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Abstract Bayesian networks (BNs) can be easily refined
(or learn) using data given prior knowledge about a chang-
ing environment. Furthermore, by exploring multiple diverse
BNs in parallel, it is expected that an intelligent system
may adapt quickly to changes in the environment, result-
ing in robust prediction. Recently, there have been attempts
to design BN structures using evolutionary algorithms; how-
ever, most of these have used only the fittest solution from
the final generation. Because it is difficult to combine all of
the important factors into a single evaluation function, the
solution is often biased and of limited adaptability. Here we
describe a method of generating diverse BN structures via
speciation and selective combination for adaptive prediction.
Experiments using the seven benchmark networks show that
the proposed method can result in improved accuracy in han-
dling uncertainty by exploiting ensembles of BNs evolved by
speciation.
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1 Introduction

Bayesian networks (BNs) are a commonly used approach to
dealwith uncertainty, and represent joint probability distribu-
tions of a domain. BNs and the associated schemes constitute
a probabilistic framework for reasoningwith uncertainty, and
in recent years have gained popularity in the field of artifi-
cial intelligence Barber (2012). A BN is a directed acyclic
graph (DAG), where the nodes are random variables and the
lack of arcs specifies conditional independence between vari-
ables. BNs are typically constructed manually by experts or
learned from data (Shen 2009; Koller and Friedman 2009).

It is not straightforward to determine the BN that best
reflects a particular problem from a database of cases because
of the large number of possible DAG structures, given even a
small number of nodes to connect (Daly et al. 2011; Gamez
et al. 2011). Consequently, there have been a number of
reports of heuristic search techniques to identify goodmodels
(Gamez et al. 2011; Cooper and Herskovits 1992). Recently,
methods to design BN structures using evolutionary algo-
rithms have appeared (Larranaga et al. 2013); however, these
have mostly used only the fittest solution in the final gener-
ation (Larranaga et al. 1996a, b; Wong et al. 1999).

The rationale that combining multiple diverse models can
perform better than a single model is based on evidence
from ensemble research (Luo et al. 2011; Peng et al. 2011).
Evolutionary computation is suitable for generating multiple
models because it is a population-based search method (Kim
andCho2012). Standard genetic algorithms, however, tend to
generate solutions that are not very diverse because of genetic
drift, and there is little benefit from the combination of the
similar models (Kim and Mckay 2012). Evolving multiple
diverse solutions using speciation techniques can enhance
the diversity of a population, and form better ensembles than
using standard genetic algorithms (Kim et al. 2011). There

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-015-1841-z&domain=pdf


1066 K.-J. Kim, S.-B. Cho

Fig. 1 The motivation behind this work. BNs are useful tools to rep-
resent uncertain knowledge; however, they can be difficult to construct.
The situation becomes worse if multiple BNs are required. This moti-

vates the BN designer to use an automated algorithm to devise multiple
Bayesian networks using data

have been some reports of evolving multiple neural networks
using speciation techniques and combining them to achieve
improved performance (Kim and Cho 2005, 2008). These
works focused on ensembles of diverse evolutionary neural
networks for classification problems.

In this work, we evolvemultiple evolutionary BNs to form
a favorable predictive model, as shown in Fig. 1. Some of the
evolved BNs may be expected to exhibit abnormal behavior;
however, other BNs may compensate for these shortcomings
by providing a correct prediction. In our learning procedure,
densely populated areas are penalized for overpopulation,
and candidates in less populated spaces generate more off-
spring in the subsequent generation. In this manner, the
overall population diversity is maintained during the evo-
lution. Following learning, ensemble members are selected
from the pool of BNs in the final generation. An ensemble of
the members generates a consensus for several target nodes
for new input data.

There have been relatively few reports of the construc-
tion of ensembles of BNs. Here we investigate ensembles of
Bayesian networks with several different evolutionary algo-
rithms and heuristics. The use of “expert-style” ensembles
(i.e., modular BNs) is shown to be effective in BN ensem-
bles (Hwang and Cho 2009). Here, the aim was to develop a
framework to build an ensemble of BNs. Because the model
is somewhat different from other classification algorithms,
it is beneficial to propose guidelines to build the ensembles
using efficient techniques. We combine evolutionary com-
putation with simple heuristic ensemble search techniques.
The results show that the framework is effective in predicting
diagnostic nodes.

Themethodwas evaluated in terms of the prediction accu-
racy rather than structural similarity, which has been widely
used (Larranaga et al. 1996a). This is because it is not easy to
define the structural similarity between a single network and
an ensemble of networks. The proposed method was com-

pared with standard genetic algorithms and the greedy-style
K2 algorithm (Cooper and Herskovits 1992).

The remainder of the paper is organized as follows. Sec-
tion 2 describes the background, including research into
evolutionary BNs. Section 3 describes evolutionary learning
with speciation, and the formation of selective ensembles.
Section 4 describes the experimental results and provides
some analysis.

2 Background

2.1 Bayesian networks

BNs can be used for inference and representation of an envi-
ronment in the presence of uncertain information (Barber
2012). The nodes of aBN represent randomvariables, and the
lack of arcs represents the conditional independence between
variables. In addition to the network structure, the conditional
probability distribution of the nodes must be specified. The
structure is typically either designed by experts or learned
from data. Given observed data, the probability of the state
of unknowndiagnostic nodes can be computed using an infer-
ence algorithm.

We use 〈B, θB〉 to denote a BN with a structure B and
associated conditional probabilities θB . P〈B, θB〉 denotes
the joint probability distribution of all the variables of this
network. ABN is a DAG B = (V, E),where the set of nodes
V = {x1, x2, ..., xn} represents the domain variables and
E provides information on conditional independence. For
each variable xi ∈ V , the conditional probability distribution
is P(xi |Pa(xi )), where Pa(xi ) represents the parent set of
variable xi , i.e.,

P〈B, θB〉 = P(x1, x2, ..., xn) =
n∏

i=1

P(xi |Pa(xi )) (1)
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2.2 Learning Bayesian structures using evolutionary
computation

Evolutionary computation is useful for global searches
because it maintains a large population of candidates by
exploring a search space using genetic operators (i.e., muta-
tion and crossover) (Goldberg 2008). However, it also suffers
from premature convergence or genetic drift due to the dom-
inance of super individuals (i.e., the fittest solution of an
early generation) and requires additional techniques to main-
tain the diversity of a population (Rogers and Prugel-Bennett
1999).

One important aspect of learning with BNs using data
is the scoring metric to evaluate the goodness of a given
candidate network for the database, and applying a search
procedure to explore the set of candidate networks. Because
learningwithBNs is, in general, anNP-hard problem (Chick-
ering et al. 1994), exact methods are not feasible (Heckerman
2008). Recently, however, there have been a number of
reports of evolutionary computation as a search heuristic for
this problem, as listed in Table 1.

Wong et al. (2004) used a cooperative co-evolutionary
genetic algorithm (GA) to create BNs with a learned struc-
ture. They transformed the learning of BNs into a number
of sub-problems, and combined the solutions from sub-
populations. Although they considered speciation in the
learning, the final outcome was not an ensemble of BNs. Li
et al. (2005) applied speciation based on crowding to evolu-

tionary programming for learnedBN structures; however, the
main purpose of this research was to avoid premature con-
vergence, rather than search ensembles. Kim et al. (2005)
applied fitness sharing to the ASIA network benchmark-
ing problem, and Muruzabal and Cotta (2007) examined
a number of evolutionary programming algorithms for BN
induction problems.

2.3 Ensemble Bayesian networks

There have been a number of reports of combining multiple
BNs that have focused on learning for classification, includ-
ing speaker identification and protein secondary structure
prediction (Robles et al. 2004), as well as regression, includ-
ing estimation of user preferences (Feng et al. 2014), and
modeling complex interactions, including regulatory path-
ways, and context awareness (Hwang and Cho 2009).

Su and Khoshgoftaar (2008) applied multiple Bayesian
networks to collaborative filtering (CF) tasks in real-world
multi-class CF data. Garg et al. (2003) developed a super-
vised learning framework for BNs, which was based on the
AdaBoost algorithm of Schapire and Freund. Their frame-
work covered static and dynamic BNs, with both discrete
and continuous states. They tested the framework with a
novel multimodal human–computer interaction (HCI) appli-
cation, i.e., a speech-based command and control interface
for a smart kiosk.

Table 1 Summary of research into evolutionary BNs

References Representation Type of EA Score metric Ensemble Dataset

Myers et al.
(1999)

Connection matrix GA K2 Metric – ASIA

Li et al. (2005) DAG EP MDL – ALARM

Wong et al.
(2004)

Connection matrix CCGA MDL – ALARM, PRINTD

Wong et al.
(1999)

DAG EP MDL – ALARM, PRINTD

Larranaga et al.
(1996b)

Variable order list GA K2 Metric – ALARM

Larranaga et al.
(1996a)

Connection matrix GA K2 metric – ASIA, ALARM

Kim et al. (2005) Connection matrix +
variable order

GA, FSGA DPSM Selective
ensemble
(clustering)

ASIA

The proposed
method

Connection matrix GA, FSGA, DCGA K2 metric Selective
ensemble
(50C3, Greedy,
and Expert)

Cancer, earthquake,
survey, ASIA,
insurance, water,
ALARM

In the evolutionary algorithm, each BN is encoded as a matrix, list, or graph. There are several types of evolutionary algorithm, including GAs and
EP. The choice of algorithm affects the implementation of the evolutionary BN
DPSM Dirichlet prior score metric, MDL minimum description length, K2 Metric Bayesian–Dirichlet score with uniform priors, EA evolutionary
algorithm, CCGA cooperative co-evolutionary genetic algorithm, EP evolutionary programming, FSGA fitness sharing genetic algorithm, DCGA
deterministic crowding genetic algorithm
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Fig. 2 An overview of the proposed method. Speciation helps main-
tain the diversity of the population in the evolutionary optimization.
The next step is to train the conditional probability table (CPT) of the

networks. A selection of the trained networks are combined to produce
the final inference

Robles et al. (2004) used three different BN structures:
naïve Bayes, interval estimation naïve Bayes (IENB) and
Pazzani’s model of joining attributes in naïve Bayes to build
level-1 classifiers in a stacked generalization scheme. With
that scheme, a number of classifier layerswere designed from
part of a global multi-classifier, where the upper layer clas-
sifiers receive class predicted from the previous layer as the
input. The predictive accuracy was found to outperform the
best secondary structure predictors by 1.21 % on average. Li
et al. (2008) proposed a method of BN combination without
loss of any information, and freedom of datasets from the
graphical characterization of global models. Their approach
was a kind of structural combination of multiple local mod-
els, resulting in a global model.

Pena et al. (2004) trained a diverse set of BN models,
and isolated recurring features from multiple locally opti-
mal models. In the work, their goal was to assist the user in
interpreting theBayesian networkmodels. They ran k-greedy
equivalence search repeatedly, extracted features from them,
and evaluated confidence of features for users. Although their
workwas based onmultiple Bayesian networks, they focused
on the interpretation of models for user instead of prediction.

Feng et al. (2014) proposed a method to combine multi-
ple BNs and carried out a theoretical analysis showing the
distinctive advantage of this combination. In addition, the
combination approach was applied to recommendation sys-
tems, bank direct marketing, and disease diagnosis. Hu and
Wang (2013) found that there were a large number of BN
learning algorithms; however, the accuracy of these was poor
because of a lack of sufficient microarray data. They pro-
posed to combine BNs from relevant literature and learning
from microarray data. Hwang and Cho (2009) proposed a
design for a very complex BN from modularized BNs using

life-log data. They constructed a BN with 588 arcs and 462
nodes using 39 designed BNs.

3 Method

The proposed algorithm is composed of two stages: evolu-
tionary learning with speciation, and the selective combina-
tion of the resulting BNs. Figure 2 shows an illustration of the
algorithm. The purpose of the first stage is to evolve multiple
BNs, which should ideally have differing characteristics. In
this work, speciation algorithms that promote the diversity
of a population were applied to avoid genetic drift (i.e., pre-
mature convergence of the solutions, which may occur with
a conventional GA).

Because the evolutionary algorithm produces a popula-
tion of solutions following learning, it provides us with a
pool of candidate BNs. The second stage combines a subset
of the evolved BNs. Instead of using all of the BNs, some
are selectively chosen for the final combination, because
a combination of subsets provides favorable performance
compared with an ensemble of all members (Zhou 2012).
The goodness (prediction accuracy) of candidate ensembles
is measured by the performance on the training datasets in
the ensemble search procedure, and the optimal ensemble is
determined based on test datasets.

3.1 Overview

The structure of a BN is encoded into a matrix and optimized
using GAs. It is a population-based search that maintains
multiple solutions (i.e., multiple structures of the BNs).
Because it provides a population of candidate BNs, it is
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Evaluation using Scoring Metric

Selection (Survival of the Fittest)

Generation>Max
No

Initialization of BN structures

Genetic Operations
(Crossover and mutations 

on BN structures)

Edge Removal
(Limit the Number of Parents for Each Node)

Fig. 3 The BN search process using a GA. The purpose of the algo-
rithm is to optimize the topology of the BN for the training data.
Selection, crossover, and mutation operators are used, and the edge
removal operator is used to limit the number of parents for each node

promising to combine subsets to achieve accurate predic-
tion. If all the BNs in the population were identical, it is not
expected that any synergism would result; however, because
GAs suffer from the phenomenon of genetic drift (Kim and
Mckay 2012), the population may be dominated by a sin-
gle premature solution in the early stages of its evolution.
Speciation helps maintain the diversity of a population by
penalizing highly populated regions of the evolutionary space
by discarding similar candidates from the population (Kim
et al. 2011).

Figure 3 shows a flowchart describing the evolution of the
BNs. An initial population of BN structures is randomly cre-
ated, and the fitness (goodness) of the structure is evaluated
using scoring metrics based on the training data. During the
selection stage, each network has a different selection pres-
sure (chance of selection),which is proportional to thefitness.
Several genetic operators are applied to generate a new pop-
ulation of candidates by randomly exchanging a proportion
of structures or changing some edges. The number of parents
for each node is limited to a pre-defined maximum to avoid
excessively long evaluation times. An edge removal operator
was used to delete edges with a local optimizer (Larranaga
et al. 1996a). The final BNs become a new population for the
subsequent generation. Evaluation, selection, genetic opera-
tion, and repair are repeated until the maximum number of
generations is reached.

3.2 Representation

Weused a connectionmatrix representation,whichmaintains
the connectivity information between two nodes (Larranaga
et al. 1996a). In this representation, a BN structure is rep-
resented by an n × n connectivity matrix C . Elements of

Fig. 4 An example connection matrix representation of a BN. Each
matrix encodes a BN topology, and the values are optimized using the
evolutionary algorithm. Because the value of an element c31 is ‘1,’ there
is an arc from x1 to x3. The number of edges in the network is equal to
the number of elements in the matrix that are equal to one

the matrix C that are equal to one are used to represent the
existence of arcs between variables, i.e.,

ci j=

{
1 if there is an arc between xi and x j (i > j),
0 otherwise.

(2)

Figure 4 shows an example of decoding a BN using a connec-
tivity matrix. The connection matrix represents the existence
of arc among variables. Our approach is to construct the
network using training data, and is based on data-driven
induction of the BNs. The algorithm optimizes a subset of
arcs that produce the maximum “Bayesian score metric”
given the training data. It starts by randomly creating BNs,
but gradually improves the topology using the GAs.

3.3 Evaluation

During evaluation, the fitness of each BN is evaluated using
theBayesian–Dirichlet scorewith uniformpriors (K2metric)
with training data (Cooper and Herskovits 1992) as follows.

log(P(B, D)) =
n∑

i=1

qi∑

j=1

(
log(

(ri − 1)!
(Ni j + ri − 1)!

)

+
ri∑

k=1

log(Ni jk !))Ni j =
ri∑

k=1

Ni jk . (3)

where ri is the number of possible values of variable xi , qi
is the number of possible configurations (instantiations) for
the variables in Pa(xi ), and Ni jk is the number of cases in
the training data in which variable xi has its kth value and
Pa(xi ) is instantiated to the j th value. The factorials required
to compute the K2 metric have been pre-computed and have
been stored in an array (from 0 to (m+r−1)!) wherem is the
number of cases in the training data. The scoring metric is in
the range −∞ to +∞, and a large positive value corresponds
to good performance. However, it is usually negative value
because of the logarithmic summation.
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3.4 Genetic operations

Genetic operations include crossover and mutation (Gold-
berg 2008). The n × n matrix can be transformed into a
one-dimensional (1D) array of size n2. For example, the
matrix in Figure 4 is converted into 00000 00000 10000
01000 11010 by concatenating the horizontal vectors of the
matrix, and each segment with n bits encodes the parents of
the node so that n consecutive bits encode the data of the
child nodes for each node. (We use horizontal vector con-
catenation, although an alternative is to transform the matrix
into a 1D array by concatenating the vertical vectors of the
matrix.)

We use a simple one-point crossover for the 1D array rep-
resentation. From two parents chosen at random, parts of
the genetic information are exchanged using the crossover
operation. Crossover and mutation are applied sequentially.
There are two types of mutation: arc addition and arc dele-
tion. During mutation, an entry for the matrix is chosen at
random, and a different type of mutation is applied depend-
ing on the existence of an edge. If there is a link between
two nodes, the arc is deleted, whereas if there is no link,
an arc is created. The probability of mutation is relatively
low. Based on the prior knowledge of the variable order, the
crossover and mutation were designed not to produce the
cases that are not consistent with the topological order of
variables.

The number of parents for each node is a crucial factor
affecting the evaluation time, and the large number of par-
ents can form a bottleneck in the evolution. The number of
parents for each node was limited to a predefined maximum.
If the genetic operations result in an individual with a num-
ber of parents that is larger than the upper bound u, we must
eliminate (an edge removal operator) a subset of parents.
Because the performance of random subset selection is poor,
we adopted a local optimizer to choose the best subsets to
retain among the candidates. We choose the best subset of
parents (where the size of the subset is smaller than the max-
imum) based on the K2 metric scores.

3.5 Speciation

We used two representative speciation methods: fitness shar-
ing and deterministic crowding (Goldberg 2008; Mahfoud
1995). During speciation, it is necessary to measure the sim-
ilarity between twoBNs. Initially, the representation (matrix)
of each BN is converted into a 1D array. The Hamming dis-
tance between the two arrays is calculated to describe the
similarity (Note that this considers only the structural simi-
larity).

In the fitness sharing approach, the original fitness of the
candidates is adjusted by considering a penalty for over-
population. The penalty is proportionate to the number of

individuals and the closeness (this is termed the sharing
radius σs). The population of BNs is defined as

{B1, B2, . . . , Bpop_size} (4)

Given that fi is the fitness of an individual Bi and sh(di j )
is a sharing function, the shared fitness fsi is computed as
follows:

fsi = fi
pop_size∑

j=1
sh(di j )

(5)

The sharing function sh(di j ) is computed using the dis-
tance di j , which corresponds to the difference between
individuals Bi and Bj , and is defined as follows. The σs was
calculate based on the equation from Kim and Cho (2008).

sh(di j ) =
{
1 − di j

σs
, 0 ≤ di j < σs

0, di j ≥ σs

di j = Hamming(Bi , Bj )

σs = 1
2×pop_size×(pop_size−1)

pop_size∑
i=1

pop_size∑
j=1,i �= j

di j

(6)

The deterministic crowding GA was proposed by Mah-
foud (1995) and has been widely used in various domains
Kim and Cho (2005). The principle is to use competition
between two similar individuals, whereby only one survives
into the next generation based on the results of the league.
During the shuffling step, the population index of individuals
is randomized so that the first two individuals Bi and Bj gen-
erate twooffspringusing the genetic operations.Wenowhave
four individuals: the twoparents Bi and Bj , and twooffspring
Bi+pop_size and Bj+pop_size. We calculate the Hamming dis-
tance between BNs; if d(Bi ,Bi+pop_size)+d(Bj ,Bj+pop_size)

< d(Bi ,Bj+pop_size)+ d(Bj ,Bi+pop_size), we have two com-
petitions (Bi vs. Bi+pop_si ze and Bj vs. Bj+pop_si ze), and
vice versa. For each competition, only one individual sur-
vives to the next generation based on the fitness. This causes
similar individuals to compete with each other, and increases
the diversity of the population. This procedure is repeated for
the remaining individuals.

3.6 Ensemble search and combination

During this stage, conditional probability tables of the BNs in
the final generation are learned from the training data and the
best ensemble is optimized using the following three heuris-
tics: 50C3 search, greedy search and expert. The 50C3 search
locates the best ensemble exhaustively by enumerating all
possible candidates. Because the search space is potentially
huge, we restrict the size of the ensemble (i.e., the number of
members) to three. In total, there are (pop_size)3 ensemble
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Fig. 5 A pseudo-code
representation of the greedy
ensemble search. Here Bi is the
i th BN. The process starts with
an empty ensemble and
gradually adds BNs to maximize
the performance gain. The
process continues until there is
no further increase in
performance

E={}; // Ensemble 

Temp={}, Best={}; // Temporary Space  

while (1) { 

for (i=0; i< POP_SIZE; i++) { 

Temp=E+{Bi}; 

if (Minimum > Error(Temp)) { Minimum=Error(Temp); Best=Temp; } 

} 

if (E==BEST) break; else E=BEST;  

}

candidates. With the greedy search, the ensemble size is not
fixed. It grows continuously if the new members are added
to minimize the errors, as shown in Fig. 5.

The prediction error on the test data was defined as fol-
lows. Our aim is not classification but, rather, regression to
produce similar outcomes to the original BN.We adopted the
measure from the regression studies in the field of machine
learning., i.e.,

Error =
Samples∑

i=1

×
(
BNestimated(Target|E)i−BNoriginal(Target|Ei)

)2

(7)

where E is evidence. BN represents the probability that is
given by the network.

The expert method assigns one BN for each diagnostic
node based on the performance on training cases. For exam-
ple, if there are NBNs available and M diagnostic nodes, it
calculates the prediction error of each BN for all diagnos-
tic nodes using the training cases. Among the N BNs, only
one BN is assigned to a diagnostic node for the prediction of
unseen cases. The assigned BN is regarded as an “expert” on
the node. As a result, the size of ensemble is dependent on
the assignment of networks because one BN can be assigned
to more than one diagnostic node. The total number of pos-
sible ensembles is NM . In sum, in this algorithm, we select
the best BN for each node based on errors from the training
data, and divide the prediction tasks into a number of small
tasks based on the target diagnostic node, and then assign
a different expert for each BN. Each expert BN is used to
predict the node of test cases.

There are a number of different ways to combine multiple
BNs. For example, it is possible to construct a single BN
from the multiple BNs (topological fusion); however, it is
possible that conflict between the members of the ensemble
may occur when attempting to generate a single complex

model. Furthermore, it is possible that the final model will
contain a large number of nodes and edges, which results in
significant computational expense. In this study, we combine
BNs by averaging the probabilities of each. This approach
allows each network to run in parallel, and requires relatively
little effort in the combination.

4 Results

The benchmark networks were downloaded from several BN
repositories. In this work, we used some real-world networks
(Insurance,Water, andAlarm) created by domain experts.We
generated samples using benchmark networks with GENIE
(GENIE 2015) and manually generated a node ordering
using these benchmark structures (Cooper and Herskovits
1992; Larranaga et al. 1996a). A conditional probability table
(CPT) was created, and learning and probabilistic inference
was implemented using the SMILE C++ library (GENIE
2015). The proposed method was compared with the BN
learning K2 algorithm (Larranaga et al. 1996a; Larranaga
et al. 1996b). We focus on learning both the structure and
CPTs of BNs, and so PC and EM algorithms are not suit-
able for the comparison. The diversity of the population was
measured using the averageHamming distance between indi-
viduals.DCGA terminateswhen the diversity is less than one.
Table 2 lists a summary of the details of this experiment. The
upper bound of the number of states was chosen based on
the model in Ref. Larranaga et al. (1996a). The parameters
of genetic algorithm is as follows. The maximum number of
generation, population size, crossover rate, andmutation rate
are 1000, 50, 0.9, and 0.01, respectively.

Table 3 lists a summary of the results of the learning stage.
The scoring metrics listed in the table are as follows. The
average of fitness is given by

Average = 1

pop_size

pop_size∑

i=1

fi (8)
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Table 2 A description of the parameters for the networks is shown in Fig. 6

Cancer Earthquake Survey Asia Insurance Water Alarm

References Korb and
Nicholson
(2010)

Korb and
Nicholson
(2010)

Scutari and
Denis (2014)

Lauritzen and
Spiegelhalter
(1988)

Binder et al.
(1997)

Jensen et al.
(1989)

Beinlich et al.
(1989)

Variables 5 5 6 8 27 32 37

Number of
target nodes

All nodes 8

Upper bound
u of the
number of
parents

2 4

Number of
training
cases

6000

Number of
test cases

6000

Number of
runs

5 10 5 10

With ALARM, only the diagnostic nodes in the original work were defined as the “target” node. The upper bound u is the maximum number of
parents for each node. The results were averaged based on five runs. The maximum number of generations, population size, crossover rate, and
mutation rate are for the evolutionary algorithm

Table 3 Comparison of the learning algorithms

Benchmark K2 algorithm GA FSGA DCGA

(a) Average of Bayesian scoring metric

Cancer −12,693 −12,696 −12,766 −12,693

Earthquake −2602 −2614 −2617 −2602

Survey −23,618 −23,621 −23,639 −23,618

Asia −13,549 −13,627 −13,709 −13,550

Insurance −80,660 −85,068 −84,699 −80,678

Water −78,050 −79,756 −79,980 −78,052

Alarm −57,635 −61,708 −61,841 −57,698

Average −38,401 −39,870 −39,893 −38,413

(b) Diversity

Cancer 0 0.8 0 0

Earthquake 0 2.2 4.6 0

Survey 0 0.9 7.9 0

Asia 0 5.8 10.6 0

Insurance 0 89.6 90.7 7.9

Water 0 120.5 132.3 85.7

Alarm 0 135.9 143.4 50.4

Average 0 50.8 55.6 20.6

K2 algorithm is a greedy-style learning algorithm, which compares the
Bayesian scoring metric and the diversity of networks in the algorithms

and the diversity by

Diversity = 2

pop_size × (pop_size − 1)

×
pop_size∑

i=1

pop_size∑

j=i+1

d(Bi , Bj ) (9)

The diversity measures normalized distance between all
individuals (Gouvea and Araujo 2010). We find that DCGA
and K2 algorithm gave the highest score in terms of fitness
on the training cases. GA and FSGA scored lower in fitness;
however, the diversity of population was high. The diversity
of DCGAwas zero for the small-sized network but relatively
high in large networks.

Table 4 lists the errors in the ASIA network. With this
network, all ensemble learning algorithms had small errors.
However, the DCGA has no benefit from the ensemble
because diversity of the method is zero in the network. The
FSGA + Expert search was found to perform particularly
well. The FSGA and DCGA speciation ensemble outper-
formed theK2 algorithm andGA ensemble. Statistical t-tests
show that the FSGA + Expert algorithm (10.21 ± 0.45)
outperform the K2 algorithm (17.46 ± 0.0), as well as the
DCGA (12.10 ± 0.0) algorithms with a confidence interval
of 99 %.

Table 5 lists the results of ALARM with test cases.
ALARM is a large network and so it is difficult to learn
using training data; the results show a relatively high error
rate. With this network, the DCGA + Expert combination
exhibited the best results. Unlike the smaller networks, the
ensemble exhibited improved performance compared with
that of the single-network approach. This is because it main-
tains a highly diverse population due to the complexity of
the search space. Statistical t-tests show that the DCGA +
Expert (24.60 ± 0.87) outperformed K2 algorithm (29.29 ±
0.0), GA (198.38 ± 126.43), FSGA (172.60 ± 52.47), and
DCGA (28.88 ± 2.60) with a confidence interval of 99 %.
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Fig. 6 The structures of networks used for benchmarking. a TheASIA
network is a widely used small-scale BN benchmark. b The categoriza-
tion of nodes in theALARMnetwork is fromRef. Beinlich et al. (1989).

Sensory data from the intensive care unit (ICU) are used as inputs to
the measurement node, and the network calculates the probability of
the diagnostic states

The ALARM network combines seven BNs, as shown in
Fig. 7. The individual networks were found to be the best
predictor for some nodes (For example, the BN6 is the best
one for “Anaphylaxis”). It combines some good BNs with a
small number of inaccurate models. Although some of these
BNs (for example, BN4, BN5, and BN6) had slightly higher
error rates than others, it is interesting to note that they were
essential in the ensemble system. For example, although the
BN6 was not good for some nodes, it was highly competitive
in others.

Table 6 shows the error rates of the single and ensem-
ble BNs. It shows that the ensemble outperforms the single
BN on all benchmark networks. In small networks (Cancer,
Earthquake, Survey and Asia), the GA and FSGA ensembles

show the lowest error rates. On the other hand, the DCGA
ensembles always beat other algorithms in large networks
(Insurance, Water, and Alarm). Among the three combina-
tionmethods (Expert, Greedy and 50C3), theExpert approach
shows the lowest errors on most of networks except the
Insurance (Greedy is the best). In sum, it is desirable to
use the SGA + Expert or FSGA + Expert on small net-
works (5–8 nodes) and DCGA + Expert in large networks
(27–37 nodes).

Table 7 shows the results of cross-validation experiments
(fivefold CV). The number of total samples is 12,000 and
each fold has 2400 samples. For each run, the training data
has 9600 samples (fourfolds) and test data has 2400 samples
(onefold). The final error rates show the average of 5 runs.
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Table 4 The error in the test data using ASIA

Target
node

Visit to
Asia

Tuberculousis Smoking Lung
Cancer

Lung cancer
or tuberculosis

Positive
X-ray

Bronchitis Dyspnoea Total
error

Single BN

K2 0.26 0.05 2.66 0.02 0.01 0.06 5.24 9.12 17.46

GA 0.23 0.05 1.71 0.14 0.01 0.15 6.64 6.16 15.13

FSGA 0.23 0.05 1.75 0.05 0.01 0.15 5.51 3.87 11.65

DCGA 0.26 0.05 2.66 0.01 0.01 0.06 5.15 3.87 12.10

GA ensemble

Expert 0.17 0.04 0.86 0.01 0.02 0.06 6.44 6.16 13.79

Greedy 0.17 0.05 1.00 0.14 0.01 0.06 6.40 6.16 14.03

50C3 0.18 0.05 1.10 0.14 0.01 0.06 6.42 6.16 14.15

FSGA ensemble

Expert 0.16 0.04 0.77 0.04 0.02 0.06 5.22 3.87 10.21

Greedy 0.19 0.05 1.18 0.03 0.01 0.16 5.26 3.87 10.78

50C3 0.20 0.05 1.14 0.03 0.01 0.17 5.34 3.87 10.84

DCGA ensemble

Expert 0.26 0.05 2.66 0.01 0.01 0.06 5.15 3.87 12.10

Greedy 0.26 0.05 2.66 0.01 0.01 0.06 5.15 3.87 12.10

50C3 0.26 0.05 2.66 0.01 0.01 0.06 5.15 3.87 12.10

Values in italics show the the lowest error of each column
Here we compare the prediction error of several algorithms for each target node. Three different types of evolutionary algorithm were used
(GA, FSGA, and DCGA), and for each algorithm, three different ensemble selection methods were tested, i.e., combinatorial, greedy-style, and
expert-style. K2 algorithm is a greedy-style topology search method
The “Single BN” with the best K2 metric was chosen from the GA, FSGA, and DCGA, respectively

Table 5 The error in the test data using ALARM

Target
node

Anaphylaxis Intubation
status

Kinked
ventilation
tube

Disconnected
ventilation
tube

Hypovolemia Left-
ventricular
failure

Insufficient
anesthesia
or analgesia

Pulmonary
embolus

Total
error

Single BN

K2 0.57 8.57 12.19 1.51 1.29 0.01 4.90 0.04 29.29

GA 3.93 55.80 50.36 8.42 5.05 12.86 23.21 38.72 198.38

FSGA 3.85 21.18 41.42 13.33 5.60 10.90 22.66 53.63 172.60

DCGA 1.36 9.31 7.66 2.51 1.78 0.45 5.49 0.29 28.88

GA ensemble

Expert 1.15 44.94 14.51 4.62 2.16 3.93 11.48 7.03 89.86

Greedy 2.03 51.91 18.81 6.26 4.67 7.94 14.55 17.57 123.77

50C3 2.45 49.05 22.16 5.90 5.20 7.40 15.83 20.36 128.40

FSGA ensemble

Expert 1.14 17.82 9.29 3.60 2.01 1.23 8.30 8.43 51.85

Greedy 2.78 19.56 13.35 8.96 2.98 6.17 12.95 22.15 88.94

50C3 3.08 22.85 13.20 9.58 3.10 7.47 14.37 21.28 94.97

DCGA ensemble

Expert 0.06 8.38 7.36 2.33 1.26 0.22 4.90 0.05 24.60

Greedy 0.28 8.58 7.52 1.70 1.23 0.27 5.07 0.19 24.88

50C3 0.32 8.58 7.56 1.72 1.29 0.30 5.14 0.32 25.26

Values in italics show the the lowest error of each column
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Fig. 7 An analysis of the members of the best ensemble for ALARM
(DCGA+Expert). a The errors of the members in the ensemble for each
node. b The sum of the errors for each target node of the members and
the corresponding ensemble

In the results, they are similar to the one by 50 % training
and 50 % testing experiments. In small networks, the SGA +
Expert or FSGA+Expert are good choice. In large networks,
the DCGA + Expert is recommended.

Figure 8 shows a comparison of the three heuristic ensem-
ble search methods, i.e., Greedy, 50C3 search and Expert. It
shows that the expert-style performed better than the 50C3

and greedy-style approaches. The analysis of ensemble size
shows that the expert approach has more members than the
greedy-style ensembles (Fig. 9). The 50C3 ensembles always
have three members. The results show that the ensemble
size is related to the number of nodes in networks. Usually,
the large networks require more members in the ensem-
bles.

The time for the calculation is an important factor in
choosing a learning algorithm. Because the evolutionary
algorithm is a population-basedmethod, it takes considerably
longer than the greedy-style learning K2 algorithm, because
it uses a local greedy search. Figure 10 shows a summary of
the time for the calculations using GA. For small networks, it
just takes 1–5 min to find the ensembles. For large networks,
it takes about 2–4 h to complete all the process in the ensem-
ble learning. One-half of time is used to train the Bayesian
networks using evolutionary algorithms and the preparation
stage of ensemble consumes another half.

The proposed algorithm consists of two steps: evolution-
ary learning (EL) and ensemble search (ES) steps. In the
EL step, the calculation of the K2 metric for each BN in the
population is themost time consuming part and the time com-
plexity is proportional to the population size and the number
of training cases. Because the K2 metric considers only the
structure of BN, the conditional probability tables are not
trained during the EL step. In terms of memory complexity,
it is possible to reduce substantial memory requirement by
storing only the non-zero entries. In the ES step, the time
complexity is highly dependent on the “ensemble search
strategy.” At first, it trains the conditional probability table
of all the individuals in the last generation. The ensemble
search algorithm evaluates the goodness of each candidate,
and the total time is dependent on the number of ensemble
candidates and the number of training cases.

Table 8 summarizes the errors of the single and ensem-
ble approaches for ASIA network with different population
sizes. It shows that the error rate is very high if the popu-
lation size is too small except DCGA. When the population
size is 50, the GA, FSGA, and DCGA produce results with
relatively low error rate. However, GA is still suffering from
high standard deviation of errors. If the size is doubled, all
three algorithms become stable with low deviation.

In Li et al. (2008) work, their goal was to combine mul-
tiple Bayesian networks to create a global BN. Following
the approach, we tried to combine the topologies of the best
three networks (based on the K2 metric) from the population
of the last generation using three different operators (union,
intersection, and voting). The union operator creates the edge
in the global network if one of the source networks has it. On
the other hand, the intersection operator creates an edge in
the global network, only if all the source networks include the
edge. Finally, the majority voting determines the edge based
on the voting of source networks (Colace et al. 2014). The
results show that the expert method outperforms the topolog-
ical fusion in Asia and Alarm networks. In Alarm network,
the expert method (24.60 ± 0.87) and intersect topological
fusion (24.30 ± 0.51) have no statistically significant differ-
ence. Table 9 summarizes the results on the three combination
methods.
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Table 6 Summary of error rates
on benchmark networks

Networks Cancer Earthquake Survey Asia Insurance Water Alarm

Single BN

K2 1.30 2.48 5.02 17.46 229.46 302.32 29.29

GA 1.30 2.48 5.02 15.13 1062.00 604.12 198.38

FSGA 61.60 2.53 12.06 11.65 1022.12 643.96 172.60

DCGA 1.30 2.48 5.02 12.10 215.28 302.32 28.88

GA ensemble

Expert 1.24 2.39 4.98 13.79 477.64 304.47 89.86

Greedy 1.30 2.53 5.02 14.03 632.08 405.61 123.77

50C3 1.30 2.44 5.02 14.15 672.58 409.70 128.40

FSGA ensemble

Expert 61.60 2.39 5.12 10.21 429.25 328.31 51.85

Greedy 61.60 2.52 5.78 10.78 657.29 412.28 88.94

50C3 61.60 2.47 6.25 10.84 701.85 425.42 94.97

DCGA ensemble

Expert 1.30 2.48 5.02 12.10 215.25 291.64 24.60

Greedy 1.30 2.48 5.02 12.10 212.95 292.46 24.88

50C3 1.30 2.48 5.02 12.10 213.91 292.45 25.26

Values in italics show the the lowest error of each column

Table 7 Summary of
cross-validation results (fivefold
CV) on benchmark networks

Networks Cancer Earthquake Survey Asia Water Alarm (population
size = 20)

Single BN

K2 1.02 0.44 1.23 1.66 38.07 6.85

GA 1.02 0.44 1.23 1.79 191.26 95.46

FSGA 1.03 0.46 28.77 91.73 811.27 303.08

DCGA 1.05 0.48 1.31 1.63 37.27 7.03

GA ensemble

Expert 1.02 0.44 1.23 1.14 91.79 69.93

Greedy 1.02 0.44 1.23 1.16 129.71 76.52

50C3 1.02 0.44 1.23 1.24 133.60 78.06

FSGA ensemble

Expert 1.00 0.44 28.77 43.37 556.59 126.68

Greedy 1.02 0.43 28.77 69.45 694.48 176.88

50C3 1.03 0.43 28.77 92.26 724.18 195.50

DCGA ensemble

Expert 1.05 0.48 1.31 1.63 36.42 6.55

Greedy 1.05 0.48 1.31 1.63 36.31 6.66

50C3 1.05 0.48 1.31 1.63 36.53 6.70

Values in italics show the the lowest error of each column

5 Conclusion

Speciation has been successfully applied to evolve multiple
models and ensembles (Kim and Cho 2008; Kim and Cho
2005). Here, we applied these concepts to BNs. We com-
pared the evolutionary algorithms GA, FSGA, and DCGA
using three ensemble search heuristics, i.e., Expert, Greedy
and 50C3, with the seven benchmarking networks (small

and large networks). The results show that the ensemble
approach was more effective for generating predictive BNs
than conventional greedy-style searches, such as K2, as well
as single-network approaches.

In the evolutionary process, our contribution is to use spe-
ciation for the BN learning. Because the speciation focuses
on both of accuracy and the diversity of population, it is not
effective to find the fittest solution. However, the next ensem-
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Fig. 8 A comparison of three heuristics for ensemble search summed
over the three evolutionary algorithms. For each dataset, the errors in
the three evolutionary algorithms were summed

Fig. 9 The ensemble size (i.e., the number of BNs in the final ensem-
ble) obtained using the expert and greedy search. The combinatorial
heuristic assumes that an ensemble has threemembers; however, there is
no restriction on the greedy-style heuristic. If the addition of newmem-
bers is beneficial, it will continuously increase the number of members
in the ensemble

ble search of our algorithm can be beneficial from the diverse
solutions. Not all ensemble formationmethods enumerate all
the possible ensembles but only the 50C3 technique does that.

Fig. 10 The time for the calculations using a machine with an Intel i7
processor running at 3.20 GHz

The “expert” and “greedy” approaches attempt to select the
subset of ensembles with less amount of time. In small-sized
networks, the two approaches are about two times faster than
the exhaustive one. However, in middle-sized networks, their
time gap is not significant because training times is relatively
big. Although the training time requires about 2–4 h for the
middle-sized networks, they can be reduced with the paral-
lelization techniques. If you apply the algorithm to different
domains, you need to spend several hours depending on the
size of networks to train the ensemble model. However, after
the training, you do not need much time to get answers on
unseen cases. It only depends on the inference algorithms’
speed.

The time required to learn and find the ensembles was
significant. There is considerable scope, however, to develop
computational methods to reduce this time, such as multi-
threaded programming, cashing, and approximate inference
approaches. It is important to reduce the time required in
the ensemble learning and the parallelization of evolutionary
algorithms can be beneficial. The population-based search
can be parallelized by distributing the tasks into multiple
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Table 8 The impact of
population size (Asia network)

ASIA network POP_SIZE =10 POP_SIZE=50 POP_SIZE = 100

Single BN

GA 102.77 ± 145.37 19.25 ± 14.00 12.33 ± 0.47

FSGA 2325.93 ± 1537.74 10.84 ± 0.84 11.57 ± 1.01

DCGA 12.10 ± 0.00 12.10 ± 0.00 12.10 ± 0.00

GA ensemble

Expert 102.77 ± 145.37 17.02 ± 13.98 10.24 ± 0.76

Greedy 102.77 ± 145.37 17.48 ± 14.59 10.54 ± 0.78

50C3 102.77 ± 145.37 17.55 ± 14.66 10.54 ± 0.77

FSGA ensemble

Expert 2325.93 ± 1537.74 10.15 ± 0.60 10.07 ± 0.75

Greedy 2325.93 ± 1537.74 10.76 ± 0.79 10.74 ± 0.75

50C3 2325.93 ± 1537.74 10.74 ± 0.71 17.50 ± 8.17

DCGA ensemble

Expert 12.10 ± 0.00 12.10 ± 0.00 12.10 ± 0.00

Greedy 12.10 ± 0.00 12.10 ± 0.00 12.10 ± 0.00

50C3 12.10 ± 0.00 12.10 ± 0.00 12.10 ± 0.00

Average 813.6 19.25 11.77

Italic values show the lowest error of each column

Table 9 The results with
topological fusion operators
(ASIA Network, the
combination of three best (based
on K2 metric) networks from
the population of the last
generation)

Expert method Topological fusion

Union Intersect Majority voting
Colace et al. (2014)

Asia

GA 13.79 ± 10.41 15.20 ± 11.14 14.45 ± 11.52 14.61 ± 11.45

FSGA 10.21 ± 0.45 14.54 ± 2.70 27.93 ± 53.83 12.41 ± 1.55

DCGA 12.10 ± 0.00 12.10 ± 0.00 12.10 ± 0.00 12.10 ± 0.00

Alarm

GA 89.86 ± 43.95 229.49 ± 119.38 289.80 ± 139.92 220.95 ± 161.88

FSGA 51.85 ± 17.44 190.99 ± 59.80 255.11 ± 152.25 167.20 ± 49.08

DCGA 24.60 ± 0.87 41.55 ± 3.74 24.30 ± 0.51 25.69 ± 1.07

Italic values show the lowest error of each column

threads (processes) on single or multiple machines. Paral-
lelization has been used to expedite learning with BNs for
applications in Big Data (Schadt et al. 2010) and large-scale
networks (Vafaee 2014). In addition, instead of building a
single BN from the large dataset, it is desirable to use distrib-
uted datasets with manageable sizes to learn using multiple
BNs; “distributed Bayesian networks” (Na and Yang 2010)
is an example of such an approach. We used the Bayesian
score metrics to evaluate the goodness of the BN given the
training samples. The time for the calculations increases
exponentially with the number of samples because the met-
ric enumerates all possible states to count their appearance
in the dataset.

We used the Hamming distance to measure the similar-
ity between BN structures; however, this distance measure

is based only on the structure of the BNs. Furthermore, two
BNs in the same class may have significant structural differ-
ences, while they can actually represent the same thing. A
straightforward solution is to incorporate CPT into BNs and
perform inferences on training datasets using this distance
measurement. This will further increase the computational
expense, and it is therefore desirable to develop more effi-
cient methods to measure the similarity of BNs.
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