 
tion of the main force can be categorized  into six main types (Fig. 3), where 
the main force can stop at its current location, move to the opponent’s area, 
or return to the home area. The opponent’s area includes the main base, an 
expansion base, and their main force. The home area includes the main base 
and an expansion base.

The six movement actions for the main force are classified as:
• Stop: An absence of movement; the troops remain at their current position 

without receiving any commands.
• Player’s main base (PMB): Toward the allied main base; mainly applied

when retreating from a battle or when the base is under attack.
• Player’s  expanded bases (PEBs): To an area far away from the main 

base; applied when an expansion  base is under enemy attack or needs more 
defensive forces.

• Enemy’s main force (EMF): Toward the location identified as the posi- 
tion  of the EMF,  for an attack; applied  when the allied force is deemed 
superior and capable of beating the enemy’s troops.
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Fig.  3  Hierarchical  categorization  of the movement  directions  of the main  force. Green 
nodes are labeled according to the task classification.

• Enemy’s main base (EMB): Taken when the EMF has either been forced 
to retreat, is positioned far away from their main base or, on rare occasions, 
for an assault on the base.

• Enemy’s expanded bases (EEBs): To attack an EEB that is far away
from the EMB; typically applied when the EMF is positioned far from it.

3.3  Data  Labeling for Human  Replays
The replay files produced by human players contain all of the actions and 
game states that occur during gameplay. The duration of a match can range 
from several minutes to > 1 h. In each replay, it is possible to observe the 
decisions made by human players regarding the movements of their main force. 
We categorized these into the six groups delineated above. It is also possible 
to extract the locations of the main bases, expansion  bases, and main forces 
for all of the players in the recorded match. Each player has only one main 
base and force, but  the number of expansion bases  can vary from zero to 
the maximum allowed by the map being played upon. Algorithm  2 describes 
the pseudo-code used to label each time step in the human replay data. The 
goal of the algorithm is to assign one of the six categories by analyzing the 
decisions made by human players regarding the target directions of the main 
force. In our experiment, MAX  TIME  was set to 30 min and STEP was set to
5 s. According to the initial analysis, we found that clarifying the main force’s 
target direction required ≥ 3 s. If the time was excessively short, the analysis 
could be hindered by noise due to physical movement delays or unexpected 
behavior by the units. If STEP was excessively long (e.g., 10 s), the analysis was
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likely to miss changes in the decisions made by the human players regarding 
the main force’s direction of movement.

Algorithm 2 Pseudo-code  of the tactical  intention  labeling algorithm  for 
human replays (the player’s main force [PMF] corresponds to the Stop class). 
Require:  Replays P
Ensure: Labels

for each replay do
EMB = Find an enemy’s main base 
PMB = Find a player’s main base 
for time = 1, 2, ..., M AX  T I M E do

EEBs = Find all of an enemy’s expanded bases 
PEBs = Find all of a player’s expanded bases 
EMF = Find an enemy’s main force
PMF = Find a player’s main force

PMF Units = Find all attack units around the PMF

for each PMF Unit do
for each order assigned by Player from time to time+STEP  do

Positions += unit → getOrderTargetPosition()1

end for 
end for

Target Position = Average(Positions)
Select Closest Location with the Target Position 

from EMB, PMB, EEBs, PEBs, EMF, and PMF 2

Label the current time as the closest location
end for 

end for

3.4  Deep learning for Decision Making
In StarCraft,  there are three “races”, and each player selects one for each 
match. The three races each have their own units and buildings. For experi- 
enced human players, it is natural to play better with,  and thus favor, one 
of the three races. However,  proficient  players typically  also play well with 
the other two races. Considering two-player matches, there are nine possible 
match combinations in the game because each player selects one of the three

1 The  getOrderTargetPosition() function retrieves the target position for  the unit’s order  (from 
https://bwapi.github.io), which   comprises  the  location to  which   the  unit is  trying to  move  or 
attack

2 This  function determines the Target Position based on all  commands  assigned to  the  units in 
the  main  force over a specific  time  (e.g.,  5 s). It averages the  locations where  units are trying to 
move or attack
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Table 1  Number of input  channels in the CNNs and ViTs.

Player Opponent Terrain
Channels

Total  # of
Channels

Race # of
channels Race # of

channels
Protos
s

15 Protos
s

15 3 33
Protos
s

15 Terran 16 3 34
Protos
s

15 Zerg 13 3 31
Terran 16 Protos

s
15 3 34

Terran 16 Terran 16 3 35
Terran 16 Zerg 13 3 32
Zerg 13 Protos

s
15 3 31

Zerg 13 Terran 16 3 32
Zerg 13 Zerg 13 3 29

Fig.  4  Example input  data for the CNNs and ViT: the ”Enemy  Building Base” channel, 
stores main buildings (”hatchery”) for a Zerg player (upper left). The ”Ally Goliath” channel, 
stores attack  units  (”goliaths”) (upper right). The grid shows the relative  locations of the 
units in the map. The numbers are the ”influences” of units at each position.
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Fig.  5  Overall architecture  of the proposed ensemble approach.

races; therefore, nine models can cover all match-ups (Table 1). The input 
data have 29-35 channels, with maps measuring 32 × 32 (the name of each 
channel is listed in the Supplementary Materials). For the unit channels, infor- 
mation about the position of a unit is received, and the influence of the unit 
is added to the value corresponding to its position on the map. In the case 
of enemy units, only units that have been seen at least once are added to the 
map. We  used perfect information during the data preprocessing stage, the 
proposed ensemble model was trained and tested with imperfect information 
and did not require hidden information in either stage. The information about 
the enemy is imperfect because the fog of war restricts the visibility  of enemy 
units and buildings, such that they are only visible when close to allied ones. 
This means that the information observed and fed into the model will be incor- 
rect if the enemy moves their units or destroys buildings. The channels after 
unit one store information about the buildings built by both players. The first 
building channels record the positions of the main buildings used for storing 
resources for each race. And the second building channels record the buildings 
that the enemy’s units can reach and attack. Finally, the third building chan- 
nels store the details of all buildings other than the main and at-risk ones. The 
last three channels contain details of the terrain on the map; for each position, 
flat, hill, and blocked (except for airborne units) areas are represented. Fig. 4 
shows examples of channels inputted to the model, where the ”Enemy Build- 
ing Base” channel (upper left) stores information concerning the presence of 
main bases (Hatchery), while the ”Ally Goliath”  channel (upper right) stores 
the influences of the attack unit (Goliath).

We  built  an ensemble model using three models:  CNN, ViT,  and deci- 
sion tree. The majority  voting rule is used to ensemble these models.  The 
visualization of overall architecture is shown in Fig. 5.

For our CNN architecture, we used ResNet 18 [78] and fed the output to 
three fully connected layers, which consisted of 1,024, 256, and 6 neurons; the 
last layer used Softmax as its activation function. Moreover, the network used 
rectified linear units as the activation function for the convolution and fully 
connected layers. We used the cross-entropy  loss function; the mini-batch size 
was 2,048. Dropout (p = 0.5) was applied to the fully connected layers. The 
CNN was optimized using the Adam optimizer. The learning rate depended on
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the validation loss, and it was reduced when improvement ceased. If there was 
no improvement over 10 epochs, the learning rate was reduced by the decay 
rate; the initial learning rate was 0.0001, whereas the initial decay rate was 0.3.

Our ViT  architecture contains three Transformer blocks followed by two 
fully connected layers with 1,024 and 6 neurons, respectively. The Transformer 
block contains an 8 × 8 patch, 1,024 hidden dimensions, and 16 attention 
heads. For the CNN, we used the cross-entropy  loss function; the mini-batch 
size was 2,048. Dropout (p = 0.5) was applied to the fully connected layers. 
The Adam optimizer was used for optimization. However, the learning rate 
was not scheduled; it was fixed at 0.0001 for all training.

The CNN and ViT inputs are images. The size of the input channel is 32 ×
32, and each set of data comprised 29–35 channels. The size of the StarCraft 
map is 128 × 128 but human players typically view this map by breaking it 
into smaller sections, so we used a map size of 32 × 32. This reduced size 
also had the advantage of decreasing the amount of input data. A vector of 
size 4 (game time, minerals, gas, and population) was directly fed to the fully 
connected layers of the CNN and ViT.  These layers concatenated the image 
features and fed them to the fully connected layers.

The decision tree was the Classification and Regression Tree (CART)  algo- 
rithm  included in Scikit-learn. We  used the Gini  impurity  to measure the 
quality of each split. Unlike a CNN and a ViT,  a decision tree cannot accept 
image inputs. Thus, we flattened each image input  to a vector  and fed this 
to the decision tree. The data used to train  the decision tree were therefore 
identical to the data used to train the other models, but their shapes differed.

3.5  Comparative  evaluation
For comparative evaluation, we applied several baseline methods to our task. 
Since our method is based on the supervision of human demonstrations, it 
is proper to  use previous  methods supervised  with  human replay data as 
baselines. However, most previous tactical  decision-making methods [5] [6] 
are based on RL with  no utilization  of human data, which is inappropriate 
for baselines. Therefore, we use two  similar supervised learning approaches 
proposed for the macromanagement  problem as baselines rather than those 
methods. The first method utilizes Multi  Layer Perceptron (MLP)  to decide 
the next build action [42]. The second method uses a transformer along with 
CNNs (Transformer  with  CNN) [27] to predict the winner and build order. 
Both methods use human replays as training  data. On the other hand, our 
approach is based on the ensemble method [79]. Since our approach adopts 
the ensemble method, other ensemble methods should be used as baselines, 
such as meta-learning which is a model that makes predictions based on that 
of other models. Thus we trained two meta models, the decision tree and sup- 
port vector machine (SVM). The meta model accepts yc , yt  and yd as inputs; 
it predicts the true label y, where yc , yt   and yd  are the predictions of the 
CNN, ViT,  and the decision tree, respectively. Finally, to evaluate the effect
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of the ensemble, we also included component models of the proposed ensemble 
approach: CNN, ViT,  and the decision tree.

4  Results and Discussion
For  our experiment, we  designed the proposed model using a well-known 
deep learning framework known as Torch, along with the well-known machine 
learning framework known as scikit learn.

4.1  Data  Analysis
We  downloaded StarCraft  replays from  two  well-known game community 
portal sites, Ygosu and BWReplays, which include 1,408 replays of Korean pro- 
fessional and semi-professional players, and 10,649 replays where the player’s 
actions per minute, (an important  measure of a player’s skill)  were ≥ 250, 
respectively (Table 2). In total,  the data comprised  12,057 replays of games 
played by experienced humans on various maps, with different match combina- 
tions of the Protoss, Terran, and Zerg races. While collecting replays, we made 
every effort to preserve the privacy of players to the highest possible extent. 
We only collected replay files and did not obtain any additional information 
that could identify the players.

Three million data samples were extracted at a sampling rate of 5 s and 
labeled as one of the six classes. Fig. 6 shows the main force detected in a 
scene  from one match (resolution = 128 × 128); the supplementary video 
shows the main force detected throughout a full match. Our CNN model made 
predictions based on each sample and the accuracy was calculated  as the ratio 
of correctly classified samples to all test samples.

To ensure that the replays were of matches played properly (i.e., without 
hacking or cheating), we used ”minerals”, one of the resources in StarCraft, as 
a criterion. For example, replays were not included if the mineral count was 
over 5,000 within 30 min. Typically, it is difficult to gather this many minerals 
while also constructing buildings and generating units. Data were excluded 
if the main force was not in the scene. At the beginning, only workers are 
available to collect minerals or gas, and some time is typically  required to 
produce attacking units from buildings and resources. Thus, samples started 
from approximately 100 s and reached a maximum at 300 s (5 min), gradually

Table 2  Replay data collection (Sources: http://ygosu.com/replays  and 
http://bwreplays.com). Both  sources provide full  match replays.

Site name Number 
of
replays

Proficiency Note

Ygosu 1,408
(Semi-)
Professional 
players

Full  game replays

BWReplays 10,649 Amateur  players
over APM  250

Full  game
replays
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Fig.  6  Detection  of a player’s main force (circle)  at a resolution  of 128 × 128 (from  sup- 
plementary  video).

decreasing thereafter. Thus, most of the matches were played for at least 5 
min and terminated at some point after this time.

Fig.  7  Distribution of data samples according to match time

Figs. 7 - 9 show the basic statistics. The distribution of the six classes shows 
that the Stop class was the most common (approximately 25%). Fig. 10 shows 
the transition probabilities for the six movement decisions. For example, if the 
decision at time t was to Stop, the next decision was Stop 74% of the time, 
PMB 10% of the time, etc. Using the table, we constructed  a simple predictor 
to estimate the next decision based only on the current one. For example, if 
the current decision was Stop, then the next decision was predicted as Stop. 
Using the statistics in the decision transition table, an accuracy of 49% was 
achieved.

If we simplify the decision-making problem, players may choose to continue 
or change the current movement direction for their main force. For the Stop
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Fig.  8  Distribution of main force movement classes

Fig.  9  Number of replays for each match type. P: Protoss, T: Terran,  v: versus, Z: Zerg

decision, there was a high probability that the next decision was to continue 
with  that  action. Thus, the main force usually waited at a location for the 
player to make a decision, before moving to a target position with a probability 
of only 1 . When the main forces to the compared with all force was moving 
somewhere, stopping had a probability of approximately 1 - 1 , indicating that3  2
players frequently cancelled  moves as the situation  changed. The PMB  →
PMB sequence (40%) denotes a return to the main base, most often because 
of a need to defend it. The EMF → EMF sequence (32%) was likely to be the 
precursor to large-scale combat between the two main forces. Some sequences 
represent attacks, such as EMB → EEB (20%) and EMF → EEB (17%).

To explore how humans control the power of the main force, we calculated 
the ratios of the main forces to the compared with all units in terms of both 
the number of units and the sum of the influences. The average number ratio
of the main force is RatioN at tth s, obtained by averaging the ratio of the
main force at the tth s of the ith replay. Similarly, the average ratio of the main 
force in terms of influence is RatioI  at tth s, obtained by averaging the ratio 
of the main force at tth s of the ith replay. The exact formula is as follows:

main total

RatioN =      i(Ni,t /Ni,t      )
t K

main total

RatioI  =     i(Ii,t /Ii,t    )
t K
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Fig.  10   Transition probability table (x-axis: time t+5 s, y-axis: time t) based on the ground 
truth data.

While N main and N total are the numbers of the main force units and alli,t i,t
units respectively, at tth s of the ith replay. Where I main and I total are thei,t i,t
summed influences of the main force units and all units respectively, at tth s
of the ith replay. K is the total number of replays.

The RatioI  and RatioN are shown over time in Figs. 11 and 12, respectively.t t
In the early stage, both ratios are near 1, which means that  only one force
exists (most units belong to the main force). Both ratios decrease sharply until 
approximately 250 s, then decrease slowly thereafter. It is noteworthy that the 
ratio of the number of units (Fig. 12) is above the ratio for the influence (Fig.
11) after 250 s, but similar before then. This is because, in the early stage, most 
units are workers, and so they have similar influences. Subsequently, however, 
various battle units have been produced,  so the unit influence becomes more 
diverse. Because strong units (which have high influence) typically belong to
the main force, the RatioI  is higher than the RatioN . Generally, after the earlyt t
stage of a match, approximately 40% of units belong to the main force and
account for approximately 60% of the influence. This indicates that managing 
units using one strong main force is a common strategy for human players, 
and thus the main force plays an essential role in tactics.

4.2  Learning and Evaluation  of the Deep learning model
Tables 3-5 list  the test accuracies of the proposed model and the baseline 
models for the nine match types. We trained the nine ensemble models (CNNs,
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Table 3  Top-1 test accuracy of the proposed model and baseline models. P: Protoss, T: 
Terran,  Z: Zerg.

Ensemble
of CNN, DT,  

and ViT 
(proposed)

CNN
Decision 

tree (DT)

ViT 
(Vision 
Trans

-former)

Meta 
decision 

tree

Meta
SVM MLP  

[42]

Trans
-former with  
CNN [27]

P vs 
P

59.5 53.3 52.9 55.1 52.9 52.9 48.5 47.8
P vs 
T

57.9 53.4 51.2 52.6 51.2 51.2 44.3 39.3
P vs 
Z

55.6 49.8 50.9 50.8 50.9 50.9 41.8 36.4
T vs 
P

63.3 56.4 57.4 58.8 57.4 57.4 46.7 37.9
T vs 
T

58.7 52.3 55.5 51.5 55.5 55.5 45.5 33.2
T vs 
Z

55.4 48.6 49.8 50.3 49.8 49.8 41.6 35.5
Z vs 
P

54.1 49.1 49.3 49.1 49.3 49.3 40.3 38.5
Z vs 
T

51.6 44.3 46.5 46.1 46.5 46.5 40.8 35.5
Z vs 
Z

55.7 51.6 50.1 50.2 50.1 50.1 38.9 38.4
Avg. 56.9 51 51.5 51.6 51.5 51.5 43.2 38.1

Table 4  Top-2 test accuracy of the proposed model and baseline models. P: Protoss, T: 
Terran,  Z: Zerg.

Ensemble
of CNN, DT,  and 
ViT (proposed) CNN

ViT 
(Vision 
Trans

-former)

MLP  [42]

Trans
-former with  
CNN [27]

P vs 
P

79.9 71.8 77.9 67.5 65.6
P vs 
T

76.8 67.1 73.9 60.7 58.2
P vs 
Z

74.9 67.1 72.1 58.5 55.5
T vs 
P

81.4 69 79.1 61.8 55.6
T vs 
T

77.3 67.9 73.2 61.5 58.3
T vs 
Z

76.5 57.2 73.8 61.4 58.3
Z vs 
P

73.5 67.1 70.3 57.7 59.1
Z vs 
T

72.2 58.9 69.1 61.3 59.1
Z vs 
Z

78.8 73.4 75.9 61 64.5
Avg. 76.8 66.6 73.9 61.3 59.4

Table 5  Top-3 test accuracy of the proposed model and baseline models. P: Protoss, T: 
Terran,  Z: Zerg.

Ensemble
of CNN, DT,  and 
ViT (proposed) CNN

ViT 
(Vision 
Trans

-former)

MLP  [42]

Trans
-former with  
CNN [27]

P vs 
P

91.5 85.6 91 79.
6

79.3
P vs 
T

87.9 75.9 86.8 72.
9

72.5
P vs 
Z

85.9 78.8 84.6 71.
6

71.3
T vs 
P

90.6 79.2 89.7 73.
8

74.5
T vs 
T

88.4 77.1 86.8 75.
5

73.3
T vs 
Z

88.4 72.3 87.4 75.
1

73.8
Z vs 
P

85.4 79.4 83.7 69.
9

74.5
Z vs 
T

85.7 73.5 84.4 77.
5

76
Z vs 
Z

92.9 87.8 92.1 78.
3

85.1
Avg. 88.5 78.8 87.4 74.

9
75.6

21            



                                          ACCEPTED MANUSCRIPT                                      

t

- 21

Fig.   11   Average ratios  of the  influences (RatioI )  of units  belonging  to  the  main  force 
compared with  the influences of all units.  The light yellow area is the standard  deviation. 
The x-axis is game time (in s, t), and y-axis is the ratio.

a ViT,  and a decision tree). Our model  outperforms the baseline models in 
terms of all nine match types.  The test top-1, -2, and -3 accuracies of the 
proposed model were 51.6–63.3%, 72.2–81.4%, and 85.4–92.9%, respectively. 
Among the nine match types, the proposed model for the Terran vs. Protoss 
match achieved the best top-1 accuracy for predicting the main force’s direction
5 s  later, at 63.3%. The performance of non-ensemble  models (CNN, ViT, 
and decision tree) varied according to the match type.  In  the Protoss vs. 
Protoss match, the ViT  outperformed the others; in the Terran vs. Terran 
match, the decision tree yielded the best result. The accuracies of the meta 
ensemble models (meta decision tree and meta SVM) are almost identical to 
the maximum accuracy of the three models (CNN, decision tree, and ViT) 
that form the ensemble. The two methods from previous works, MLP and the 
Transformer with CNN show relatively poor performance compared to other 
baselines. The average accuracies  of MLP  and the Transformer with  CNN 
are 43.2 and 38.1, respectively, in contrast to the average accuracies of other 
baselines which are higher than 50. The average accuracies of the 7 baseline 
models over the nine match types  were 51%, 51.5%, 51.6%, 51.5%, 51.5%,
43.2%, and 38.1% respectively. However, the proposed model, which is built 
through a simple ensemble technique (majority voting of three models), yields 
an average accuracy of 56.9%. In addition, in terms of the top-2  accuracy, 
the proposed model for the Terran vs. Protoss  match performed best, with 
an accuracy of 81.4%. In terms of top-3 accuracy, the model achieved the 
highest accuracy for the Zerg vs. Zerg match, at 92.9%. Also throughout top-2
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Fig.  12   Average ratio  of the number (RatioN ) of units belonging to the main force com- 
pared with the numbers of all units. The light blue area is the standard deviation. The x-axis 
is game time (in s, t), and the y-axis is the ratio.

and top-3 accuracies, the ViT  shows high performance,  close to the proposed 
method’s accuracies. Because neither the decision tree nor the SVM delivered 
probabilities according to classes, we analyzed  only the top-2 and -3 accuracies 
yielded by the proposed model, the CNN, and the ViT.

The phenomenon that the proposed ensemble model outperforms all base- 
lines means that  each module of the proposed ensemble  model learned a 
different representation of the data. Each module has unique advantages and 
limitations. CNNs are specialized for image processing; they have strong induc- 
tive biases in terms of translation invariance and locality. CNNs thus perform 
well when image data are sparse. However, the inductive bias can disturb train- 
ing if the data are large. The ViT  exhibits less inductive bias and can thus 
learn unbiased representations if the data are adequate. Unlike the first two 
models, a decision tree performs poorly when fed high-dimensional data such 
as images. However,  it is a simpler model. The combination processes data in 
a complex and diverse manner.

In a comparative view with similar existing methods (MLP[42] and Trans- 
former with CNN [27]), our model shows the best performance. A further novel 
finding is that  similar existing methods are worse than other baselines. The 
average top-1 accuracies of the other baselines are above 50%, but the MLP 
and the Transformer with  CNN have top-1 accuracies approaching 40. This 
poor performance can be explained by their inappropriate network architec- 
ture. In the case of MLP, it shows poor performance since it is unsuitable for 
processing image data. However, although the Transformer with CNN is more
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Fig.  13   Confusion  matrix of the  proposed model, for  all  test  data  samples of the  nine 
match types. The number in each cell is the ratio of the sample number to the total  number 
of samples. EEB:  enemy’s expansion base, EMB:  enemy’s main base, EMF:  enemy’s main 
force, PEB:  player’s expansion base, PMB:  player’s main  base. The model often confuses 
non-Stop labels and Stop labels. Also, the model usually  predicts  Stop, PMB,  EMB,  and 
EMF  correctly,  but often confuses PEB and EEB.

Table 6  Inference time and number of parameters of proposed and similar existing models.

Ensemble
of CNN, DT,  

and ViT 
(proposed)

CNN
Decision 

tree (DT)

ViT 
(Vision 
Trans

-former)

MLP 
[42]

Trans
-former with  
CNN [27]

Inference
time
(ms)

24.91 16.9 0.17 7.84 1.63 35.42

# of
parameters
(million)

34 11 0 22 4 11

appropriate for processing image data, it shows a poorer performance than 
that of MLP. This may be explained by the excessively deep network of the 
Transformer with CNN. Since CNN and transformer sequentially  process data, 
the network can be overfitted to the data.

Moreover, our approach focuses  on predicting the future movements of 
the main force, while another approach aim to decide the  destination  of all 
armies [5]. Both approaches can have their advantages and disadvantages. For 
instance, in the early stages of a game, where the number of units is relatively
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Fig.  14   Test accuracy of the proposed model for all test data samples over time.

small, predicting the movements of all units may be more feasible and useful. 
Nonetheless,  as the game progresses and the number of units increases, it may 
become more practical and effective to focus on predicting the movements of 
the main force.

Although our method outperforms baselines, several limitations  must be 
considered. First,  our method is an ensemble approach that  requires more 
computational resources during training and inferring. Table 6 shows inference 
times and the number of parameters of the proposed model and non-ensemble 
baselines. We produced this result using the NVIDIA V100 GPU. Except for 
the Transformer with CNN, the other four models were 8.01–24.74 ms faster 
than the proposed method. Also, the proposed model has 34 million param- 
eters, which is larger than all baselines. However, this slow inference will not 
be a problem when applying it to real-time gameplay,  because it can still infer 
more than 30 times in a second. In addition, unlike previous approaches for 
tactical decision making that  have used RL [3] [4], our method is a super- 
vised learning scheme. Thus, our approach requires a large amount of training 
data. Also, the performance of the trained model depends on the data quality. 
This is a double-edged sword because the performance can be easily improved 
using data of good quality but with poor quality data, the performance will 
deteriorate. Furthermore, since our approach simply imitates demonstrations 
from the data, the trained model is less likely to outperform the best human 
policy represented in the data. Future work can address this issue using the
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self-supervised method [80] or offline RL [81] to make the model outperform 
human policies from the data.

In the case of meta-ensemble models (meta decision tree and meta SVM), 
they exhibited poorer performance, compared with  the proposed majority 
voting approach. However, the SVM accuracy was almost identical to the max- 
imum accuracy of the three models used in the ensemble (CNN, decision tree, 
and ViT).  Because the meta models are trained using  the same data, they 
appear to imitate the prediction of the model that was most accurate when 
using the training data.

The confusion matrix of the proposed model for all data samples is shown 
in Fig. 13. The proposed model typically  predicted Stop, PMB,  EMB,  and 
EMF accurately, but it was correct less often for PEB and EEB. The model 
often confused labels of extended bases; the accuracies for both PEB and EEB 
are low. This result is explained by the uncertainties in base positions. Unlike 
the position of the main base, the positions of extended  bases depend on the 
players, and there can be more than one extended base. Decisions related 
to such bases differ according to the players and their strategies. Therefore, 
from a modeling viewpoint, it is challenging to infer a human decision about 
an extended base. Also, the model often predicted non-Stop labels as Stop, 
reflecting label imbalance. As shown in Fig. 8, Stop is the most common label 
(25.26%).

Figure 14 shows the test accuracy for all data samples over time. In the 
early stage of a match, the accuracy is very high because most units are work- 
ers, and they typically  stay near their  base. It then decreases sharply due 
to the production of battle units, which are then organized into a new main 
force. After approximately 250 s, the accuracy gradually decreases. This can 
be interpreted as reflecting insufficient training data because the number of 
samples  decreases over time, as shown in Fig. 7. This might also be caused 
by the simultaneous and gradual reduction in the ratio of the main force, as 
shown in Figs. 11 and 12.

4.3  Generalization  over other RTS  games
In this section, we discuss the potential challenges of applying the proposed 
approach to other RTS games. Although we implemented the proposed method 
on StarCraft, the proposed approach can be generalized onto other RTS games. 
To apply the proposed approach, three steps are required: collecting replays 
and extracting data from them, detecting the main force and labeling its future 
direction, and training the ensemble model using proper input encoding.

As most RTS games are repayable and use the available extraction software, 
collecting and processing the replays is typically straightforward. Considering 
the replays, the labels for the main force can be determined using the main 
force detection algorithm (Algorithm  1). However, this algorithm requires the 
parameters of each unit  (IP, DF, IR), which the user must manually define 
based on the game. Finally, to train the model, the user must provide proper 
input encoding. This study encoded the game scene into a stack of each unit’s
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and building’s influence maps, which were automatically generated based on 
their parameters. Therefore, the influence maps can be readily created after 
defining the parameters, and the user needs to select only the appropriate unit 
parameters to apply the proposed method.

Moreover, an essential consideration of applying this method to other RTS 
games is the significance of the main force in that game. As the Lanchester’s 
laws are applicable to the RTS games, managing several units by clustering 
them into forces is a common strategy. Thus, the main force is likely to exist in 
the replays of the players. However, the effectiveness of the proposed approach 
may differ depending on the ratio of the main force in the game. In the analysis 
of the StarCraft  replay data, approximately 40% of units pertained to the 
main force and account for approximately 60% of the influence. This suggests 
that the main force requires a substantial part of the military  power, and its 
operation is a critical part of the game. However, the proposed method may be 
less effective in a game in which the ratio of the main force is less than that in 
the StarCraft. This is a potential limitation  of the proposed approach, and a 
possible future direction is to address this issue by predicting the movements of 
the multiple forces. Another potential limitation  is that the proposed method 
cannot handle tactical  aspects  that  are not related to the main force. For 
instance, at the  start  of a game, a player might  employ various tactics to 
disrupt their  opponent’s progress, such as harassing them with  a scattered 
group of units as part  of a “rush”  strategy or deliberately obstructing the 
opponent’s  base development to force them to rethink their approach.

4.4  Applications
In  this  section, we  discuss the  mechanisms  through  which  the  proposed 
approach can improve the gameplay of RTS game agents. A potential appli- 
cation is to incorporate our approach as a module within  AI bots, where the 
agent can determine the future direction of the main force based on the pre- 
dictions of the ensemble model. Considering the fog of war, the model can be 
seamlessly integrated into the gameplay. The trained ensemble model can be 
directly used without  additional training  or be trained online while playing 
games to efficiently adapt to new games and strategies of the RTS agent. How- 
ever, the online approach appears with the risk of overfitting. Applying our 
approach to the RTS game agents is an interesting avenue for future research.

Another possible application of the proposed approach is to predict the 
movements of the enemy main force. Although the proposed approach focuses 
on the allied main force, it can be applied to the main force of the enemy. 
To this end, the model needs to handle partial information, thereby creating 
challenges in training. The prediction techniques such as those presented in [44] 
reveal the fog of war can address this issue. Therefore,  successful prediction of 
the movements of the main force of the enemy can enable the agent to infer 
the opponent’s strategy and employ appropriate precautions.
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Recently, StarCraft became an appealing environment for AI research because 
it provides varied and complex problems. Although tactics are an important 
part of RTS games, previous studies were based on heuristics and replays were 
not utilized for learning tactics.

In  this work, we proposed  a tactical  decision-making method based on 
learning to control a main force using deep learning from replays of human 
games. We extracted approximately 3 million data samples from replays, then 
labeled them according to six categories defined by professional human play- 
ers. Each data sample was converted into 29–35 channels  as the input for our 
learning model. We used CNNs and ViTs—some of the most widely used tech- 
niques in deep learning research—to process this large among of data and its 
high-dimensional inputs. We built  ensemble models using CNNs, ViTs and a 
decision tree to successfully  guess the future movements of the main forces 
of players. We  trained nine ensemble models to cover the different  types  of 
matches. The experimental results showed that the proposed method success- 
fully estimated the six-class problem, with top-3, -2, and -1 accuracies of 92.9%,
81.4%, and 63.3%, respectively. The proposed model outperformed the base- 
line models for all nine match types in terms of the top-3, -2, and -1 accuracies. 
Also, we analyzed human decision-making processes related to the main force 
and showed that it accounts for approximately 60% of all units’ influence and 
is thus essential for tactics. We formulated the main force detection problem 
according to the suggestions of professional human players, for whom handling 
the main force is critical throughout the match. Interpretation  of the inten- 
tions of human players in the complex environments of RTS games can be very 
demanding. Traditional methods of learning encounter many difficulties when 
applied to these environments,  due to the vast search space and endless num- 
ber of possible actions. One advantage of our model is that replay data do not 
require complex pre-processing before the learning process.

We believe that our method could lead to new macro-level tactical decision- 
making problems in  RTSs based on the perspective  of human players. In 
addition,  StarCraft  AI  research may benefit from  the  application  of our 
model for building  systems  in terms of the build  order, scouting, resource 
management, etc.

However, although our method successfully inferred human intentions when 
dealing with the main force, there is potential for improvement. Current image 
processing CNNs and a ViT  do not perfectly learn human StarCraft tactics. 
Because neural networks are increasingly applied to various domains, they are 
being transformed, improved,  and developed to suit such domains. In addi- 
tion, although our analysis suggests that players have a single main force in 
most cases, however, there could be a case where the units are equally dis- 
tributed among multiple forces rather than concentrated on a single main force. 
Considering such cases is one of the possible future improvements.

Future  work should  focus on the improvement  of deep neural networks 
that  learn human intentions in complex environments. One such example is
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that of handling the relationships among forces. In this work, we only focused 
on the main force; however, strategy and tactics include setting the roles of 
forces and managing relations between them. In deep learning, graph neural 
networks (GNNs) are widely used for handling such relations through their 
strong inductive bias. GNNs have already been applied to micromanagement 
by focusing on the relations between units [82]. Thus, it may be useful for 
managing the relations among forces.

One direction for future work is the automation of the handcrafted parts of 
our approach. Currently, we determine each unit’s parameters and categorize 
the main force movement based on heuristics, which may be suboptimal and 
may limit  the performance of our approach. Automating these processes could 
lead to more efficient learning and better overall performance.

Another area for improvement  is the consideration  of the Rock Scissor 
Paper (RSP) relationships between units. Although our approach focuses on 
the main force, the composition of the enemy forces can greatly impact the 
effectiveness of the main force. For instance, a small cluster of certain units 
might be able to defeat a force of strong units, which could render the main 
force less impactful. By accounting for RSP relationships and other strategic 
considerations, our approach could be enhanced to better adapt to different 
game situations and improve its overall performance.

On the other hand, our method could be improved in a more practical 
way. In  this work, we classified the  destination of the main force into  six 
categories. Instead of this, directly predicting the trajectory would allow for 
more continuous and flexible control for the main force. Furthermore, not only 
movement  but  also the composition of the forces is important  in terms of 
strategy. Relations among forces may be affected by their unit composition. 
This point of view provides a path for future research. We used simple pre- 
processing methods based on timing and the amount of minerals to exclude 
non-informative data from the replays; however, this process must be modified 
to include a mechanism for identifying only the critical moments in matches 
(e.g., combat).
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