
Research Article
Active Player Modeling in the Iterated Prisoner’s Dilemma

Hyunsoo Park and Kyung-Joong Kim

Department of Computer Science and Engineering, SejongUniversity, 209Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea

Correspondence should be addressed to Kyung-Joong Kim; kimkj@sejong.ac.kr

Received 12 November 2015; Revised 14 January 2016; Accepted 20 January 2016

Academic Editor: Reinoud Maex

Copyright © 2016 H. Park and K.-J. Kim. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The iterated prisoner’s dilemma (IPD) is well known within the domain of game theory. Although it is relatively simple, it can also
elucidate important problems related to cooperation and trust. Generally, players can predict their opponents’ actions when they
are able to build a precise model of their behavior based on their game playing experience. However, it is difficult to make such
predictions based on a limited number of games.The creation of a precisemodel requires the use of not only an appropriate learning
algorithm and framework but also a good dataset. Active learning approaches have recently been introduced to machine learning
communities. The approach can usually produce informative datasets with relatively little effort. Therefore, we have proposed an
active modeling technique to predict the behavior of IPD players. The proposed method can model the opponent player’s behavior
while taking advantage of interactive game environments.This experiment used twelve representative types of players as opponents,
and an observer used an active modeling algorithm to model these opponents. This observer actively collected data and modeled
the opponent’s behavior online.Most of our data showed that the observer was able to build, through direct actions, amore accurate
model of an opponent’s behavior than when the data were collected through random actions.

1. Introduction

Understanding one’s opponents is very useful when playing
games. In many games, each player tries to figure out his
or her opponents’ hidden beliefs, desires, and intentions to
maximize his or her reward. However, this is difficult inmany
cases because this piece of information is often hidden by
the opponents. Instead, each player can usually only infer
other players’ internal states based on observable information
such as behavior. This discussion raises questions about
how players can understand one another and there are
many possible explanations for the development of such
understanding [1, 2]. However, in the present paper, we
consider only player modeling, techniques/methods to build
models that can predict/infer player’s future behaviors, as an
approach to understanding opponents [3]. Usually, it uses the
player’s past behavior data. First, this approach is simple and
effective and can accommodate many techniques and styles
of implementation based on the data. These methods can be
easily used for player modeling, and the development of an
accurate playermodelmay enable us to infer a player’s current

inner state, predict his/her future actions, and figure out the
reason for current actions.

The iterated prisoner’s dilemma (IPD) [4] is among the
games in which player modeling is important. This mathe-
matical game is well known in the domains of economics,
international politics, and artificial intelligence (AI). When
playing the IPD, the ability to predict the future action of one’s
opponent is the most important contributor to maximizing
one’s own benefit. Generally, the creation of a precise model
to predict the future action of an opponent is sufficient to
win this game, and several studies have examined opponent
modeling in the IPD [5].

Application of the modeling technique requires the prior
collection of sufficient data, which is difficult because it
entails that a player should play the game to provide data
with ground truth. Modeling techniques based on data are
usually known as data mining [6], an approach that has been
studied for the last few decades and successfully applied in
various domains. The success of many of these applications
requires considerable data. Thus, insufficient data render
the performance of the model uncertain. Indeed, more

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2016, Article ID 7420984, 13 pages
http://dx.doi.org/10.1155/2016/7420984

2 Computational Intelligence and Neuroscience

Table 1: Payoff table (player 1’s payoff comes first).

Decision Player 2
Cooperate Defect

Player 1 Cooperate 𝑅 = 3, 𝑅 = 3 𝑆 = 0, 𝑇 = 5

Defect 𝑇 = 5, 𝑆 = 0 𝑃 = 1, 𝑃 = 1

𝑅: reward, 𝑆: sucker, 𝑇: temptation, 𝑃: penalty.

sophisticated models with more features require more data.
This phenomenon is known as the curse of dimensions [7].
The same problems arise in player modeling. Although the
labeling of a future action is easy in the IPD (labeling a future
action involves only recording it), the problem of a limited
dataset remains.

The development of an active learning algorithm [8]
is one approach to dealing with the scarcity of data. This
approach enables the collection of more informative data
through online interactions/queries, and it usually increases
the accuracy of the model with fewer data points com-
pared with conventional (passive) learning algorithms. This
approach can be applied in a straightforward manner to
collect data related to the IPD, because interaction is an
important element of this game. These interactions can form
the basis for the active learning algorithm used to model the
behavior of one’s opponent.

In this paper, we propose an active learning method to
be used for player modeling in the IPD game. Our approach
is based on a query-by-committee (QBC) [9] and esti-
mation exploration algorithm (EEA) [10]. QBC algorithms
are among the active learning algorithms using multiple
hypotheses (ensemble of models). EEAs use similar approach
but originate in evolutionary computation. We conducted
simulations to evaluate the performance of our approach.
These simulations involved two players, an observer (learner)
and an opponent. The observer played the game to model
his/her opponent’s behavior based on an active learning
algorithm.Theopponentwas a typical playerwhowas playing
to obtain rewards.This approach involved 12 types of strategy.
In this way, we comparatively evaluated the advantage offered
by our method with regard to data collection. According to
our results, our approach performed better in most cases.
Over the course of a few games, it was able to build more
accurate models than a random approach.

2. Related Research

2.1. Iterated Prisoner’s Dilemma. In the original prisoner’s
dilemma, two players choose to cooperate (𝐶) or to defect
(𝐷) and receive a reward or penalty based on their choice.
Table 1 presents the prisoner’s dilemma’s payoff table. If two
players cooperate, each gets an intermediate reward (𝑅:
reward). However, if one defects when the other cooperates,
the defector gets the maximum reward (𝑇: temptation) and
the cooperator gets nothing (𝑆: sucker). If all players defect
to avoid being penalized, the two players get the minimum
reward (𝑃: penalty). The payoff has to satisfy the conditions
in (1), which prevents a strategy involving alternating between

𝐶 and 𝐷 from yielding an incentive and also motivates each
player to play noncooperatively:

𝑇 > 𝑅 > 𝑃 > 𝑆,

𝑅 >
1

2
(𝑇 + 𝑠) .

(1)

It is usually in the best interest of both players to trust and
cooperate with the other, because this strategy yields the
maximum reward. However, there is always the risk that one’s
opponent will choose to defect. In this setting the cooperative
action’s expected reward is 1.5 ((3 + 0)/2) and defect action’s
expectation reward is 3.0 ((5 + 1)/2). Therefore, if each player
is rational, defection is seen as the action that maximizes
the expected reward. Furthermore, each player assumes the
opponents are rational; in other words each opponent will
defect to maximize an expected reward, and so each player
should defect. This is the rational strategy in the original
prisoner’s dilemma.

The iterated prisoner’s dilemma (IPD) is the elaborated
version of this game. In this setting, all players can consider
previous events as they choose their next action. Thus, each
player can seek revenge for her/his opponent’s defection and
also take advantage of her/his opponent’s cooperation. Under
these conditions, a player seeking a cooperative situation
should usually not be the first to betray the other. Indeed,
we face many similar situations in real life. For this reason,
many studies have used this game to understand many real-
life phenomena [11, 12].

2.2. Player Strategies for the IPD. Many playing strategies can
be used in the IPD, for instance, always cooperate (AllC)
or defect, tit for tat (TFT), majority (Major), and Pavlovian
strategies. However, no strategy wins against all other types
of strategy, and all strategies are stronger or weaker against
specific strategies. Therefore, game results depend on the
players who participate [4, 13, 14]. Axelrod, a researcher
who performed seminal work on the IPD, organized two
tournaments that identified and enabled analysis of different
strategies and their characteristics [13]. TFT, which was
among the better strategies used in the first tournaments,
and its variations produced good results. These types of
strategy involve initial cooperative play, revenge in response
to betrayal, and forgiveness when cooperation follows defec-
tion. Thus, a player cooperates in response to cooperative
action, defects to defend against defection, and promotes
cooperative play when the player who previously defected
became cooperative. Strategies such as TFT do not work
optimally against all other types of strategy, but they can
avoid the worst situation (sucker). When an opponent is
cooperative, these strategies reap the benefits of cooperation.
In other cases, they avoid exploitation by the opponent.

Although TFT-style strategies work well against other
strategies, many studies have tried to identify even better
strategies. Such attempts to identify strategies can be for-
mulated as a kind of search problem in which finding a
better strategy is equivalent to finding a better solution.
Evolutionary computation approaches (genetic algorithms,
evolutionary strategies, etc.) are suitable for this kind of

Computational Intelligence and Neuroscience 3

search problem and can also adapt to changes in the oppo-
nent’s strategy. Following one tournament, Axelrod used an
evolutionary algorithm to identify a strategy that was equal
to or better than TFT [15]. This initial effort was followed
by many other attempts to work on this problem based on
evolutionary computation [5, 14, 16–20].

It has been a long research question to derive a strategy to
be generalizedwell on an unseen opponent. It involves studies
on learning algorithms, strategy representation, and analysis
of strategies. For example, Fogel studied the conditions that
promote the evolution of cooperative behavior using evolu-
tionary programming, one of the evolutionary computation
algorithms [16]. Nowak and Sigmund identified a Pavlovian
strategy that was more robust than TFT [14]. Additionally,
Beaufils et al. reported on a new gradual strategy [17], and
Van Bragt et al. examined the selection scheme used in [18].
Indeed, the selectionmechanism is one of themajor contribu-
tors to the performance of evolutionary algorithms. Ashlock
et al. investigated representations of agent strategies [20] by
surveying various types of representation and investigating
their underlying logic. They also proposed an opponent
modeling tool known as a fingerprint, to compare complex
strategies. Ishibuchi et al. studied the effect of representations
in a 2D-grid world [21].

Several recent studies have examined the approach,
which relies on understanding the strategy of one’s current
opponent. This understanding allows the player to predict
his/her opponent’s next action and choose the optimal
action based on this piece of information. Li et al. exam-
ined this approach [22] using a simple rule-based strategy-
identification mechanism for round-robin IPD competition.
The player using this approach outperformed an opponent
using well-known strategies. Gaudesi et al. discussed more
sophisticated strategies involving inference techniques [5].
They used evolutionary computation tomodel the opponent’s
strategy as a finite state machine. During the game, the
player using their approach built a player model for her/his
opponent and used it to predict the opponent’s future actions.
According to their preliminary results, their method was
able to accurately model TFT and perform well against
other strategies. Recently, Gaudesi et al. propose opponent
modeling method in [23]. They use evolutionary algorithm
to model opponent behavior and use the best model to
determine the next action.Theyuse someheuristics and brute
force simulation in order to find a next action with highest
payoff.

2.3. Active Learning Algorithm. Active learning involves sam-
pling data during the learning process instead of passively
accepting all the available data. In otherwords, active learning
assumes that an algorithm can collect more informative data
by allowing selectivity. More informative data are selected
with the use of an algorithm based on previously collected
data and currently generated models. Through repeated use
of these processes, we can collect informative data from a
small number of cases.

From the perspective of an active learner (observer), a
few pieces of data are labeled data, and there are considerable

(2) Build/replace

(3) Choose the next

Play dataset

Opponent Observer
(1-1) Play action

Save data

Training/
evaluating

models

(1-2) Get response (1–3) Collect and label
data

models

action

Figure 1: Overview of system.

unlabeled data in the version space (possible configuration
of data). When few labeled data are available, the learning
algorithm can model the data, albeit imprecisely. Therefore,
the observer can use the imprecise learned model to predict
or label opponent behavior. Based on the predictions, it is
possible to choose informative instances from the unlabeled
data. In the next step, it queries the user or teacher in order to
label the informative instances. Action learning repeats these
two steps (modeling based on collected data and querying
about informative data) and yields a more precise model with
a smaller dataset.

Basically, active learning determines the most infor-
mative data in the current iteration based on uncer-
tainty/disagreements.When the labeled data are available, the
algorithm develops a model as a hypothesis. The basic active
learning algorithm builds one model based on posterior
probability [24], and uncertainty derives from its boundary
(in a binary classification, the posterior probability is about
0.5). On the other hand, active-learning-using committees
(ensembles) [8] apply many hypotheses, and disagreements
reflect differences among models. This approach is known as
the query-by-committee (QBC) algorithm.

The EEA [10] is similar to active learning. However,
it originates from evolutionary computation, and it was
developed to model complex nonlinear systems with little
interaction (experiments). Like active modeling (modeling
and query), it repeats the two steps of estimation and explo-
ration. During the estimation step, it builds various types or
structures of models using evolutionary computation. In the
exploration step, it develops an informative query to improve
current models based on differences among models. From
an evolutionary perspective, this algorithm is among the
coevolutionary algorithms that develop query and validate
solutions simultaneously.

3. Active Modeling Framework for IPD

In this section, we introduce our proposed active learning
algorithm for modeling IPD players. This method hybridizes
QBC and EEA. Particularly, our algorithm used an ensemble
of diverse models for strategy representation and enhanced
active learning algorithms for game playermodeling. Figure 1
presents an overview of our proposed method. The observer
is the player that uses our proposed method. Getting a more
immediate benefit is not the purpose of the observer. Instead
it chooses an action for exploration of the opponent’s decision
process only. At each turn (opponent and observer engage in

4 Computational Intelligence and Neuroscience

one action) of the game, the observer puts new data about the
current game state to play into a dataset and determine the
next action using active learning with the collected dataset.

The active learning algorithm consists of three parts: (1)
playing the game and collecting data (play an action, get an
opponent response, and label the data), (2) building models
with the play dataset in the current turn, and (3) choosing
the next action to obtain the game state with the greatest
disagreement (uncertainty) in prediction.Our systemmodels
the opponent player’s decision process during the game
through these repeated three steps. We describe each step in
detail and discuss how to apply it in an IPD game below.

3.1. Data Collecting and Label Data. In this part, this system
models the behavior of the opponent based on collected play
dataset. These data can be available before games or obtained
by playing games. However, our system in this paper uses
collected data during the current IPD game. Figure 2 presents
an example of the data representation. In each turn, the
observer has information about the opponent’s action in the
current game state. We assume that all players select future
actions based on their opponents’ and their own previous𝑁
actions. For example, the attributes of each data instance are
𝑂−5, 𝑆−5,𝑂−4, 𝑆−4,. . .,𝑂−1, and 𝑆−1.𝑂−𝑛 indicates an
opponent’s previous 𝑛th action and 𝑆−𝑛 refers to an observer’s
(self) 𝑛th action. Labeling of data instances (prediction of an
opponent’s next action) is represented as𝑂+ 1. The label can
be easily assigned after an opponent engages in an action.
Because this game has only two actions, cooperation and
defection, basically all the values of the attributes are either
𝐶 (cooperate) or 𝐷 (defect). However, the values are invalid
in the first𝑁 turns. In this case, we ignore the data because it
represents a very small portion of the play dataset.

3.2. Modeling Labeled Data. Themost important function of
this part of the process is building various types of models
with limited data. However, some learning algorithms are
unable to build various models in such cases. As this is
not good for our system, we used a bootstrapping approach
(bootstrap aggregation) also known as bagging. This is the
one of ensemble techniques in machine learning. It uses
randomly generated data from the original dataset to avoid
overfitting. When we built each model, we used (uniformly)
randomly sampled data obtained from the entire dataset.
Sampling is with replacement (one instance may appear
multiple times).This approach allowed us to build a variety of
models and was also employed to measure accuracy of each
model. Since we can use current play dataset only, instead of
an independent validation dataset, we use randomly sampled
data for model validation too.

Figure 3 depicts the model ensemble building/training
process. Our system contained 𝑀 models (in experiments
𝑀 = 50) trained by various types of machine learning
algorithms. We used a decision tree (Cart), perceptron,
support vector machine (SVM), 𝑘-nearest neighbor (𝑘-NN),
and näıve Bayes algorithm (NB) to build models. We use
implementation of machine learning library scikit-learn [25].
Basically, we use default parameters, but we choose random

C D C C C D C
C D C C C D C
D D C D D D C
D D D D D D D

Opponent
Observer

Play an IPD game

O− 5 O − 1O − 4S − 5 S − 1S − 4 O + 1· · ·

· · ·
· · ·
· · ·
· · ·

· ·

· · ·

· · ·
· · ·
· · ·
· · ·
· · ·

Figure 2: An example of data representation (𝑁 = 5).

Eliminate the least accurate half of the models

Play dataset

Data sampling
for training

Build/replace models

Data sampling
for validation

New trained models + the most accurate half
of the models in theprevious iteration

Figure 3: Building various types of models.

parameters (e.g., kernel type for SVM, k for 𝑘-NN) for
models, when the new models are built or the old models
are replaced. There are two possible values in kernel types,
linear or RBF (Radial Basis Function), and four values for
k (1, 3, 5, and 7). These models can be replaced with new
ones depending on their validation accuracy. In each game
turn, only the most accurate half of the models remain in
the model ensemble, and the least accurate half are replaced
by new ones. For example, if there are Cart and perceptron
models in the previous game and Cart models show relatively
low performance in the current iteration, then the Cart
models could be replaced with other types of models. When
new models are built, one of five training algorithms and
parameters is randomly chosen. The selection of algorithm
and parameters was performed every time when a single new
model is created. If themodel needs datawith real values (e.g.,
perceptron), then𝐶 is changed to 1.0 and𝐷 is changed to−1.0.

3.3. Choose the Next Action. The active learning algorithm
provides several approaches to distinguishing the most
informative data that should be labeled by user or teacher.
For example, they are based on prediction uncertainty,
disagreement of committee, change to the currentmodel, and
expected error reduction. Generally, finding an uncertainty
area in the version space indicates the presence of informative
data that should be used to improve the current models.
The QBC algorithm is among those that identify uncertainty
based on an ensemble of models. If there are various models
with sufficient accuracy, the uncertainty space in the current
models is the same as the disagreement among the models.
In other words, we have to find the future game state with

Computational Intelligence and Neuroscience 5

Current game
state s

C

D

Current models
(predict opponent

action in each
next game state)

Possible next states
(measure entropy of
each next game state)

Observer’s next actions
(averaging entropy of

each next action)

Choose next

(use UCB1)

Next game state sCC

Next game state sDC

Next game state sCD

Next game state sDD

action

···

Figure 4: Choose next action based on disagreements.

diverse predictions (showing disagreement in predictions) by
models.

Figure 4 shows the whole process of how our algorithm
chooses the next action. Always there are two possible
actions (𝐶 and 𝐷) and four possible following game states
that depend on each player’s next action. Our algorithm’s
purpose is to find the most informative data (game state and
opponent’s action) among these four states. In order to do
this, it measures disagreements of current models in these
four game states and maps these to each possible action. In
other words, it measures each action’s benefit in exploring the
opponent’s strategy.There are three things to consider, how to
measure disagreements, how to map disagreements to each
action, and how to combine disagreements and possibility of
success in the data collecting policy. We describe this below:

𝐻(𝑋) = − ∑

𝑥∈{𝐶,𝐷}

𝑝 (𝑥) log𝑝 (𝑥) . (2)

Our system uses entropy [26] to measure disagreement.
Entropy, which refers to information content in information
theory, is one of the possible metrics for measuring dis-
agreements. Equation (2) shows how it measures the entropy
(𝐻(𝑋)). There are two possible opponent actions:𝐶 and𝐷 in
the current game state. 𝑝(𝑥) refers to the probability (ratio
of prediction 𝑥) of prediction. For instance, three models
predict 𝐶 and the other eight models predict 𝐷; then 𝑝(𝐶) =
3/11 and 𝑝(𝐷) = 8/11. If all models in the current models
have identical predictions of an opponent’s future action,
entropy is low (the minimum value is 0.0); however, when
half the predictions favor 𝐶 and half favor 𝐷, entropy is at
its maximum. There are only two nominal symbols (𝐶 and
𝐷), and maximum entropy is 1.0. If we were dealing with
conventional active learning application, we would have to
search all conditions (game states) with the highest entropy
values. However, it is enough to find possible future game
states only in the game environments.

Probably, it could be easy to get data that the algorithm
queried if it were not a game. Common active learning
algorithms try to find which data is the best to increase
the current model’s performance and to label it by query to
oracle (e.g., human). In this case, the oracle is cooperative
with the algorithm and therefore the data collecting process

is relatively easy. However, in game sceneries like IPD, it
is different. In IPD, there are no reasons for the opponent
player to cooperate with data collecting to reveal their
strategy.Therefore, the active learning algorithm in the game
considers the possibilities of the target data collecting success
as well as finding informative data.

The reason for the difficulties in data collecting is that the
observer cannot control the opponent’s action. For instance,
if the current game state is 𝐶𝐶|𝐶𝐶|𝐶𝐶 (considering only
the past three turns, e.g.) and the state with maximum
disagreement is 𝐶𝐶|𝐶𝐶|DD, then the observer and the
opponent should do 𝐷 to collect informative data. However,
if the opponent chooses𝐶 only, the observer gets𝐶𝐶|𝐶𝐶|CD
only instead of 𝐶𝐶|𝐶𝐶|DD:

UCB1 = 𝑥
𝑗
+ √
2 ln 𝑛
𝑛
𝑗

. (3)

To tackle this problem, we propose using UCB1 (Upper-
Confidence Bound). Originally UCB1 is used to han-
dle exploration-exploitation dilemmas. UCB1 equation (3)
includes two terms; each term encourages exploitation and
exploration. Originally, the exploitation term (left) reflected
(action j’s) expectation of reward, and the exploration term
(right) reflected the number of trials (𝑛: total number of
actions, 𝑛

𝑗
: number of action j). It increases when the number

of actions 𝑗 is too low relative to other actions. It reflects
ignorance of action 𝑗 in the current game state. As a result,
UCB1 values increasewhen action j’s expectation value is high
or/and number of trials is low.

In this paper, we use UCB1 in an uncommon way
(balancing exploration and exploitation). The observer uses
UCB1 to balance two types of exploration: exploration by
disagreements ofmodels and exploration by number of trials.
Both reflect uncertainty or ignorance of our knowledge,
but they have different mechanisms to measure it. The
exploitation term (the left term of UCB1) is the entropy of
the disagreement instead of the reward or benefit. If the
observer gets the target data successfully and disagreement is
resolved, then we think the observer gets the same amount of
information as the target data’s entropy. And the right term
in the UCB1 determines the number of trials; therefore the

6 Computational Intelligence and Neuroscience

observer tries other actions; even though it tries many times
it cannot collect target data:

UCB1
𝐶
=
𝐻
𝐶𝐶
+ 𝐻
𝐷𝐶

2
+ √
2 ln 𝑛
𝑛
𝑐

,

UCB1
𝐷
=
𝐻
𝐶𝐷
+ 𝐻
𝐷𝐷

2
+ √
2 ln 𝑛
𝑛
𝐷

.

(4)

In order to apply this concept, we use (4). It is almost the
same as the original UCB1; we only change the left term
for our application. The left term is the average entropy
of the possible future states’ entropies. For example, if the
current game state is 𝐶𝐶|𝐶𝐶|𝐶𝐶, then there are four possible
following game states (𝐶𝐶|𝐶𝐶|CC, 𝐶𝐶|𝐶𝐶|CD, 𝐶𝐶|𝐶𝐶|DC,
and 𝐶𝐶|𝐶𝐶|DD) based on the observer and opponent’s next
action. Since the observer cannot control the opponent’s
action, the following game states will be (𝐶𝐶|𝐶𝐶|CC and
𝐶𝐶|𝐶𝐶|DC) or (𝐶𝐶|𝐶𝐶|CD and 𝐶𝐶|𝐶𝐶|DD) based on the
observer’s action. If an observer selects 𝐶 then the game state
will be 𝐶𝐶|𝐶𝐶|CC or 𝐶𝐶|𝐶𝐶|DC, but it depends on the
opponent’s action as to which one becomes the real game
state. Therefore, we use the average of both 𝐻

𝐶𝐶
(entropy

in 𝐶𝐶|𝐶𝐶|CC) and 𝐻
𝐷𝐶

(entropy in 𝐶𝐶|𝐶𝐶|DC) to get the
observer action’s results. When we get the UCB1 value, the
observer chooses the next action. If UCB1

𝐶
is greater than

UCB1
𝐷
, the observer chooses 𝐶. Otherwise it chooses𝐷.

4. Experiments

In the current section, we describe our experiments and their
results. In these experiments, the observer played games with
the opponent with the goal of building a prediction model
that can predict the AI player’s next action.

4.1. Player Types (Strategies). We used 12 types of players
for our experiments; these are summarized in Table 2. There
were six unique strategies and six variations: AllC, ADP, TFT,
FTR3, Major, and Pavlovian are famous strategies used in the
IPD.TheNoisyTFT, TF2T, andAdaptive TFT are well-known
variation of TFT, and Major 5 is a special variation of Major.
(1) AllC refers to a strategy of always cooperating. (2)

CCD repeats 𝐶, 𝐶, and 𝐷 actions. AllC and CCD do not
change their decisions depending on opponent behaviors.
These are very simple strategies.
(3) TFT is the most popular strategy in IPD, involving

initial cooperation and subsequent mimicking of the oppo-
nent’s last action. Thus, one cooperates when one’s opponent
cooperates, one seeks revenge when one’s opponent defects,
and one forgives (cooperates) when one’s opponent moves
from defection to cooperation.This is usually a good strategy
for all types of players. (4) NoisyTFT is a variation of TFT,
but is more complex (i.e., more difficultly build amodel) [27].
Actions change with a probability of 0.1. (5) TF2T is similar
to TFT, but it responds with defect only when the opponent
chooses defect two times in a row. (6) ATFT is an adaptive
version of TFT. It has variable 𝑤 that changes dependence
on opponent actions. If opponent more cooperates 𝑤 will

Table 2: Player types.

Player type Description
AllC (i) Always cooperate
CCD (i) Repeat 𝐶, 𝐶 and𝐷

TFT (i) Mimic opponent’s previous action
(ii) The first action is cooperation

NoisyTFT (i) Almost the same as TFT
(ii) Action changes with a 10% probability

TF2T (i) 𝐶 after two opponents consecutive cooperation
(ii)𝐷 after two opponents consecutive defections

ATFT (i) Adaptive TFT (𝑤 = 0.5, 𝑟 = 0.99)
(ii) If 𝑤 ≥ 0.5, then 𝐶 or otherwise𝐷

ADP
(i) Test 𝐶, 𝐶, 𝐶, 𝐶, 𝐶 and𝐷,𝐷,𝐷,𝐷,𝐷 when game
starts
(ii) Choose an action based on payoff

Major
(i) Follow opponent’s major actions during the entire
game
(ii) The first action is cooperation

Major 5 (i) Similar to Major
(ii) Considers only the five previous actions

FS (i) Defect with probability p (initial value 0.5)
(ii) 𝑝 is probability for opponent defection

Pavlovian
(i) Cooperate if my action was the same as that of my
opponent in the last turn
(ii) Otherwise, defect

FTR3
(i) Use a𝐷,𝐷 and 𝐶 pattern to recognize opponent’s
strategy
(ii) If opponent’s response is the same as the pattern,
cooperate

increase; otherwise it will decrease. ATFT decides the next
action based on 𝑤.

(7) ADP is a basic adaptive strategy. It starts with five
consecutive 𝐶 and five consecutive 𝐷. After that, it chooses
an action with high payoff.

(8) Players following the Major strategy make decisions
based on all the previous actions of the opponent. If the
opponent cooperated more than she or he defected, then a
player following this strategy would cooperate. Otherwise,
she or he would defect. Because our system considered a
maximum of five previous actions, it was difficult to build
a model based on this strategy. (9) Thus, we modified the
Major strategy to consider only five past actions, naming it
“Major 5.” (10) FS cooperation depends on 𝑝 (probability
of opponent’s cooperation). It is similar to Major except it
cooperates with probability 𝑝 (initial 𝑝 is 0.5).

(11) The Pavlovian strategy involves repeating the last
action if it yielded a high return; otherwise, it involves
engaging in a new action. In other words, a player following
this strategy cooperates when the opponent’s behavior in the
last round was the same as her or his own. Otherwise, the
player chooses defects.

(12) FRT3 (fortress 3) tries to recognize play pattern using
𝐷,𝐷, and 𝐶 action sequences. If an opponent plays the same
pattern, it selects 𝐶 or otherwise𝐷.

Computational Intelligence and Neuroscience 7

1 21 41 61 811 21 41 61 81
Number of trials Number of trials

Active-sampling
Random-sampling

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

0

0.2

0.4

0.6

0.8

1

p
-v

al
ue

(a) AllC

1 21 41 61 811 21 41 61 81
Number of trials Number of trials

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

0

0.2

0.4

0.6

0.8

1

p
-v

al
ue

Active-sampling
Random-sampling

(b) CCD

Figure 5: Test accuracy and 𝑝-value of active-sampling and random-sampling (AllC and CCD).

4.2. Experimental Results and Analysis. Figure 5 compares
the results of the proposedmethodwith those of the random-
sampling approach. Because our proposed method involves
the active collection of data, we named it “active-sampling.”
In contrast, the other method does not use active-sampling
based on disagreements; instead, it chooses the action ran-
domly. In other words, it collects data randomly. Therefore,
we named it the “random-sampling” approach. Because it
also uses an ensemble of models, it also offers advantages in
terms of prediction of the ensemble techniques. In each game,
each player was presented with 100 opportunities to choose
an action (100-turn game), and the observer (active-sampling
and random-sampling) built models using data contempo-
raneously collected. Active-sampling observer maintains 50
models of ensembles. After a game ends, collected data were
discarded.Theywere not used for the next game. In this study,
the algorithm looked back at the last five time steps. Because
the number of steps controls the number of inputs of the
opponent model, the parameter has relation with the model
complexity. If the step number is too small, the information
is not enough to be modeled. On the other hand, it is too
complex to model if the history looks back too far. We set
the parameter as five because it is the smallest one derived
from initial testing. It is also possible to control the number
of steps to look ahead but it also increases the uncertainty of
estimation.

In order to test the performance of the models, we
generated test data. Since there are only 1024 (210) game
states, we can get all possible game play data easily and

record all responses of opponent types in all possible game
states. At each turn, we tested the prediction model (active-
sampling and random-sampling) using the test data. The
prediction model’s outcome is the majority voting of models.
However, we could not ascertain the actual opponent action
of those following the NoisyTFT and the Major strategies. In
NoisyTFT, we use TFT testing data. In Major, we generated
testing data in online manner. Figures 5, 6, 7, and 8 present
the average accuracy (over 100 experiments) under each
condition.

We show accuracy changes in left panel and 𝑝-value
changes in right panel. Accuracy shows the ratio of correct
prediction of each approach at certain time. And 𝑝-value (we
used two-sample Kolmogorov-Smirnov test) shows statistical
significance of the accuracy difference. Figure 5(a) presents
the results under the AllC condition. Because they were very
easy to model, the active- and random-sampling approaches
were completely modeled after one action. (b) CCD shows
similar results but it took some trials to model completely.
After 20 trials, 𝑝-value of active and random sample is almost
1.0; it means that there is no difference between the two
approaches.

Figure 6 shows the results of the TFT and its variants
(TF2T, ATFT, and NoisyTFT). In (a) and (c), active-sampling
approach yielded more accurate predictions between trails
20 and 70. On the other hand, random-sampling approach
was barely predicting the opponent’s action. Also 𝑝-values
are quite small (under 0.1) in this period. However, benefit
of active-sampling gradually disappeared after 70 trails. (b)

8 Computational Intelligence and Neuroscience

1 21 41 61 81
0

0.2

0.4

0.6

0.8

1
Ac

cu
ra

cy

1 21 41 61 81
Number of trials Number of trials

0

0.2

0.4

0.6

0.8

1

p
-v

al
ue

Active-sampling
Random-sampling

(a) TFT

1 21 41 61 811 21 41 61 81
Number of trials Number of trials

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

0

0.2

0.4

0.6

0.8

1

p
-v

al
ue

Active-sampling
Random-sampling

(b) TF2T

1 21 41 61 811 21 41 61 81
Number of trials Number of trials

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

0

0.2

0.4

0.6

0.8

1

p
-v

al
ue

Active-sampling
Random-sampling

(c) ATFT

1 21 41 61 811 21 41 61 81
Number of trials Number of trials

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

0

0.2

0.4

0.6

0.8

1

p
-v

al
ue

Active-sampling
Random-sampling

(d) NoisyTFT

Figure 6: Test accuracy and 𝑝-value of active-sampling and random-sampling (TFT, TF2T, ATFT, and NoisyTFT).

Computational Intelligence and Neuroscience 9

1 21 41 61 811 21 41 61 81
Number of trials Number of trials

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

0

0.2

0.4

0.6

0.8

1

p
-v

al
ue

Active-sampling
Random-sampling

(a) Major

1 21 41 61 81
Number of trials

1 21 41 61 81
Number of trials

0

0.2

0.4

0.6

0.8

1

p
-v

al
ue

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

Active-sampling
Random-sampling

(b) FS

1 21 41 61 811 21 41 61 81
Number of trials Number of trials

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

0

0.2

0.4

0.6

0.8

1

p
-v

al
ue

Active-sampling
Random-sampling

(c) Major 5

Figure 7: Test accuracy and 𝑝-value of active-sampling and random-sampling (Major, FS, and Major 5).

shows the worst results. In (b), active- and random-sampling
approaches show almost the same accuracy. However, against
noisy opponent (d), active-sampling approach shows better
results again. It yielded better prediction and 𝑝-values are
relatively small.

Figure 7 shows the results of Major, FS, and Major 5.
In (a), unlike the data in other cases, it reports the relative
success of random-sampling. For Major strategy, random-
sampling produced slightly better predictions than the active-
sampling approach. In (c), active-sampling approach yielded
better prediction accuracy with lower 𝑝-value between 20th
and 60th trials.

Figure 8 shows experimental results of ADP, Pavlovian,
and FRT3. In (a) and (b), active- and random-sampling
approaches show almost same results. Both approaches can
model these strategies sufficiently. In (c), active-sampling

approach yielded almost 30% higher accuracy and its 𝑝-value
remains in almost zero after 20th trial.

According to the experimental results, our proposed
active-samplingmethodoutperformed the random-sampling
method in TFT, NoisyTFT, Major 5, and Pavlovian. In other
cases, both approaches show almost same results. The accu-
racy difference depends on the complexity of the opponent’s
strategy. For example, in the case of the AllC, the simplest
strategy, no differences were observed between the active-
and random-sampling approaches. Because this strategy is
too simple to form the basis of models, there are no possible
factors that can lead to differences between the approaches. In
contrast, major differences in the accuracy of more complex
strategies were observed.

Table 3 presents differences in the average accuracy
between active- and random-sampling in all games (100 game

10 Computational Intelligence and Neuroscience

1 21 41 61 81
Number of trials

1 21 41 61 81
Number of trials

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

0

0.2

0.4

0.6

0.8

1

p
-v

al
ue

Active-sampling
Random-sampling

(a) ADP

1 21 41 61 811 21 41 61 81
Number of trials Number of trials

0

0.2

0.4

0.6

0.8

1

p
-v

al
ue

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

Active-sampling
Random-sampling

(b) FRT3

1 21 41 61 81
Number of trials

1 21 41 61 81
Number of trials

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

0

0.2

0.4

0.6

0.8

1

p
-v

al
ue

Active-sampling
Random-sampling

(c) Pavlovian

Figure 8: Test accuracy and 𝑝-value of active-sampling and random-sampling (ADP, Pavlovian, and FRT3).

turns × 100 experiments = 10,000). We pick six representative
strategies from 12 strategies. At the start of the game, these
differences were very small, but they increased after 20–30
turns.The difference in training accuracy was relatively small
(under 0.07) during play, indicating the absence of major
differences in the modeling ability of the two approaches.
The training accuracy measures used obtained data in the
current game (validation process using randomly sampled
training data). However, when testing data (all possible game
play datasets) were used, the difference increased. With the
exception of the AllC and Major conditions, the differ-
ences in the accuracy of the approaches exceeded 0.10. The
largest difference was observed with regard to the Pavlovian
approach (0.205), which may indicate that the random-
sampling approach suffers from an overfitting problem. On

the other hand, our proposed active-sampling method can
prevent such overfitting.

There was only one case in which the results of our
approach were worse than those of random-sampling. When
modeling the Major strategy, an active-sampling approach
yielded worse results than did a random-sampling approach.
The reason for this phenomenon involves our representation
of data, because our representation was a simple 10-length
vector of each player’s past five actions.Therefore, an observer
can consider only the past five actions, which is not sufficient
for building amodel of theMajor strategy. On the other hand,
the experiments using Major 5 (a version of Major modified
for our experiments) reflected better performance. Because
Major 5 considers only the opponent’s five prior actions, it
fits our data representation.

Computational Intelligence and Neuroscience 11

Table 3: Differences in average accuracy of active- and random-
sampling approaches.

Player type Difference in
training accuracy

Difference in testing
accuracy

AllC 0.001 0.001
TFT 0.061 0.150
NoisyTFT 0.018 0.123
Major −0.014 −0.081
Major 5 0.019 0.101
Pavlovian 0.042 0.205
Although the differences in the accuracy of the active- and the random-
sampling approaches were minimal in the training, large differences were
observed in the testing. This implies that active-sampling may prevent
overfitting (difference = accuracy of active-sampling − accuracy of random-
sampling).

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Major window size (Major N)

0

10

20

30

40

50

60

N
um

be
r o

f a
ct

io
n

ch
an

ge
s

Figure 9: Relationship between window size and number of action
changes (avg. of 1,000 games).

However, the random-sampling approach used in the
Major andMajor 5 cases produced different results. Although
the random-sampling player chooses randomly, these choices
could have become biased toward one action (𝐶 or𝐷) during
a lengthy game. Figure 9 shows the relationship of window
size and number of action changes in a game fitting a Major
strategy against a random one. When the window size was
100 (the original Major strategy that considers all opponent
actions), the opponent following the Major strategy changed
actions (𝐶 → 𝐷 or 𝐷 → 𝐶) on fewer than four occasions.
This was easy to model because the opponent’s behavior
was simple and rarely changed. However, when the window
size decreased, the number of action changes increased
exponentially, as was the case with Major 5. Therefore, it was
difficult to model the Major in the absence of an appropriate
learning algorithm and a sufficient dataset. Additionally, we
can understand TFT asMajor 1model, which ismore difficult
to model using random-sampling.

5. Conclusion and Future Directions

Recently, active learning has emerged as one of the most
promising machine learning techniques. This type of algo-
rithm can choose data that can improve currently trained
model(s), and it can use this mechanism to build a model

that performs better compared with the conventional (pas-
sive) machine learning algorithm. Generally, these types of
algorithms rely on interactive circumstances to establish an
archive that is used to improve performance. Therefore, a
game such as IPD is suitable for this approach. In this paper,
we proposed active learning methods for the IPD, because
this approach collects data efficiently in this game scenario.

In this study, we introduced the hybrid of QBC and
EEA using ensembles of diverse models trained with boot-
strapping techniques. It adaptively searches for the best
ensembles to model opponent’s strategy from the interac-
tion with opponents. Because the IPD problem has special
constraint on the manipulation of opponent, the uncertainty
was considered in the equation to select the next action.
The active modeling of opponent’ strategy can increase the
accuracy incrementally by collecting useful play history. To
show the usefulness of this approach, the proposed method
was tested with 12 strategies. In simple strategies, there is no
significant difference between active- and random-sampling
approaches, but there is meaningful performance gain for
some complex opponent strategies. In case of unsuccessful
results, in-depth study revealed the condition that the active
learning is not working well.

In this paper, we proposed an active-samplingmethod for
game environments. Althoughwe used only the very simplest
game, IPD, our approach can also be applied to all kinds
of interactive scenarios. In game AI community, this work
is early stage of discussion on the use of active learning for
video games [28].Therefore, future research should apply this
approach to other games or interactive scenarios. Because an
active learning approach can obtain data effectively (reduce
overfitting), it reduces the human-user effort involved in
data collection. Although our experiments involved an AI
opponent player, it would be useful to test our hypotheses
using a human user in the future.

Additionally, research regarding the effect of data repre-
sentation and learning algorithms should employ other appli-
cations. As shown in the Major strategy experiments, data
representation is very important. Although active-sampling
can obtain data effectively, it cannot compensate for unfitted
data representations in the same learning algorithm.We used
a conventional machine learning algorithm in this study, but
learning algorithms are dependent on data representation.
Also, it is possible to improve learning efficiency using
model complexity measure. Active learning algorithms like
QBC, EEA, and our proposed method’s efficiency rely on
divergence of models. If we evaluate each model in ensemble
using accuracy as well as model complexity, we can prevent
each model in the ensemble from being too similar.

Gaudesi et al. used evolutionary computation to model
opponent strategy with nondeterministic finite state machine
(FSM) [23]. Similarly, it models opponents without any prior
knowledge in an online manner based on the interactions
from games. However, in our study, we purposely select the
next action of player to actively model opponents. Because
the manipulation of opponent is not always successful in the
game of IPD, the efficiency of modeling is depending on the
quality of data collection. Also, the choice of representation
has impact on the outcomes of research. For example, [23]

12 Computational Intelligence and Neuroscience

uses nondeterministic FSM but this study uses an ensemble
of multiple models. It might be more useful to include the
FSM into one of member models in the ensemble. It is also
important to design common benchmarking framework for
active learning problems in the IPD context.

The IPD agent ideally needs to solve the two problems at
the same time: accuratemodeling opponents andmaximizing
outcomes. However, the current state of the art in IPD
research focuses on either opponentmodeling ormaximizing
outcomes. In this study,we only focus onusing active learning
mechanism for modeling opponents in IPD. As a future
work, it is highly desirable to incorporate the cost term
(the outcomes acquired from the game playing) together
with the modeling accuracy. To optimize both terms, to use
multiobjective optimization algorithms to discover multi-
ple Pareto optimum instead of this paper’s single-objective
genetic algorithms is recommended.

In machine learning, there have been several ways to
avoid the overtraining and maximize generalization ability
on unseen dataset. It is one of the widely used techniques
to consider the complexity term together with accuracy.
Additionally, it is also desirable to usemultiple diversemodels
and combine them to generalize well (known as “ensemble”
technique). In this study, we adopted the ensemble approach
to increase generalization ability with “bootstrapping” tech-
niques specialized to increase diversity of models. As a future
works, it is useful to introduce the model complexity term
(penalty terms for the number of parameters) to the model
comparison.

Disclosure

This paper was extended from 2-page poster paper published
in IEEE Conference on Computational Intelligence and
Games [29].

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korean government
(MSIP) (2013 R1A2A2A01016589).

References

[1] K.-J. Kim and S.-B. Cho, “Inference of other’s internal neural
models from active observation,” BioSystems, vol. 128, pp. 37–
47, 2015.

[2] C. L. Baker, R. Saxe, and J. B. Tenenbaum, “Action understand-
ing as inverse planning,” Cognition, vol. 113, no. 3, pp. 329–349,
2009.

[3] S. S. Farooq and K.-J. Kim, “Game player modeling,” in Encyclo-
pedia of Computer Graphics and Games, pp. 1–15, Springer, 2016.

[4] G. Kendall, X. Yao, and S. Y. Chong, The Iterated Prisoners’
Dilemma: 20 Years on, World Scientific Publishing, River Edge,
NJ, USA, 2007.

[5] M. Gaudesi, E. Piccolo, G. Squillero, and A. Tonda, “TURAN:
evolving non-deterministic players for the iterated prisoner’s
dilemma,” in Proceedings of the IEEE Congress on Evolutionary
Computation (CEC ’14), pp. 21–27, Beijing, China, July 2014.

[6] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical
Machine Learning Tools and Techniques, Elsevier, Philadelphia,
Pa, USA, 2011.

[7] R. B.Marimont andM. B. Shapiro, “Nearest neighbour searches
and the curse of dimensionality,” IMA Journal of Applied
Mathematics, vol. 24, no. 1, pp. 59–70, 1979.

[8] B. Settles, Active Learning Literature Survey, University of
Wisconsin-Madison, 2010.

[9] H. S. Seung, M. Opper, and H. Sompolinsky, “Query by
committee,” in Proceedings of the 5th Annual Workshop on
Computational Learning Theory, pp. 287–294, New York, NY,
USA, July 1992.

[10] J. C. Bongard and H. Lipson, “Nonlinear system identification
using coevolution of models and tests,” IEEE Transactions on
Evolutionary Computation, vol. 9, no. 4, pp. 361–384, 2005.

[11] J. M. Houston, J. Kinnie, B. Lupo, C. Terry, and S. S. Ho,
“Competitiveness and conflict behavior in simulation of a social
dilemma,” Psychological Reports, vol. 86, no. 3, pp. 1219–1225,
2000.

[12] M. Hemesath, “Cooperate or defect? Russian and American
student in a prisoners dilemma,”Comparative Economic Studies,
vol. 176, pp. 83–93, 1994.

[13] R. Axelrod andW.D.Hamilton, “The evolution of cooperation,”
Science, vol. 211, no. 4489, pp. 1390–1396, 1981.

[14] M. Nowak and K. Sigmund, “A strategy of win-stay, lose-shift
that outperforms tit-for-tat in the Prisoner’s Dilemma game,”
Nature, vol. 364, no. 6432, pp. 56–58, 1993.

[15] R. Axelrod, “The evolution of strategies in the iterated prisoner’s
dilemma,” in Genetic Algorithms and Simulated Annealing, L.
Davis, Ed., pp. 32–41, Morgan Kaufmann Publishers, London,
UK, 1987.

[16] D. B. Fogel, “Evolving behaviors in the iterated prisoner’s
dilemma,” Evolutionary Computation, vol. 1, no. 1, pp. 77–97,
1993.

[17] B. Beaufils, J.-P. Delahaye, and P. Mathieu, “Our meeting with
gradual, a good strategy for the iterated prisoner’s dilemma,” in
Proceedings of the 5th International Workshop on the Synthesis
and Simulation of Living Systems, pp. 202–209, Nara, Japan, July
1997.

[18] D. Van Bragt, C. Van Kemenade, and H. La Poutré, “The
influence of evolutionary selection schemes on the iterated
prisoner’s dilemma,” Computational Economics, vol. 17, no. 2-3,
pp. 253–263, 2001.

[19] D. Jang, P. A.Whigham, andG.Dick, “On evolving fixed pattern
strategies for Iterated Prisoner’s Dilemma,” in Proceedings of the
27th Australasian Conference on Computer Science (ACSC ’04),
vol. 26, pp. 241–247, Dunedin, New Zealand, January 2004.

[20] D. Ashlock, E.-Y. Kim, and N. Leahy, “Understanding rep-
resentational sensitivity in the iterated prisoner’s dilemma
with fingerprints,” IEEE Transactions on Systems, Man and
Cybernetics, Part C, vol. 36, no. 4, pp. 464–475, 2006.

[21] H. Ishibuchi, H. Ohyanagi, and Y. Nojima, “Evolution of strate-
gies with different representation schemes in a spatial iterated
prisoner’s dilemma game,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 3, no. 1, pp. 67–82, 2011.

Computational Intelligence and Neuroscience 13

[22] J. Li, P. Hingston, and G. Kendall, “Engineering design of
strategies for winning iterated prisoner’s dilemma competi-
tions,” IEEE Transactions on Computational Intelligence and AI
in Games, vol. 3, no. 4, pp. 348–360, 2011.

[23] M. Gaudesi, E. Piccolo, G. Squillero, and A. Tonda, “Exploiting
evolutionary modeling to prevail in iterated prisoner’s dilemma
tournaments,” IEEE Transactions on Computational Intelligence
and AI in Games, 2015.

[24] D. D. Lewis andW. A. Gale, “A sequential algorithm for training
text classifiers,” in SIGIR ’94: Proceedings of the Seventeenth
Annual International ACM-SIGIR Conference on Research and
Development in Information Retrieval, organised by Dublin City
University, pp. 3–12, Springer, London, UK, 1994.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort et al., “Scikit-learn:
machine learning in python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[26] C. E. Shannon, “Amathematical theory of communication,”The
Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[27] J. Wu and R. Axelrod, “How to cope with noise in the iterated
prisoner’s dilemma,” Journal of Conflict Resolution, vol. 39, no.
1, pp. 183–189, 1995.

[28] J. Togelius, N. Shaker, and G. Y. Yannakakis, “Active player
modeling,” in Proceedings of the 9th International Conference on
the Foundations of Digital Games (FDG ’14), April 2014.

[29] H. Park and K.-J. Kim, “Opponent modeling with incremental
active learning: a case study of iterative prisoner’s dilemma,”
in Proceedings of the IEEE Conference on Computational Intelli-
gence in Games (CIG ’13), pp. 1–2, Niagara Falls, Canada, August
2013.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

