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a b s t r a c t 

Unlike the situation with board games, artificial intelligence (AI) for real-time strategy (RTS) games usu- 

ally suffers from numerous possible future outcomes because the state of the game is continuously 

changing in real time. Furthermore, AI is also required to be able to handle the increased complexity 

within a small amount of time. This constraint makes it difficult to build AI for RTS games with cur- 

rent state-of-the art intelligence techniques. A human player, on the other hand, is proficient in dealing 

with this level of complexity, making him a better game player than AI bots. Human players are espe- 

cially good at controlling many units at the same time. It is hard to explain the micro-level control skills 

needed with only a few rules programmed into the bots. The design of micromanagement skills is one 

of the most difficult parts in the StarCraft AI design because it must be able to handle different combi- 

nations of units, army size, and unit placement. The unit control skills can have a big effect on the final 

outcome of a full game in professional player matches. For StarCraft AI competitions, they employed a 

relatively simple scripted AI to implement the unit control strategy. However, it is difficult to generate 

cooperative behavior using the simple AI strategies. Although there has been a few research done on mi- 

cromanagement skills, it is still a challenging problem to design human-like high-level control skills. In 

this paper, we proposed the use of imitation learning based on human replays and influence map rep- 

resentation. In this approach, we extracted huge numbers of cases from the replays of experts and used 

them to determine the actions of units in the current game case. This was done without using any hand- 

coded rules. Because this approach is data-driven, it was essential to minimize the case search times. To 

support fast and accurate matching, we chose to use influence maps and data hashing. They allowed the 

imitation system to respond within a small amount time (one frame, 0.042 s). With a very large number 

of cases (up to 50 0,0 0 0 cases), we showed that it is possible to respond competitively in real-time, with 

a high winning percentage in micromanagement scenarios. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In real-time strategy (RTS) game combat, players need to be

able to handle multiple units simultaneously at a micro-level. It

is like juggling several balls at once, and players have to divide

their attention into several on-going sub tasks. Also, the players

only have a limited view of their opponent’s territory. This means

a player must integrate multiple sources of information of varying

uncertainty to make quick decisions. In addition, it is difficult to

control combat units because a player must quickly consider sev-

eral things at once including the arrangement of their units, the

current state of war, and the uncertain strategy and unit location

of the enemy. 
∗ Corresponding author. 

E-mail addresses: ohinsuk@naver.com (I.-S. Oh), chc2212@naver.com (H. Cho), 
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In micromanagement, it is necessary to control individual units

o achieve goals. Because RTS games have many units, it is difficult

o control all of them effectively. Micro-level control includes navi-

ation (path planning) and action (command assignment) for each

nit. The actions include “attack,” “move,” and “stop.” In games

ith professional players, micro-level control skills are among the

ost important factors determining who wins the championship.

n combat, human players minimize damage to their own units and

aximize elimination of opponents’ units. 

The design of micromanagement skills for RTS games is known

o be a challenging problem ( Buro, 2003 ). Computers have been

ery successful in solving some turn-based discrete games with

erfect information such as chess, checkers, and Othello ( Schaeffer,

009 ). However, the search space for RTS games is continuous be-

ause they are real-time, making it difficult to find an optimal ac-

ion based on possible future outcomes. Unlike board games, it is

ot feasible to construct opening and endgame databases. In the

http://dx.doi.org/10.1016/j.eswa.2016.11.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.11.026&domain=pdf
mailto:ohinsuk@naver.com
mailto:chc2212@naver.com
mailto:kimkj@sejong.ac.kr
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ombat stage of an RTS game, the computer has a very limited

apability to understand the game situation, and the best action

equence is highly dependent on several factors. 

RTS game replays are easily downloadable from popular gam-

ng portals, which have 30 0,0 0 0 replays 1 especially for StarCraft. 2 

 replay contains all the information required to reconstruct the

riginal game, as it saves all the actions of the gamers with their

ame states. Like transcripts in Go, the replays have been widely

sed to study professional players’ skills or simply enjoy the games

y watching them. Following the development of major interest

n StarCraft games, these game replays have been shared and dis-

ributed by gamers, fans, and spectators. Considerable research

as been conducted in an effort to exploit replay databases for

TS games. For example, Cho et al. used replay files to build a

etter prediction strategy model than the expert-designed rules

 Cho, Kim, & cho, 2013 ). Hostetler et al. built a probabilistic model

o infer the opponent’s hidden information based on observable

ata ( Hostetler, Dereszynski, Dietterich, & Fern, 2012 ). Although

hese replays are useful for testing the predictions of the various

achine-learning approaches, they are not widely used for micro-

anagement. 

In this paper, we report on a test of a data-driven approach for

he imitation learning of micromanagement skills. In terms of im-

tation learning, we used an influence map representing the real-

ime strategy game. The replayed game states of the scenes were

tored as individual cases and aggregated into a case library. As a

eplay has the potential to serve as the basis of an immense num-

er of possible cases, we then retrieved the case that was most

imilar to the state of the current game from the Case library, and

sed the selected case for imitation. Finally, the AI agent imitated

he movement of units in the “best” case for next time frame. Sev-

ral design choices are needed to allow the imitation to be flex-

ble and to respond in real time. Because the game state of each

cene involves different conditions, a direct comparison is not fea-

ible. Instead, we use a unified representation of each game state

hen comparing the game states of two scenes. Then, hashing

echniques with tolerance were used to reduce search time. Finally,

 unit-by-unit mapping was conducted, allowing the imitation to

e carried out. 

The strong point of our model is that because it is based on

ull Game Replays instead of on Combat Replay Data, it is able un-

ertake the combat part of a bot without additional adjustments.

urthermore, the proposed Case-based reasoning method based on

patial analysis can be applied to a number of expert systems be-

ides the StarCraft domain, making the model appropriate to be

pplied in a number of situations where the best way to solve

roblems are unclear. In addition, when applying techniques such

s reinforcement learning in a combat platform, the efficiency of

he opposing agent is an important factor. Our proposed model can

e used to build opponent AIs which can in turn be used for learn-

ng in combat platforms. 

This paper is organized as follows: Section 2 introduces

tarCraft and case-based reasoning as background information.

ection 3 summarizes related work on unit micromanagement in

TS and the use of imitation learning for games. Section 4 de-

cribes the proposed method in detail, Section 5 explains the

xperimental results obtained using the competition platform,

ection 6 deals with the pros and cons of our proposed method.

ection 7 discusses the conclusions drawn from this study and pro-

oses possible future projects. 
1 www.bwreplays.com (338,649 replays are available, May 2015). 
2 A military science fiction RTS game released by Blizzard in 1998. It has been 

ne of the most popular RTS games with professional gamers, broadcast channels, 

nd an enormous number of replays. 

 

t

g

. Background 

.1. StarCraft and AI competition 

StarCraft: Brood War is a popular RTS game released by Bliz-

ard Entertainment. In the game, a player needs to choose a race:

erran, Protoss, or Zerg. Although they are well balanced, their

nits have different versatility, flexibility, manufacturing processes,

trengths, resistance, and cost. In the game, players collect re-

ources (minerals and gas) to create buildings, produce units, and

pgrade both of these resources. Because the players have only

 limited view of their opponents’ territory, it is essential to be

igilant about the locations of opponents. The term “fog of war”

efers to the lack of information in this regard. Human expert play-

rs divide decision-making tasks into micro- and macro-levels. At

he micro-level, players control units individually, whereas, at the

acro-level, they produce units and expand territories. 

Although RTS AI has attracted a lot of research, the number

f RTS games with open interfaces that allow AI development

as very limited. This hinders the development of new AI tech-

iques for popular commercial RTS games. The introduction of the

WAPI (Brood War API) 3 for StarCraft games changed the situa-

ion significantly, enabling international competitions for RTS AI

 BWAPI, 2016 ). Since 2010, several international conferences have

osted special events (RTS game AI competitions with the BWAPI)

 Ontañón et al., 2013 ). The AI program for StarCraft AI competi-

ions must be able to respond within 55 ms. For human matches,

here are no restrictions on the response time. However, proficient

layers usually execute more than 200 actions per minute (APM).

his means that a player selects an action every 300 ms. Although

ost of the submissions in the early competitions were designed

y tight hand-crafted rules, the events have progressed research in

omputational intelligence and AI for RTS games. 

The best StarCraft AI bots from the competitions are still not

s good as professional human players. Weber et al. reported that

heir EISBot achieved an average win rate of 32% against hu-

an opponents on the international cyber cup tournament lad-

er ( Weber, Mateas, & Jhala, 2011 ). Because the AI competitions

nly consider games between two AI programs, the entries usu-

lly ignore human-level skills not yet implemented in the current

tate-of-the-art submissions. For example, early stage scouting be-

avior and build-order adaptation are very important skills in hu-

an player games, but they are relatively under-developed in the

I competitions ( Park, Cho, Lee, & Kim, 2012 ). Similarly, the bots

ssume that the unit controls of the other programs may not be as

ophisticated as a human. 

.2. Case-based reasoning 

Case-based reasoning (CBR) ( Kolodner, 2014 ) is an approach to

olving problems that involves drawing on solutions based on sim-

lar previous problems. Furthermore, CBR includes revising past

ases to solve new problems. Given a novel situation, a CBR system

etrieves the most similar case from a library of previous cases and

pplies its solution to the problem. After analyzing the result, the

elected case is revised and returned to the library. Generally, the

rocess of CBR is divided into four stages: retrieval, re-use, revise,

nd retain. Each process has the following functions: 

• Retrieval: Given a problem, search for the most similar case

from past cases. In this stage, it is important to index the most

similar case quickly and accurately. 
3 https://github.com/bwapi/bwapi , The Brood War Application Programming In- 

erface, a free and open source C ++ framework to interact with the popular RTS 

ame StarCraft. 

http://www.bwreplays.com
https://github.com/bwapi/bwapi
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Table 1 

Summary of unit micromanagement research (StarCraft and WarCraft). 

Type Reference Unit control Evaluation 

Action Navigation Setting ( N vs. N ) Number of unit 

types 

Opponent Map 

Design Weber et al. (2011) Hand authoring Testing as an integrated AI 

Young et al. (2012) Reactive planning A ∗ search Testing as an integrated AI 

Chruchill et al. (2012) Alpha-beta search (Search constraint 

5 ms) 

2 ∼8 1, 2 Scripted Bots 

Churchill and Buro (2013) UCT search (Search constraint 40 ms) 8, 16, 32, 50 1, 2 Scripted Bots 

Nguyen et al. (2013) Script Potential flow 12, 24, 36, 48 2 Built-in AI Scripted 

Bots SkyNet 

No obstacle or 

building 

Uriarte and Ontañón (2012) Script Influence maps 1 vs. 4 4 vs. 6 2 Built-in AI An open square 

map 

Learning Ontañón (2012) Maps 4 vs. 6 

Shantia, Begue, and Wiering 

(2011) 

Reinforcement learning for neural 

network 

3, 6 1 Handcrafted AI 

Gabriel, Negru, and Zaharie 

(2012) 

Neural network with evolution 12 2 EISBot Overmind 2010 AIIDE 

competition 

Parra and Garrido (2013) Expert-designed Bayesian networks 

(CPT trained from replays) 

2 vs. 3 1 13 × 13 tiles, 

diamond-shaped 

arena, with fog of 

war 

Zhen and Watson (2013) Neural network with evolution 12 2 2010 AIIDE 

competition 

Szczepanski and Aamodt 

(2009) 

Case-based reasoning (expert 

involvement + about 25 cases) 

Computer human 

players 

Custom map 

Proposed method Imitation learning with influence maps 8, 12, 16, 36, 37 1, 2 FreSCBot 

UAlbertaBot Skynet, 

Ximp Megabot, 

CruzBot, MooseBot 

Built-in AI 

2010 AIIDE 

competition Python 

∗Setting ( N vs. N ) controls the number of units for each player. For example, if N is 8, each player starts the combat with 8 units. 
∗In StarCraft, each race has units that are used primarily for attack. For example, zealot and dragoon are key units in combat. The number of unit types is 1 if the AI player 

uses only one type of unit (e.g., zealot only or dragoon only). If the value is 2, it means that the AI player configures his group with different units (e.g., zealot + dragoon). 

Usually, a combination of two different units is stronger than single-unit troops. For example, the zealot unit is strong in short-distance combat, but the dragoon unit has 

very long-range weapons to attack units at a distance. 
∗Scripted bots are designed based on simple micromanagement skills (Attack-Closest, Attack-Weakest, Kiting, and so on). The details of each strategy can be found in 

( Chruchill et al., 2012 ). 
∗Built-in AI was included in the StarCraft: Brood War game. 
∗SkyNet, EISBot, Overmind, FreSCBot, Ximp, UAlbertaBot, MooseBot, CruzBot and MegaBot are names of participants in the StarCraft AI competition. 
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• Re-use: Apply the solution from the most similar case to the

present problem. 
• Revise: If it fails to solve the problem, part of the solution is

revised. 
• Retain: If the case solves the problem with the revised solution,

save it in the case library. 

The performance of CBR is affected by the scope of cases and

the appropriate revision of cases for new problems. Thus, it is de-

sirable that the system include many cases, their solutions, and

proper retrieval and revision methods. 

3. Related works 

3.1. Unit micromanagement in RTS games 

Imitation of human micromanagement skills is especially diffi-

cult. For humans, these constitute very sophisticated skills, devel-

oped from participation in many games. They require the consid-

eration of both an individual unit’s movement (navigation and ac-

tion selection) as well as its cooperation during attack and defense.

This means an immense number of possible cases. For example,

each case may have a different number of units, with differing unit

types, positions and health power, as well as a varying opponents’

state. It is not trivial to build a model to generalize effectively on

such diverse cases. Although it is possible to mine a limited num-

ber of common management patterns from human replays, it is

hard to implement these rules into a program that generalizes the

behaviors for new matches. 
There has been considerable research on the design of micro-

anagement skills for AI bots in RTS games ( Table 1 ). It is possible

o formulate the problem as one involving task allocation in multi-

gent systems ( Rogers & Skabar, 2014 ). Successful entries in the

tarCraft AI competition have used the Attack-Closest (UAlbertabot)

nd the Kiting (Skynet) ( Chruchill, Saffidine, & Buro, 2012 ) strate-

ies. They are both simple combat AI scripts. Attack-Closest in-

olves attacking the closest opponent unit and Kiting is similar to

ttack-Closest except it involves moving away when it is impossi-

le to fire. Uriarte and Ontañón (2012) showed that a small num-

er of units can win against a larger number of units by kiting con-

rol. They designed kiting control with influence maps and showed

hat one range unit killed four melee units. 

The research on unit micromanagement can be categorized into

wo groups: 

• Design: In this approach, micromanagement skills are imple-

mented in a designed system. For example, a manual design

uses micromanagement skills implemented based on expert do-

main knowledge. Simply put, a unit attacks the closest enemy

unit within attack range. Additionally, control of the units can

be formulated as a tree search, such chess or go. Although the

complexity is greater than that for traditional board games, it

can be approached using several advanced techniques for tree

searches (e.g., Monte-Carlo Tree Search, Move ordering). An-

other design method is Potential Field (PF). The concept of PF

derives from robot path planning and has been used to control

units in RTS games ( Hagelback & Johansson, 2008 ). In Preuss
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et al. (2010) , an influence map and flocking path findings were

used in GLEST, an open-source RTS game. 
• Learning: It is desirable to artificially learn unit control without

human intervention. There have been several attempts at im-

plementing the concept of unit control learning using artificial

neural networks and Bayesian networks. Each model controls

the behaviors of individual units. 

In the Weber et al. (2011) and Young, Smith, Atkinson, Poyner,

nd Chothia (2012) studies, they used domain knowledge to design

icromanagement skills. This required a domain expert to design

he system. Because these systems were tested as an integrated

ystem, it is difficult to determine the relative superiority of the

icromanagement module. Churchill et al. ( Chruchill et al., 2012;

hurchill & Buro, 2013 ) used a special-purpose combat simulator

eveloped to simulate thousands of future events. Advanced search

echniques are promising approaches to micromanagement, but it

s not easy to use an algorithm to determine the values of numer-

us variables (e.g., unit positions, commands, and targets) for bots.

nstead, they can reach a simple decision for a group of units (re-

reat or attack). Nguyen, Nguyen, and Thawonmas (2013) designed

heir micromanagement system using potential flow. It defines an

rtificial flow caused by territory, buildings, and units and simu-

ates the movement of units using idealized flow equations. To use

he algorithm, it is necessary to define the type of flow model for

ach object and to identify its parameters. 

Because micromanagement is a sophisticated skill, it is not

asy to define the domain knowledge held by human experts. The

earning approach involves learning the control behavior of units

ased on past experience (rewards or replays). Although several

tudies have been conducted from this perspective, they have re-

ied on limited data or a limited number of test cases. In some

ases, they still used expert domain knowledge to design the mod-

ls. In Szczepanski and Aamodt (2009) , the case library had only

5 cases, and these were compiled by human experts. In Parra

nd Garrido (2013) , the topology of a Bayesian network was de-

ermined by experts, and only the parameters of the model were

rained using replays. The test scenario was relatively small for use

ith AI bots. 

We propose to use thousands of frames extracted from human

eplays and imitate the actions and navigations of the most similar

ases. We further propose to extensively use the replays of human

layers. Although replays have been used partially to tune the pa-

ameters of Bayesian networks ( Parra & Garrido, 2013 ), their use

as been limited. Instead, these approaches have leaned toward

he adoption of “reinforcement-style” learning by playing against

ach other or against scripted bots (built-in AI). As with the search

pproach, it is important to be able to meet real-time constraints

ith our method. In the search, the time bottleneck comes from

xpanding the search tree and simulating the outcomes based on

he battle. However, in our approach, the primary concern is min-

mizing the time needed for the case-by-case comparison. 

To date, there have only been a few studies on imitation learn-

ng for RTS games. This is still at an early stage of development,

ecause of the complexity of imitation and the limited use of hu-

an replays. Gemine, Safadi, Fonteneau, and Ernst (2012) trained

8 neural networks from artificially generated training data to imi-

ate the production strategy in the game StarCraft II. They collected

ata from computers players’ games and tested their performance

gainst the built-in AI. Parra et al. used a Bayesian network to con-

rol units in a “2 units versus 3 units” scenario ( Parra & Garrido,

013 ). The network structure was designed by experts, and the pa-

ameters of the model were learned from replays. Compared with

ur work, the 2-units-versus-3-units combat was a relatively small

etting. 
.2. Case-based reasoning for game AI 

The CBR approach has several potential advantages for design-

ng game AI. Because CBR uses case data from previous plays, it

oes not require the design of manual behavior. This also means

hat although researchers do not have domain-specific knowledge

bout the game, they can design behaviors for game AI. CBR is a

ind of lazy learning algorithm that delays generalization until a

uery is made. It is easy to adapt to the new problems by changing

he case library. However, it requires considerable space to store

he cases, suffers from noise/error in case handling, and is slow to

valuate cases. 

Gillespie, Karneeb, Lee-Urban, and Muñoz-Avila (2010) intro-

uced a stochastic policy for CBR in a first-person shooting game.

he main contribution was to introduce a general framework to

rovide probabilistic case representation. Romdhane and Lamon-

agne (2008) combined CBR with reinforcement learning to evalu-

te the weight of patterns for TETRIS. Compared with RTS games,

ETRIS can be played using a relatively small number of cases

 ∼50 0 0 cases). Watson, Rubin, and Robertson (2012) proposed CBR

pecifically designed to play only heads-up poker. It can dramati-

ally reduce the number of betting patterns that occur. 

In the RTS game domain, CBR has been used to generate the

ehaviors of units and strategies. Ontañón et al. used CBR to gen-

rate behaviors in WARGUS ( Ontañón, Mishra, Sugandh, & Ram,

007 ), a WarCraft II mod. In the study, they created cases from

xpert demonstrations and annotations. The expert annotated the

race to determine goals to pursue and their associated behaviors.

sing these high-level cases, they could generate the goal and de-

ailed behaviors for the current situation. Ontañón et al. attempted

o learn plans, represented by Petri-Net, from the demonstration

f expert players ( Ontañón et al., 2009 ). The system was tested on

2, a simplified WarCraft II. Wender and Watson (2014) proposed

 hybrid reinforcement learning (RL) and CBR approach for con-

rolling combat units in StarCraft. The resulting hybrid RL and CBR

gent performed well when compared with an RL-only agent and

he built-in AI. In their tests, Scenario A involved a weak combat

nit against six slower, stronger enemy units, and Scenario B used

hree agent units and eight opponents. Compared with our work,

his work used relatively simple testing conditions and did not ex-

loit replays to learn the micromanagement skills. 

In a simulated soccer league, the CBR has been used to imi-

ate the plays of other agents. In the league, the agent must send

n action before the end of the time cycle (30 ms). Although a

obot soccer system requires real-time processing, there are sev-

ral distinct differences with real-time strategy games. The two

ystems have different definitions of vision, numbers of units and

ypes, sources of the case library, case structures, and response-

ime requirements. Floyd, Davoust, and Esfandiari (2008) proposed

n algorithm to enable CBR to be performed by individual imita-

ive agents. In their study, they applied a case base size threshold

 ∼30 0 0 cases per cycle) to send an action in time. Thus, their work

ttempted to process CBR in real-time with a threshold. Our study

iffers from this work in its use of an influence map, application

o real-time strategy games, and representation of cases. Davoust,

loyd, and Esfandiari (2008) proposed an image-like representa-

ion based on histograms of objects with customizable granular-

ty for simulated robot soccer. They showed that their represen-

ation was highly efficient for scene comparison. Floyd, Esfandi-

ri, and Lam (2008 ) tested different preprocessing techniques for

obotic soccer agents. They reported that a histogram representa-

ion significantly outperformed the raw representation. Although

he histogram-based representation can be useful for hastening the

mitation comparison, we adopted an influence map, known to be

seful for RTS research, as a basic representation for a spatially

ware system. 
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Table 2 

An example of a scene extracted from a replay. It is possible to extract one scene per eight frames from a replay. 

ID Owner’s base (o’clock) Type Position Health power Command Moving direction 

0 12 Dragoon (113,1134) 180 Stop Right 

1 12 Dragoon (113,1218) 180 Move Right-Up 

2 12 Zealot (147,1217) 160 Attack Left-Up 

3 6 Dragoon (60, 875) 180 Stop Left-Up 

4 6 Zealot (80, 758) 160 Move Right-Up 

5 6 Dragoon (200,1025) 180 Attack Down 

… … … … … …

10 6 Zealot (200,1218) 160 Stop Left-Up 

Fig. 1. Influence map-based case search with in-memory hash table. 
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4 We did not use the BWChart or LMRB replay analyzer software. Instead, we 

extracted the information from replays using BWAPI (Brood War API). 
4. Imitation-based unit micromanagement 

Imitation searches seek the most similar situations among re-

plays and then mimic the actions taken by the human players.

This process can be divided into offline and online processing. Dur-

ing offline processing, the agent makes a case library by storing

the pre-processed data of existing replay files. In online process-

ing, the agent searches for the case in the case library that is most

similar to the current game state. An influence map representa-

tion was adopted to analyze the influence of units spatially and to

allow high-speed case comparison. Additionally, case hashing re-

duced the time it took to find the appropriate moments to imitate.

The extracted case is then applied to the current game, modi-

fying the action of the units based on that case. After finding the

best case, it is necessary to imitate the actions/navigation of the

units considering the difference between the current and the ref-

erence frame. The best case may not be exactly the same as the

game state of the current scene. For example, there may be differ-

ent numbers of units, types, and positions. It is important to assign

each unit in the game state of the current scene to a unit in the

associated best case. A policy must be in place to handle the event

of a unit that is unmatched. This adjustment is essential to allow

the imitation of slightly different situations. Fig. 1 illustrates the

proposed imitation process. 

4.1. Extraction of scenes from replays for the case library 

Replays can be downloaded from well-known replay reposito-

ries or game portal sites. Because a single replay file contains ap-

proximately 14,400 frames (10 min/replay), it is possible to con-
truct a large case library using only a small number of replays.

t is possible to extract all the game states of units, buildings, and

cores for all players at each time frame from the replay. In this

ork, we used only unit-related data sampled every eight frames.

ecause sequential game states of a scene are likely to be similar

ith small differences, we use subsets of game states by sampling

very eight frames. One scene is created as a vector of all units’ at-

ribute data from each frame sampled. The attribute data includes

ype, x - y coordinates, health, commands, and the moving direction

f each unit. 

The scene is extracted using a replay analyzer. 4 Table 2 shows

n example of a scene extracted from StarCraft replays. In the ex-

mple, there are 10 units on the map. The player with the 12

’clock base has three units (two dragoons and one zealot), and the

ther player with the 6 o’clock base has eight units. In detail, the

ragoon unit owned by the top player is located at (113, 1134), left-

ottom, with full-health power. The dragoon’s initial health power

s 180. The player assigned a “Stop” command to the unit, and the

oving direction was “right.”

A scene is regarded as one case in this study. A case consists of

hree components, and the case structure is defined as follows. 

Game State G = { i, o } 

• i : Unit’s unique identifier used to track the unit during game

play. 
• o : Owner’s base (o’clock) identified by the location of owner’s

base. 

Unit State U = { t, p, h } 

• t : Unit type. In StarCraft, each race has about eight ground unit

types and five or six air unit types. The type should be the

same as one of them. 
• p : Unit’s position: x - y coordinates of each unit on the map.

Usually, the StarCraft map size is 4096 × 4096 pixels. Each value

ranges from 0 to 4095. 
• h : Unit’s health power. Initially, the value is set at the maxi-

mum, which is different on different unit types and decreases

when the unit is damaged. 

Command C = { c, d } 

• c : Command. The current command assigned to the unit

(“stop,” “move,” or “attack.”) Although there is a “patrol” com-

mand, it is ignored because it is rarely used. 
• d : Direction of the unit. It is one of eight directions (up, down,

left, right, right-up, left-up, right-down, and left-down). 

.2. Similarity measure for case matching 

In case retrieval, it is necessary to calculate the similarity be-

ween two cases (scenes). Although a table-based representation
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Fig. 2. A pseudo-code to calculate IMs from a scene. 
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Fig. 3. StarCraft unit formation (Left) and corresponding influence map (Right). Yel- 

low represents area of lowest influence of the units and red marks the highest influ- 

ence. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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an be used in game state comparison, there are several reasons to

evise a different form of representation. Because the game state

f each scene contains different numbers and types of units, it is

ifficult to define a unified comparison formula. Each row of the

able only contains information about an individual unit and does

ot include any additional high-level features (e.g., cooperation of

nits, spatial distribution of units etc.). In this work, we propose

sing an influence map to represent the unit distribution. 

Influence maps (IMs) have been used to represent the nu-

erical influence of each position in RTS games ( Miles & Louis,

006; Miles, Quiroz, Leigh, & Louis, 2007 ). We use IMs to spa-

ially analyze the influence of units and their surrounding terrain.

n our model, IMs help represent higher dimensional unit informa-

ion, similar to a human’s viewpoint, facilitating effective imitation.

lso, IMs solve the technical difficulties of comparing frames. For

xample, between-unit comparison can be difficult. This makes it

ifficult to carry out most imitations through a direct unit-to-unit

omparison. However, by using IMs, the influence each unit has is

arked on the map and covers a larger area than the unit itself.

his helps to enable more efficient searches for the most similar

ase by requiring less data. Also, IMs can enhance the performance

f a bot through the use of spatial reasoning, which can have a big

ffect on the results of combat. 

Each scene can be transformed into an IM. When memory

pace is sufficient, it is possible to create a 4096 × 4096 IM. How-

ver, we reduced the resolution to 64 × 64 to save memory. A total

f 16 K bytes (64 × 64 × 4 bytes) is required for one IM. If the game

s played by N players, each scene would be transformed into N

Ms. Each IM is created using the units owned by the player. For

xample, if the game were a match between the top (12 o’clock

ase) and the bottom (6 o’clock base) players, there would be two

Ms for each scene: one from the top player’s units, and the other

rom the bottom player’s troop. 

Fig. 2 shows a pseudo-code of the influence map calculation al-

orithm used in this paper. The input of the algorithm is a scene at

ime frame t, and the outcome is n influence maps created for each

layer. In this IM process, let ( unitX, unitY ) be the actual position of

he unit (transformed into 64 × 64 resolution). If the unit is close
o a specific location, the unit has a direct impact on it. In addi-

ion, the IM value is proportional to the unit’s health. Fig. 3 shows

n example of an IM made using the calculation. The figure on the

eft shows the configuration of units (dragoons and zealots), and

he figure on the right shows its corresponding IM. The strongest

oint of influence is clearly apparent. 

The similarity of two scenes is calculated using the influence

aps. If we define IM A 1 as the first player’s IM from Scene A , the

imilarity would be defined as follows. It is based on the sum of

he Euclidean distances between corresponding IMs. As in Fig. 2 ,

Ms were created through the influence values of units. In order to

nd influence maps from the data base that corresponded to the

nfluence map of the present situation, first we filtered the data by

he average position of units, and the number of units contained

n the influence map. Then we compared the Similarity ( Eq. (1 ))

etween our present influence map and the influence maps in the

ata base, and selected the map with the highest similarity to the

resent map. Thus, we selected corresponding IMs to our present

Ms based on the value of their positions. 

imilarity = 

1 

∑ n 
i =1 

∑ SIZE 
x =1 

∑ SIZE 
y =1 ( I M Ai [ x ] [ y ] − I M Bi [ x ] [ y ] ) 

2 + 1 

(1) 

f Scene A were the current game state, and Scene B were from the

ase library, the IM calculation from Scene B would consider only

nit types seen on Scene A . 

.3. Case retrieval 

The goal of this step was to find the case with the greatest

imilarity to the game state of the current scene from the case

ibrary. Because the AI needs to respond in a very short amount

f time, this step needs to be processed in real-time. When the

I program begins the game, the cases in the case library (in raw

ame event format) are fully loaded into main memory. Although

ll of the data are in memory, it is not realistic to compare the

ame state of the current scene with all of the cases in real-time.

nstead, we propose using a case hashing algorithm to reduce the

ase search space significantly. The hash function maps the keys to

he bucket of scenes. The selected cases are converted into influ-

nce maps and then compared with the IM of the current game

tate. 

The goal of hashing is to select a subset of cases from the case

ibrary loaded in memory. This step is essential in order to meet

he real-time constraint. In the hashing, we select cases that sat-

sfy conditions derived from the current state of the game. In this

ork, we use multiple keys in the database search. 

• The number of units for each type : A key is defined for each

unit type. For example, if the player currently has zealots and
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Table 3 

Sixteen levels of hashing tolerance (initially, tolerance was set at the 3rd level for all keys). The ‘ ± 1’ 

means that the system accepts cases whose key distance is between −1 and + 1. 

Level Number of zealots Number of dragoons Average x position Average y position 

0 Exact matching Exact matching Exact matching Exact matching 

1 ± 1 ± 1 ± 1 ± 1 

2 ± 2 ± 2 ± 2 ± 2 

3 (default) ± 3 ± 3 ± 3 ± 3 

… … … … …

15 ± 15 ± 15 ± 15 ± 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A pseudo-code for case retrieval (C 1 = 0.3, C 2 = 0.7). 
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dragoon units, the number of keys is two. The key value for

zealot unit type is set as the number of zealot units on the cur-

rent game scene. 
• The center position of units : It is calculated as the average x

and y position of all units. Each key is the average of the x po-

sition and the y position. 

For example, if the number of zealot and dragoon units is two

and three, respectively, and the center position for each group is

(20, 30), the key values are 2, 3, 20, and 30. 

In the event that the number of cases exceeds the MaxScene,

it returns only the maximum number of cases and the rest are

ignored. In this study, we set the MaxScene as a large number,

and our system retrieved not only cases that exactly matched the

keys but also cases with tolerable differences. In fact, there is lit-

tle chance that cases with exact matches would be ignored. The

algorithm continuously adjusts the tolerance of case retrieval dur-

ing game playing. For example, if the tolerance were low, it would

extract only cases whose keys are very similar to or exactly match

the current keys. However, if tolerance were high, cases with toler-

able differences would also be considered. Our observation is that

the number of cases retrieved varies over the game. For example,

it can return enough cases whose keys are so close that no tol-

erance is necessary. However, if it returns too few cases and is

likely to miss the most similar influence map, it would be nec-

essary to allow tolerance. The hashing tolerance has 16 different

levels ( Table 3 5, 6 ). 

Fig. 4 illustrates an algorithm that searches the case database

for the case to imitate. The input of the algorithm is the current

scene, and the output is the most similar scene found in the case

library. The first step is to get the key values from the current

scene (4th line). The next step is to get a bucket of scenes using

the key values and hashing tolerance (6th–8th lines). If the num-

ber of keys were M , it would return M buckets of scenes. In the

case retrieval, the intersection of the all the scenes from the buck-

ets is used. It is defined as Scenes (9th line). The most similar scene

is found among the Scenes using the similarity measure based on

the influence maps (12th–14th lines). The final step involves ad-

justing the hashing tolerance of the key with the minimum (if too

small) or maximum (if too many) number of scenes for the next

search (15th–25th lines). Finally, it returns the Scene (similar). 

4.4. Case reuse 

Imitation is the final step in determining the actions and move-

ment of the units for the current case. The case search returns

a single case for imitation. The raw game events for the selected

case can then be extracted from main memory. During imitation,

the most difficult problem to deal with is that the two cases (cur-

rent and similar scenes) could have different numbers and types of

units, as well as varying positions for those units. 
5 Zealot is a basic melee unit of Protoss which is one of the races of StarCraft 
6 Dragoon is a basic range unit of Protoss which is one of the races of StarCraft 

T

To solve this, the imitation process (copying actions from a

cene similar to the current scene) is conducted for each unit type

eparately. Only units of the same type are imitated. 7 As a result,

here is no chance that a zealot unit will copy the actions of a

ragoon unit. When there are more than two units of the same

ype, the closest one is assigned. Then, the unit follows the action

“attack,” “move,” or “stop”) and moving direction of the matched

nit by copying the original movement vector. When the distance

Manhattan distance > 4) between the unit and the matched unit

s too far, the action copy is not allowed. When there is no unit of

he same type, the unit is ordered to the location with maximum

nfluence. In professional players’ micromanagement, they usually

o not care about “whom to attack” and use the default “near-by

ttack.” In contrast, they are extremely careful in positioning units.

ollowing the human players’ style, we used the “near-by” attack

ption. 

Fig. 5 shows an example of cases merged for unit matching. The

ize of map is 12 × 12. The blue (A, B, C, and D) cells represent

nits that are of the same type in the current game case, and the

ed (F, G, H, and I) cells are from the imitation case. A cell is lo-

ated in the same position as one red cell. This means that A is

xactly matched with the unit on the red cell and follows its ac-

ion. This unit on the red cell is then deleted from the candidate

ist because it has been matched once. The yellow cells show the

istance (Manhattan distance) between the units (in this work, a

aximum expansion of four cells is allowed). C is assigned to F
7 We also tested a version that allowed unit matching regardless of unit type. 

he performance was similar or a bit worse because of some unmatching between 

units of different types. 



I.-S. Oh et al. / Expert Systems With Applications 71 (2017) 192–205 199 

Table 4 

Comparison of the AI Bots used in the experiment (P: Protoss, T: Terran, and Z: Zerg races, rank- 

ings indicate the results each bot received from the StarCraft AI Competition). 

Competition Name Race Ranking 

– Built-in AI from StarCraft P, T, Z –

AIIDE 2010 Micromanagement Track FreSCBot P, Z 1st 

AIIDE 2014 StarCraft Competition Ximp P 2nd 

Skynet P 5th 

UAlbertaBot P 7th 

MooseBot P 9th 

CruzBot P 15th 

CIG 2016 StarCraft Competition MEGABot P Final Stage 7th 

Fig. 5. An example of two cases merged (current game and imitation cases). The 

blue cells are the location of units in the current game, and the red cells are imita- 

tion cases. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 6. A map used in the 2010 AIIDE micromanagement competition. 
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ecause the distance is four in the horizontal and vertical direc-

ions. However, D is not assigned to G because the distance is six,

hich is larger than four. There is no unit that can match D, so D

ollows the action of the closest unit (A) in the current game. 

. Experimental results and analysis 

In this study, we conducted two different experiments using

icromanagement tasks. Our bots only used imitation to play the

ames, without the use of explicitly hand-coded rules. We used

 machine with an Intel Core i7-4790 CPU at 3.60 GHz running on

indows 7 Professional Edition with 32GB of DDR3 RAM. Our pro-

ram runs in single-thread mode. The parameter MaxScene was set

o 10 0 0. Experimental metrics are defined as follows. 

• Unmatched unit ratio (%): Average percentage of units not

matched to units from the case library. 
• Average tolerance levels: During the game play, the AI bots con-

tinuously change the tolerance for case retrieval. It averages the

tolerance levels during a game. 

Table 4 summarizes the AI bots used in our experiments for

omparison purposes. They include entries from both the AI-

DE 2010 micromanagement competition and the 2014 AIIDE “full

ame” AI competitions. The 2010 competition was used because it

as the last micromanagement AI competition and was specialized

or the skills. In the competition, all entries were asked to prepare

o play both the Zerg and Protoss races. Additionally, they were

esigned to play both 9 versus 9 and 12 versus 12 matches. In the

014 competition, they were designed for a full game match and

sually prepared many skills: scouting, build orders, combat, and

esource management. 
In the first experiment, we adopted the map from the 2010

IIDE (Artificial Intelligence and Interactive Digital Entertainment)

tarCraft micromanagement AI competition. Because the map has

ot been widely used by human players, we used two expert-level

uman players to create the replays for the map. The fog of war

as activated when we extracted the raw game events from the

eplays and during the experimental games between the two AI

ots. In the test, only the 2010 competition entries were used be-

ause full-game entries did not work well on the specialized maps.

The micromanagement competition for AIs has not been held

ince 2010. The researchers had no choice but to use results from

he most recent 2010 competition as entries for our experiment. 

In the second experiment, we adopted the famous “python”

ap widely used by human players. The replays were downloaded

rom an online replay sharing portal site. Although the replays

sed in the first experiments only had combat cases, the replays

n the second experiment contained the “full” game played by two

layers. This means that there are cases for scouting, combat, pro-

uction, construction, etc. In this work, we did not apply an ad-

itional algorithm to categorize the unrelated cases from the case

ibrary. Instead, all of the cases from the full game replays were

oaded into main memory. 

We conducted statistical significance tests (one sample and two

ample student’s t-tests) for bot comparisons in the first and sec-

nd experiments. In the first experiment, the degrees of freedom

re defined as ( N – 1 ). In the second experiments, the degrees of

reedom are defined as ( N – N – 2 ). If the t-value is larger than the

alue in t-table, it is statistically significant. 

.1. Imitation with combat-oriented replays 

In 2010, AIIDE StarCraft AI competition had a special track fo-

using on micromanagement. It simplified the map settings al-

owing the two AI bots to focus on micromanagement skills.

ig. 6 shows the map used in the specialized competition. It is a

iamond-shaped map. Although the map is useful for testing mi-
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Table 5 

One sample t-test of the imitation player against AI bots in the micromanagement competition map (10 

games × 10 runs). 

Opponent 12 vs. 12 (dragoon only) 36 vs. 36 (dragoon only) 36 vs. 36 (zealot and dragoon) 

T value Win rates (%) T value Win rates (%) T value Win rates (%) 

FreSCBot 6.5 76 ± 12.65 X 100 ± 0.00 N/A ∗ N/A ∗

Built-in AI 10.2 85 ± 10.8 49.0 99 ± 3.16 27.0 95 ± 5.27 

∗N/A means the bots were not designed to play the combination of units. 
∗ Degrees of freedom = 9, p value = 0.05, t-table value = 2.262, if the t value is larger than the value of 

2.262, it is statistically significant. 

Table 6 

Performance of the imitation system against the built-in AI (average of 200 games = 40 games × 5 runs) in 36 vs. 

36 (zealot & dragoon) mode. 

Number of cases Response time (sec) Unmatched unit ratio (%) Avg. tolerance level Win rates (%) 

100 0.008 75.4% 13.5 89 ± 13.7 

500 0.012 38.8% 13.5 88 ± 14.8 

20 0 0 0.016 24.9% 9.9 98 ± 2.9 

80 0 0 0.020 25.1% 5.9 94.5 ± 4.0 

33,539 0.019 24.1% 3.1 95 ± 3.2 
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cromanagement skills, it is not easy to get human player replays

for the map. In this work, we had two expert human players cre-

ate the replays. One of the players was a professional StarCraft II

gamer and the other had a long experience of game playing. 

In total, 80 replays were collected from the expert matches.

They included 20 games each for 12 vs. 12 dragoons, 24 vs. 24 dra-

goons, 36 vs. 36 dragoons, and 36 vs. 36 dragoons/zealots. In the

dragoon and zealot combination, there were 50% dragoons and 50%

zealots. In the map, fog of war was enabled so the replay extrac-

tion took this into consideration. This means that the enemy’s unit

information was not stored in the raw game event table if it was

invisible to the player. In this manner, it was possible to test the

performance of the imitation learning with fog of war. The size of

the raw game event was approximately 0.5GB and the total num-

ber of cases (scenes) was 33,539. Because the map is specialized

for combat, all of the cases were related to combat. 

Table 5 indicates a sample of t-test result of games played

between the proposed imitation bot and the winner bot of the

2010 StarCraft Competition. For all of the matches, fog of war was

enforced. The imitation bot performed better in the large-scale

combat (36 vs. 36) than in the small-scale combat (12 vs. 12).

It achieved on average a high winning percentage in the zealot-

dragoon combination tests as well as in the dragoon only tests. 

Despite the fog of war, the imitation was able to perform well

on the micromanagement tasks. Table 6 summarizes the perfor-

mance of the imitation system based on the number of different

cases used. The winning percentage decreased slightly when fewer

scenes were used (e.g., 100). It was possible to achieve a winning

percentage of approximately 95% if the number of cases was 20 0 0

or more. However, the standard deviation (14.8%) was a bit high

with only 500 scenes. Overall the results showed that the imita-

tion player was able to achieve the optimal performance using only

20 0 0 cases (just 6%) of the total 33,539 cases. 

In the test with only 100 cases, most of the units (75.4%) were

unmatched during imitation. However, the unmatched unit ratio

was less than 25% when 20 0 0 or more cases were used. The av-

erage response time was 0.019 s for 33,539 cases. This was faster

than professional human players ( ∼0.3 s) and met the requirement

for the StarCraft AI competition ( ∼0.042 s). 

5.2. Imitation with full game replays 

In the second experiment, “full game” replays were downloaded

from a replay-sharing portal, where 30 0,0 0 0 StarCraft replay files
re available to the public ( http://bwreplays.com ). “Python” is one

f the most widely used maps in StarCraft. We downloaded 216 re-

lays played on the “Python” map for Protoss vs. Protoss matches.

he replays satisfied the following conditions: 

• Game type: one vs. one full-game 
• Race: Protoss vs. Protoss 
• Map: Python 

• APM (actions per minute): More than 170 APM for both players
• Player location: Top vs. Bottom 

To consider the proficiency of human players, we chose replays

ith more than 170 APM for both players because APM indirectly

eflects a player’s proficiency in the game. Using the BWAPI, the

aw game events were extracted from the replays. Fog of war was

ot considered during extraction. Each case (scene) was sampled

very eight frames. The size of the raw game events was 3.7GB

nd the number of cases was 0.5 million (50 0,0 0 0). 

Fig. 7 shows a screenshot of the “Python” map. In our testing,

ach AI played against the built-in AI program. When we tested

he AI bots, their units were located at the entrance of the base

n the top, and the built-in AI was located in the center of the

ap. The built-in AI (center) attacked the AI bots (top) in order to

liminate the fundamental building (Nexus) behind the entrance.

ecause the entrance at the top was narrow and the center area

as wide, it was important to control the units efficiently to win

he combat. For the test, three different combinations of units were

efined: small-scale, middle-scale and large-scale combat. During

he combat, it was necessary that the zealots fight in close quarters

ith the enemy’s units while the dragoons fought from a distance.

• Small-scale combat: 7 dragoons and 1 zealot 
• Middle-scale combat: 14 dragoons and 4 zealots 
• Large-scale combat: 21 dragoons and 6 zealots 

Table 7 shows the two student’s sample t-tests of the AI bots

gainst the built in AI. For the three settings (small-, middle-, and

arge-scale), the AI bots played 100 games (10 games × 10 runs). If

he t-value of each game is higher than the t-table value of 2.010,

he imitation bot can be said to have outperformed its compet-

ng AI. The table shows that the imitation bot (IM (10 0 0)) outper-

ormed the other AI bots in every case regardless of the size of the

ombat, except in one case (IM 10 0 0 verses Ximp where t-value of

.0 is lower than the t-table value of 2.101 in large-scale). In mi-

romanagement, it is important for the player to position units ef-

ciently to maximize the power of attack. For example, players will

http://bwreplays.com
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Fig. 7. “Python” map (a) and an example of combat scenario to test the micromanagement skills (c). 

Table 7 

Two sample t-tests of the imitation player against AI bots in the micromanagement competition map 

(10 games × 10 runs). 

Entries Small-scale Middle-scale Large-scale 

T value Win rates (%) T value Win rates (%) T value Win rates (%) 

IM (10 0 0) N/A 95 ± 7.07 N/A 95 ± 5.27 N/A 72 ± 18.14 

Ximp 7.6 55 ± 15.09 12.1 27 ± 17.03 1.0 65 ± 14.34 

Skynet 9.9 50 ± 12.47 13.0 24 ± 16.47 2.6 53 ± 14.18 

UalbertaBot 10.1 39 ± 15.95 32.1 6 ± 7.00 12.6 0 ± 0.00 

MooseBot 6.5 60 ± 15.63 14.0 48 ± 9.19 4.0 40 ± 17.64 

CruzBot 42.5 0 ± 0.00 5.7 58 ± 19.89 11.5 2 ± 6.32 

MegaBot 7.8 44 ± 19.55 12.0 28 ± 16.87 4.9 31 ± 19.12 

∗ IM 10 0 0 is the standard for conducting the sample tests. Therefore, the t value of IM (10 0 0) cannot 

be defined, as it cannot compare against itself. 
∗ Degrees of freedom = 18, p value = 0.05, t-table value = 2.101, if the t value is larger than the value 

of 2.101, it is statistically significant. 
∗ IM( x ) means that the imitation learning sets the MaxScene as x . 
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orm concave or convex curves, spread units, or ball up in order to

aximize attack. However, AI bots tend to focus solely on whom to

ttack (closest or weakest) because positioning at a human level is

ighly difficult. Our observation shows that our systems were able

o learn to position units in a way similar to human players, which

as the main reason for its outperformance. 
AI bots for full game mode require many different skills: scout-

ng, micromanagement, resource management, and tactical deci-

ion making. When the bots play a full game, they usually use

ll of them to defeat opponents. In full game mode, the AI bots

ay be better than the built-in AI. However, our experiments were

esigned to test only the micromanagement skills in combat sit-
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Fig. 8. Response times of the imitation AI on different numbers of cases 

( ∗MaxScene = 10 0 0 and ∗∗MaxScene = 20 0 0) in the Python Map with large-scale 

combat scenarios (average of 200 games: 40 games × 5 runs). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The win ratio and response time with different MaxScene values (average of 

200 games) in the Python Map with large-scale combat scenarios and the imitation 

system using 50 0,0 0 0 cases. 
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uations. It showed that some AI bots have relatively underdevel-

oped micromanagement skills. Additionally, they attempted to fin-

ish games as early as possible using predefined strong build orders

and to avoid very complex combat situations in long-run games.

This is the reason that some AIs performed worse than the built-

in AI in the micromanagement tests. 

Additionally, because the imitation was based on cases from full

games, it contained cases for scouting, combat, production, and

construction. Although there was no rule to filter out the cases

unrelated to combat before the imitation, it was still possible to

achieve a high winning percentage, thus supporting the idea that

influence map-based comparisons are successful at finding similar

combat-related cases. Although it shows the possibility of robust

performance, it is still necessary to reduce the error/noise: one ap-

proach is to use only replays from expert players’ games. Recently,

we studied the reliability of the imitation system ( Oh & Kim, 2015 ).

5.3. Response time 

The response time of the imitation learning was analyzed to de-

termine if the resulting AI can meet the real-time constraint. The

response time was analyzed for the second experiment because it

used more cases than the first. Fig. 8 shows the response time of

the imitation AI. The average response time of the AI was mea-

sured using different numbers of cases. When the imitation system

used only 50 0 0 cases, response times were within 0.01 s. The influ-

ence map generation was one of the critical time-consuming func-

tions. The time required to generate IMs increased slightly based

on the number of scenes because of the additional scenes that

have to be passed through the hash keys. When MaxScene is ad-

justed to 20 0 0, the time for IM generation doubled. The second

greatest time consumer was the influence map comparison be-

tween the current game state and the cases from the bucket. The

hashing takes a very small amount of time. The time burden of the

unit-matching task was relatively small. 

In 50 0,0 0 0 cases, the response time was approximately 0.19 s

when MaxScene was 10 0 0. Even for larger numbers of cases, the

response time could be maintained within the single frame (0.042

seconds). This is because the system limits the number of influence

maps generated and compared with the MaxScene parameter. Also,

the hashing significantly reduced the case search time. However,
esponse time doubled when MaxScene was set to 20 0 0 and the

verage response time was slightly under one frame. 

.4. Sensitivity to parameter selection 

To load the influence maps, the machine needs to have addi-

ional main memory. In the second experiment, the raw game data

equired 3.7GB of memory. In our study, we needed to calculate

wo types of influence maps (top vs. bottom players) per scene,

nd each IM required 16,384 bytes (64 × 64 × 4 bytes). For 50 0,0 0 0

ases, it required ∼15GB. In total, the program used 18.7GB of

emory. Although this is not small, the cost of memory has been

ecreasing, making it affordable for desktop machines. Because of

he memory issue, we did not pre-calculate the influence map of

cenes. 

Table 8 summarizes the statistics of the imitation AI for the

ifferent numbers of cases used. The unmatched unit ratio means

he average percentage of units not matched to the units from the

ase library. For the test with 50 0 0 cases, the unmatched unit ra-

io was roughly 34%. However, it was only around 9% for 50 0,0 0 0

ases. If the tolerance level is high, it means that the case search

llows more tolerance to increase the number of cases for com-

arison. From the case library, approximately half of the MaxScene

ases were selected for comparison with the current game case.

he winning percentage against the built-in AI was relatively low

ith a smaller number of cases such as 50 0 0. 

The winning percentage was in the range of 81–97% between

5,0 0 0 and 20 0,0 0 0 cases. With a smaller number of cases (50 0 0–

0 0,0 0 0 cases), the standard deviation for the winning percentage

as high (2.2%–28%). However, the imitation using 20 0,0 0 0 cases

chieved a high winning percentage (97%) with a small standard

eviation (3%). With 50 0,0 0 0 cases, it was important to set an ap-

ropriate MaxScene to obtain a good performance. The imitation

sing 50 0,0 0 0 cases ( MaxScene was doubled) achieved a high win-

ing percentage (93.5%) with a small standard deviation (3.4%).

ig. 9 shows the winning percentage and the response time of the

mitation system with 50 0,0 0 0 cases for different MaxScene values.

.5. Testing on unseen maps 

In this test, we created the case library from the replays of

he Python map and tested it on a different map (“Lost Temple”)

ot used in training ( Fig. 10 ). The experiment was conducted in

 large-scale combat setting. Table 9 shows the results of com-

at. Compared with the previous results, the unmatched unit ra-
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Table 8 

Sensitivity to the number of cases used (average of 200 games (40 games × 5 runs)) 

( ∗MaxScene = 10 0 0 and ∗∗MaxScene = 20 0 0) in Python Map with large-scale combat sce- 

nario. 

Number of cases Unmatched unit ratio (%) Avg. tolerance level Win rates (%) 

50 0 0 33.7 6.8 72.5 ± 28.1 

25,0 0 0 18.8 5.3 97.5 ± 2.2 

50,0 0 0 17.6 4.3 81 ± 17.4 

10 0,0 0 0 12.9 3.8 91 ± 7.0 

20 0,0 0 0 8.8 3.2 97 ± 2.9 

50 0,0 0 0( ∗) 11.1 2.5 81 ± 7.5 

50 0,0 0 0( ∗∗) 8.8 3.0 93.5 ± 3.4 

Fig. 10. “Lost Temple” map (a) and an example of a combat scenario to test the micromanagement skills (b). 

Table 9 

Application of case libraries trained on the “Python” map to combat with the “Lost Tem- 

ple” map using large-scale combat scenarios (average of 200 games (40 games × 5 runs)). 

Number of cases Unmatched unit ratio (%) Avg. tolerance level Win rates (%) 

50 0 0 50.8% 7.5 91 ± 5.1 

25,0 0 0 36.3% 5.3 66 ± 32.2 

50,0 0 0 26.7% 4.9 94 ± 2.5 

10 0,0 0 0 23.2% 4.2 93.5 ± 2.5 

20 0,0 0 0 21.6% 3.6 93.5 ± 4.9 

50 0,0 0 0 ( ∗) 20.7% 2.9 94 ± 3.7 

50 0,0 0 0 ( ∗∗) 18.9% 3.5 93 ± 1.9 
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tio and average tolerance level were increased slightly. However, it

still shows ∼90% win rates. This result shows the potential of our

approach with previously unseen maps. 

6. Discussion 

We found out through statistical analysis that the proposed

method produced better performances compared to bots that does

not use this method. However, as the bots that participated in

the 2014 and 2016 competitions were not designed specifically for

this experiment, they pose some penalties to the measurement

of our method’s efficiency. We endeavored to imitate the envi-

ronments actually faced by bots in the AI competition as closely

as possible through using full game replays. Even so, direct com-

parison between the bots retains some difficulties the competi-

tion bots were designed to handle other modules besides combat,

while our model has been designed specifically for combat. Thus,

rather than automatically comparing the winning rates of our bots

against those of existing AIs, it would be more useful to consider

the strengths and weaknesses of our method as a whole to deter-

mine its usefulness. The strengths and weaknesses of our model

are as listed below: 

Strengths 

• The model can automatically imitate human behavior from re-

play data, even when players cannot explain reasoning/pattern

behind their own behavior. 
• The model can collect human behavior-related data from most

games and systems such as actual robots, through learning re-

plays and observing human behaviors respectively. 
• Despite the constraints of RTS games, the model can locate sim-

ilar situations in large-scale data in a short amount of time, and

can perform well in combat. 
• Through combining with other types of learning (e.g. reinforce-

ment learning), the model can learn even complex behaviors

over time. The Alphago ( Silver et al., 2016 ), for example, was

able to learn complex behaviors through employing imitation

learning in the first stage, and reinforcement learning in the

second stage. 

Weaknesses 

• In case of imitation learning, the model imitates human data,

therefore there is a limit to outperforming human behavior. Re-

inforcement learning can be used in combination with imita-

tion learning, to overcome this limitation. 
• Current approaches can reduce reaction rates when using large

memory and fast CPU, but there may be problems with slow

response speed in low specification systems. 
• Results may differ depending on the quality of the replay data

used for imitation. For example, if there are many players in

the data displaying wrong behavior, there is a possibility that

the model will learn these behaviors. This situation must be ad-

justed ( Oh & Kim, 2015 ). 
• If a similar scene does not exist, it may be necessary to add

some heuristics to make strategic decisions in such situations.

This problem can be solved by securing large amounts of data. 

7. Conclusions and future works 

In this paper, we proposed to imitate human micromanagement

skills from a massive number of game cases found in replay files.

It is a promising approach because it is easy to obtain the required

replays, given that they are shared by gamers. For StarCraft, it is

possible to download about 30 0,0 0 0 replays from gaming portals.

Even though they are available to the public, the quality of the re-

plays is very high because they contain replays from professional
layer matches. They record the sophisticated unit controls made

y professional players in different game configurations (map, race,

tarting position and so on). For game companies, they are able to

ollect massive numbers of replays by recording the games played

nline through the game servers. Also, they can create in-house

eplays by recruiting expert players to play games (similar to cap-

uring a professional actor’s motion behavior for game character

esign). 

We demonstrated that it is possible to reduce the response time

ignificantly by calculating the IMs offline and loading them into

emory during play. This requires a large amount of main mem-

ry (18.7GB for 50 0,0 0 0 cases). However, the cost of memory is no

onger expensive, so it is possible to run the imitation system us-

ng common desktop machines. In addition, the use of a SSD can

omplement the memory-oriented computing by speeding up the

ccess to the data storage. For example, the pre-calculated IMs can

e stored on the SSD and a portion of them will be loaded into

emory in real-time, speeding up the case search. Also, research

nto reducing IM generation time by using GPU may be required

ecause CPU capacity may not be enough to process more unit

ypes and data in RTS games. These approaches offer potential in

pening the way to exploit the use of millions of game cases ac-

uired from human replays with a view to imitating human-like

nd human-level game playing. 
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