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Abstract. Incorporating a priori knowledge, such as expert knowledge, meta-
heuristics, human preferences, and most importantly domain knowledge discovered
during evolutionary search, into evolutionary algorithms has gained increasing
interest in recent years. In this chapter, we present a method for systematically
inserting expert knowledge into evolutionary board game framework at the open-
ing, middle, and endgame stages. In the opening stage, openings defined by the
experts are used. In this work, we use speciation techniques to search for diverse
strategies that embody different styles of game play and combine them using voting
for higher performance. This idea comes from the common knowledge that the com-
bination of diverse well-playing strategies can defeat the best one because they can
complement each other for higher performance. Finally, we use an endgame data-
base. Experimental results on checkers and Othello games show that the proposed
method is promising to evolve better strategies.

1 Introduction

There are two extreme approaches to develop game strategies. One is to use
expert domain knowledge extensively in opening, middle and endgame stages.
For example, Chinook, the best checkers player in the world, used huge open-
ing and endgame databases with the expert’s comments on feature selection
and weight determination of evaluation function [1]. It shows very successful
to get the world championship-level performance but they need much effort
to do that. The other is to use an evolutionary computation to extract novel
and good strategies without expert knowledge. The procedure of strategy in-
duction is based on the competition among randomly generated individuals
and genetic operations for guiding strategy search. For example, Fogel evolved
master-level checkers players from the pure evolution [2].

Although both of them provide a way to create game strategies, they
have a limitation to be a more practical one. To solve the problem, hybrid of
both approaches was proposed and realized in many different games [3, 4, 5].
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The focus of the approach is to utilize expert knowledge in evolutionary algo-
rithms. The domain knowledge can be exploited in many parts of evolutionary
algorithms; genetic operators, selection, and competition. The incorporation
of domain knowledge guides the search direction of evolutionary algorithms or
reduces the search spaces and improves the performance of search. Although
the incorporated knowledge is not complete compared to the knowledge-based
approach, the evolutionary algorithm can be enhanced by the information.

Many board games including Othello, Go, Chess, and Checkers have sim-
ilar properties. They are perfect information of games and there is no hidden
information. Usually, each board game has three different stages: opening,
middle, and endgame stages. In opening stage, each game has its own book
moves. Expert players are very good at memorizing or organizing a huge num-
ber of opening moves. A small disadvantage in an early stage of game results
in a great loss after the opening. In the middle stage, it is difficult to define
the helpful knowledge explicitly. At the endgame stage, there are relatively
small possible choices and it allows programs to calculate the win/draw/loss
of the game perfectly. The endgame positions are memorized in a form of DB
or perfectly solved in a few seconds.

Opening and endgame knowledge of board games are easily accessible
through Internet though they are not enough to make world-level cham-
pion program. Board game associations of each country, world organization of
board games and many basic introductory materials (books and internet web-
site) provide well-defined knowledge about the games. Using the knowledge,
an evolutionary induction approach for board games can be enhanced. Though
evolutionary algorithm gives much freedom to the designer, it needs a long
evolution time and sometimes, very simple tactics are not evolved or ignored.
The idea of knowledge incorporation to the board game is summarized in the
figure 1.

In this chapter, the representative two board games, Othello and Check-
ers, are used to illustrate the feasibility of the approach. Both of them are
very well-known games that are frequently used in AI community. Opening
and endgame knowledge are well-defined for the games. They are involved
in the evolution of board evaluator represented neural networks and weights

Opening Stage Middle Stage Endgame Stage

Opening DB Endgame DB

Endgame SolverGame Transcripts DB

Opening Heuristics Endgame Heuristics

Evaluation for Game Tree

EC-based Optimization

Heuristic Knowledge

Fig. 1. Conceptual diagram of knowledge-incorporated evolutionary induction of
strategies (EC = Evolutionary Computation)
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matrix. In Checkers, neural network evaluator is evolved with opening and
endgame knowledge. In Othello, weight piece counter is evolved with opening
knowledge.

2 Related Works

2.1 Traditional Game Programming

Usually a game can be divided into three general phases: the opening, the
middle game, and the endgame. Entering thousands of positions in published
books into the program is a way of creating an opening book. The checkers
program Colossus has a book of over 34,000 positions that were entered
manually [6]. A problem with this approach is that the program will follow
published play, which is usually familiar to the humans [7]. Without using
an opening book, some programs find many interesting opening moves that
stymie a human quickly. However, they can also produce fatal mistakes and
enter a losing configuration quickly because a deeper search would have been
necessary to avoid the mistake. Humans have an advantage over computers in
the opening stage because it is difficult to quantify the relevance of the board
configuration at an early stage. To be more competitive, an opening book can
be very helpful but a huge opening book can make the program inflexible and
without novelty.

The one of important parts of game programming is to design the evalu-
ation function for the middle stage of the game. The evaluation function is
often a linear combination of features based on human knowledge, such as the
number of kings, the number of checkers, the piece differential between two
players, and pattern-based features. Determining components and weighting
them require expert knowledge and a long trial-and-error tuning. Attempts
have been made to tune the weights of the evaluation function through auto-
mated processes, by using linear equations, neural networks, and evolutionary
algorithms and can compete with hand-tuning [5, 8].

In chess, the final outcome of most games is usually decided before the
endgame and the impact of a prepared endgame database is not particu-
larly significant. In Othello, the results of the game can be calculated in real-
time if the number of empty spaces is less than 26. In these two games, the
necessity of the endgame database is very low, but in checkers the usage of an
endgame database is extremely beneficial. Chinook has perfect information
for all checkers positions involving 8 or fewer pieces on the board, a total of
443,748,401,247 positions. These databases are now available for download.
The total download size is almost 2.7GB (compressed) [9]. Recently, the con-
struction of a 10-piece database has been completed.
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2.2 Evolving Game Players

Checkers is the board game for which evolutionary computation has been
used to evolve strategies. Fogel et al. have explored the potential for a co-
evolutionary process to learn how to play checkers without relying on the
usual inclusion of human expertise in the form of features that are believed
to be important to play well [10, 11, 12, 13]. After only a little more than 800
generations, the evolutionary process generated a neural network that can
play checkers at the expert level as designated by the U.S. Chess Federation
rating system. In a series of six games with a commercially available software
product named “Hoyle’s Classic Games,” the neural network scored a perfect
six wins [14]. A series of ten games against a “novice-level” version of Chinook,
a high-level expert, resulted in 2 wins, 4 losses, and 4 draws [15].

Othello is a well-known and challenging game for human players. Chong
et al. applied Fogel’s checkers model to Othello and reported the emergence
of mobility strategies [16]. Wu et al. used fuzzy membership functions to
characterize different stages (opening game, mid-game, and end-play) in the
game of Othello and the corresponding static evaluation function for each
stage was evolved using a genetic algorithm [17]. Moriarty et al. designed an
evolutionary neural network that output the quality of each possible move at
the current board configuration [19]. Moriarty et al. evolved neural networks
to constrain minimax search in the game of Othello [20, 21]. At each level, the
network saw the updated board and the rank of each move and only a subset
of these moves were explored.

The SANE (symbiotic, adaptive neuro-evolution) method was used to
evolve neural networks to play the game of Go on small boards with no
preprogrammed knowledge [22]. Stanley et al. evolved a roving eye neural
network for Go to scale up by learning on incrementally larger boards, each
time building on knowledge acquired on the prior board [23]. Because Go is
very difficult to deal with, they used a small size board, such as 7×7, 8×8, or
9×9. Lubberts et al. applied competitive co-evolutionary techniques of com-
petitive fitness sharing, shared sampling, and a hall of fame to the SANE
neuro-evolution method [24]. Santiago et al. applied an enforced subpopula-
tion variant of SANE to Go and an alternate network architecture featuring
subnetworks specialized for certain board regions [25].

Barone et al. used evolutionary algorithms to learn to play games of im-
perfect information – in particular, the game of poker [26]. They identified
several important principles of poker play and used them as the basis for
a hypercube of evolving populations. Co-evolutionary learning was used in
backgammon [27] and chess [5, 28]. Kendall et al. utilized three neural net-
works (one for splitting, one for doubling down, and one for standing/hitting)
to evolve blackjack strategies [29]. Fogel reported the experimental results of
evolving blackjack strategies that were performed about 17 years ago in order
to provide some baseline for comparison and inspiration for future research
[30]. Ono et al. utilized co-evolution of artificial neural networks on a game
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Table 1. Summarization of related-works in evolutionary games

Information Game Reference
Knowledge
Incorporation

Perfect
Information

Checkers 2

Othello

16
17 O
19
20

Go 22

Chess
28 O
5 O

Kalah 31 O

Imperfect
Information

Backgammon 27
Poker 26 O

Blackjack
29 O
30 O

called Kalah and the technique closely followed the one used by Chellapilla
and Fogel to evolve the successful checkers program Anaconda (also known
as Blondie24) [31]. Table 1 summarizes the related works. Fogel’s checkers
framework was used in other games such as [5, 16, 29] and [31]. Fogel et al.
applied the framework to the game of chess and reported that the evolved
program performed above the master level 5. More information about evolu-
tionary game players is available at [32].

2.3 Othello and Evolution

Because the strategy of Othello is very complex and hard to study even for
human, researchers use the game as a platform of AI research. Miikkulainen
et al. used evolutionary neural network as a static evaluator of the board [19].
Because they used marker-based encoding for neural network, the architec-
ture and weights were coevolving. In their work, they did not use game tree
but the evolution generated mobility strategy, one of the important human
strategies for the game. The analysis by the world champion Othello player,
David Shaman, was attached and the result showed the possibility of evolu-
tionary approach for the game. In other works, they used evolutionary neural
network to focus the search of game tree [20, 21]. In the work, game tree was
used to find the good move with static evaluator. The purpose of the evolution
was to find a neural network that decided whether deep search was needed.
By reducing the moves for deep search, it was possible to expand the search
depth more than previous one.

Chong et al. used the same framework used in successful evolutionary
checkers to evolve Othello strategies [16, 33]. Their work showed that the same
architecture could be successful in another game (Othello). They discussed
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that the reasons of success were spatial preprocessing layer, self-adaptive
mutation, and tournament-style selection (coevolving). They evolved only the
weights of fixed-architecture neural network and the concept of spatial pre-
processing (dividing the board into a number of sub-boards) were used.

Sun et al. proposed dynamic fitness function for the evolution of weights
of linear static evaluator for Othello [18]. The fitness function was changed
according to the performance of the previous stage. They also investigated the
expansion of chromosome structures to meet new challenges from the environ-
ment in the game of Othello [17]. In other work, they used multiple coaches
(they were used for fitness evaluation) selected from local computer Othello
tournament before evolution [34]. Sun’s work was focused on increasing the
diversity and self-adaptation of evolutionary algorithm given linear evalua-
tion function. The purpose of evolution was to adjust the weights of features
(position, piece advantage, mobility and stability) by expert.

Alliot et al. proposed a method for improving the evolution of game
strategies [35]. They evolved weights of linear evaluation function (it was
similar to the weight piece counter). The sharing scheme and sophisticated
method for fitness evaluation were used. Because Othello’s rule was so sim-
ple to understand, it was frequently used for educational purpose to teach
student about the evolutionary mechanism [36, 37]. Smith et al. proposed
co-evolutionary approach for Othello [38]. The fitness of the member in the
population was evaluated by the competition results with other members.
There were some works about reinforcement learning or self-teaching neural
networks for Othello [39, 40]. The discussion about the relationships between
reinforcement learning and the evolutionary algorithm can be found at [41].

3 Evolutionary Game Players with Domain Knowledge

3.1 Evolutionary Checkers Framework with Speciation

Usually, an evaluation function is the linear sum of the values of relevant fea-
tures selected by experts. Input of the evaluation function is the configuration
of the board and the output of the function is a value of quality. Designing
the function manually needs expertise in the game and tedious trial-and-error
tuning. Some features of the board evaluation function can be modeled using
machine learning techniques such as automata, neural networks, and Bayesian
networks. There are some problems for learning the evaluation function such
as determining the architecture of the model and transformation of the
configuration into numerical form.

The feed-forward neural network, which has three hidden layers comprising
91 nodes, 40 nodes, and 10 nodes, respectively is used as an evaluator. Multiple
neural networks are generated from evolutionary algorithm such as speciation
and they are combined to improve the performance. The board configuration is
an input to the neural network that evaluates the configuration and produces
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Fig. 2. An example of board representation. Minus sign means the opponent check-
ers and K means the King. The value of K is evolved with the neural networks
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Fig. 3. An example of 4×4, and 3×3 sub-boards. In a checkerboard, there are 91
sub-boards (36 3×3 sub-boards, 25 4×4 sub-boards, 16 5×5 sub-boards, 9 6×6 sub-
boards, 4 7×7 sub-boards, and 1 8×8 sub-board). This design gives spatial local
information to the neural networks

a score representing the degree of relevance of the board configuration. For
evaluation, the information of the board needs to be transformed into the
numerical vectors. Each board is represented by a vector of length 32 and
components in the vector could have a value of {−K,−1, 0,+1,+K}, where
K is the value assigned for a king, 1 is the value for a regular checker, and 0
represents an empty square. Figure 2 depicts the representation of a board.

To reflect spatial features of the board configuration, sub-boards of the
board are used as an input. One board can have 36 3×3 sub-boards, 25 4×4
sub-boards, 16 5×5 sub-boards, 9 6×6 sub-boards, 4 7×7 sub-boards, and 1
8×8 sub-board. 91 sub-boards are used as an input to the feed-forward neural
network. Figure 3 shows an example of 3×3, 4×4, and 6×6 sub-boards. The
sign of the value indicates whether or not the piece belongs to the player or
the opponent. The closer the output of the network is to 1.0, the better the
position is. Similarly, the closer the output is to −1.0, the worse the board.
Figure 4 shows the architecture of the neural network.
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Fig. 4. The architecture of neural network. It is fully connected in the hidden-layers.
One sub-board is transformed into the corresponding vector representation and used
for the input of the neuron. The output of the neural network indicates the quality
of the board configuration
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The architecture of the network is fixed and only the weights can be
adjusted by evolution. Each individual in the population represents a neural
network (weights and biases) that is used to evaluate the quality of the board
configuration. Additionally, each neural network has the value of K and self-
adaptive parameters for weights and biases. An offspring P ′

i , i = 1, ..., p for
each parent Pi, i = 1, ..., p is created by

σ′
i(j) = σi(j) exp(τNj(0, 1)), j = 1, ..., Nw

w′
i(j) = wi(j) + σ′

i(j)Nj(0, 1), j = 1, ..., Nw

where NW is the number of weights and biases in the neural network (here
this is 5046), τ = 1/

√
2
√

Nw = 0.0839, and Nj(0, 1) is the standard Gaussian
random variable resampled for every j. The offspring king value K ′ was ob-
tained by

K ′
i = Ki + δ

where δ was chosen uniformly at random from {−0.1, 0, 0.1}. For conve-
nience, the value K ′ was constrained in [1.0, 3.0] by resetting to the limit
exceeded when applicable.

In fitness evaluation, each individual chooses five opponents from a popu-
lation pool and plays games with the players. Fitness increases by 1 for a win
while the fitness of an opponent decreases by 2 for a loss. In a draw, the fitness
values of both players remain the same. After all the games are played, the
fitness values of all players are determined. Deterministic crowding algorithm
is used to maintain the diversity of the population. After finishing evolution,
the final population is clustered into species and the representative players
from each species are combined to play.

3.2 Knowledge Incorporation into Evolutionary Checkers

As mentioned before, we can classify a single checkers game into three stages:
opening, middle, and endgame stages. In the opening stage, about 80 previ-
ously summarized openings are used to determine the initial moves. In the
middle stage, a game tree is used to search for an optimal move and an evo-
lutionary neural network is used to evaluate leaf nodes of the tree. In the
neural network community, it is widely accepted that the combination of mul-
tiple diverse neural networks can outperform the single network [42]. Because
the fitness landscape of an evolutionary game evaluation function is highly
dynamic, a speciation technique like fitness sharing is not appropriate. A
crowding algorithm that can cope with a dynamic landscape is adopted to
generate more diverse neural network evaluation functions. The performance
of evolutionary neural networks for creating a checkers evaluation function
has been demonstrated by many researchers 2. In the end game, an endgame
database is used which indicates the result of the game (win/loss/draw) if the
number of remaining pieces is smaller than a predefined number (usually from
2 to 10).
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Opening Stage

The opening stage is the most important opportunity to defeat an expert
player because trivial mistakes in the opening can lead to an early loss. The
first move in checkers is played by red and there are seven choices (9-13, 9-14,
10-14, 10-15, 11-15, 11-16, and 12-16). These numbers refer the labels on the
board (the top-left square is 1) and the X-Y means red moves a piece from
position X to position Y. Usually, 11-15 is the best move for red but there
are many other alternatives. They are described with specific names, such as
Edinburgh, Double Corner, Denny, Kelso, Old Faithful, Bristol, and Dundee,
respectively. For each choice, there are many well-established additional se-
quences which range in length from 2 to 10. The longest sequence is described
as the White Doctor: 11-16, 22-18, 10-14, 25-22, 8-11, 24-20, 16-19, 23-16,
14-23, 26-19. Careful analysis over decades of tournament play has proven the
usefulness or fairness of the opening sequences. Initial sequences are decided
by the opening book until the move is out of the book. Each player chooses
its opening randomly and the seven first choices have the same probability to
be selected as an opening.

If the first move is 9-13 (Edinburgh), there are 8 openings that start from
9-13. They are Dreaded Edinburgh (9-13, 22-18, 6-9), Edinburgh Single (9-13,
22-18, 11-15), The Garter Snake (9-13, 23-19, 10-15), The Henderson (9-13,
22-18, 10-15), The Inferno (9-13, 22-18, 10-14), The Twilight Zone (9-13, 24-
20, 11-16), The Wilderness (9-13, 22-18, 11-16), and The Wilderness II (9-13,
23-18, 11-16). In this case, there are four choices for the second moves: 22-18,
23-19, 24-20, and 23-18. The second move is chosen randomly and the next
moves are selected continually in the same manner. Table 2 shows an example
of openings in checkers.

Table 2. Openings in Checkers game

Name Opening Name Opening

Edinburgh 9-13 Old Faithful 11-15

Dreaded Edinburgh 9-13, 22-18, 6-9 Cross 11-15, 23-18, 8-11

Edinburgh Single 9-13, 22-18, 11-15 Dyke 11-15, 22-17, 15-19

The Garter Snake 9-13, 23-19, 10-15 Bristol 11-16

The Henderson 9-13,22-18, 10-15 Bristol Cross 11-16, 23-18, 16-20

Double Corner 9-14 Millbury 11-16, 22-18, 8-11

Double Corner Dyke 9-14, 22-17, 11-15, 25-
22, 15-19

Oliver’s Twister 11-16, 21-17, 8-11

Denny 10-14 Dundee 12-16

Kelso Cross 10-15, 23-18 Bonnie Dundee 12-16, 24-20, 8-12

The Tyne 10-15, 21-17, 9-13 The Skunk 12-16, 24-20, 10-15
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Endgame Stage

The estimated quality of the board is calculated using the evolved neural
networks to evaluate the leaf nodes of the tree with the minimax algorithm.
If the value of f (estimated quality of the next moves) is not reliable, we refer
to domain-specific knowledge and revise f . The decision rule for querying the
domain knowledge is defined as follows.

IF (f <0.75 and f >0.25) or (f <-0.25 and f >-0.75)
THEN querying the domain knowledge

For example, there is a 2-ply game tree and the concept of selective domain-
specific knowledge is like this. In the game tree, let’s assume that there are
8 terminals. The two choices are evaluated as 0.3 and -0.9. It is clear that
the board configuration as evaluated -0.9 is not good. However, the board
configuration with 0.3 is not enough to decide as a draw and needs querying
the domain knowledge. If the returned answer from the DB is a draw, the
player must select the move. However, if the answer is a loss, the player could
select the configuration of -0.9.

3.3 Othello

As mentioned before, we have classified a single Othello game into three stages:
opening, middle, and endgame stages. In the opening stage, about 99 previ-
ously summarized openings are used to determine the initial moves. In the
middle and endgame stage, a weight piece counter is used to search for a good
move and an evolutionary algorithm is used to optimize the weights of the
counter. Though game tree is useful to find a good move, in this paper we
only focus on the goodness of the evaluation function. Figure 5 shows the pro-
cedural flow of the proposed method in a game. The longest opening has 18
moves and it can significantly reduce the difficulty of the evaluation function
optimization.

Out-of-opening?

Select Move From Opening

No

Move Evaluation Using WPC

End of Game?

No

Fitness Evaluation

Win/Lose/Draw

Initializing WPC

Selection

Genetic Operations

End?

No

Fig. 5. The flow of the game using the proposed method
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Opening Stage

Opening is very important for Othello game because the game is extremely
short compared to other games and the importance of early moves is huge.
In the games between expert players, gaining small advantage in the early
games is very important. They attempt to memorize good or tricky moves
before tournament. Brian Rose, World Othello Champion at 2002, said that he
memorized about 300 lines before the championships. It is critical to prepare
and memorize well-defined openings in the Othello game.

In this work, well-defined 99 openings are used (http://www.oth ello.nl/
content/anim/openings.txt). The length of opening ranges from 2 to 18. In
fact, in the expert player’s game, there is a case that all moves are memorized
by both of them. The length of opening can be expanded to the last move,
but it is not possible to exploit all of them. “Out-of-opening” means that the
moves by the player are not in the list of the openings. Because it is carefully
analyzed by experts, it can guarantee the equivalence between two players.
In some openings, they are a bit beneficial to a specific color but it is not
important because in human’s game the difference can be recovered in the
middle and end game.

The opening is named after their shapes. Tiger, Cat, and Chimney means
that the shape of the opening is similar to the objects. Until out-of-opening,
the WPC player follows one of the openings in the list. Figure 6 shows an
example of opening selection. The current sequence of the game is defined as
S = {m1,m2, ...,mn}. Here, mi represents each move, and nis the number
of moves played. For each opening, we check whether the first n moves are
the same with the sequence. The satisfactory openings are called candidates.

Fig. 6. The selection of opening (Cow is selected)
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Among candidates, one opening is chosen probabilistically. The next move of
the selected opening after the first n moves is decided as the next move of
player. At the 3rd move, there are 3 choices: Diagonal, perpendicular, parallel.
For each choice, there are several extended openings. The probability of choice
for each line is determined based on the number of openings. For example, the
diagonal opening has 59 variations in his line and about 59% probability to
be selected. If there are many variations for each choice, it means that the line
is the most preferable one for humans. The probability of selection is based
on the human’s long investigation.

The probability of opening move selection can be determined using an-
other way. For example, the probability of openings in the games of WTHOR
database (It contains all public games played between humans) can be used.
Otherwise, specific book evaluation (automatically learned from self-played
games of strong program) values can be exploited. WZEBRA (strong Oth-
ello program) provides evaluation value for each opening. For example, the
X-square opening is -23 (in black’s perspective) and Snake is -4.

Evolving Evaluator (WPC)

The evaluation of each WPC (Weighted Piece Counter) is based on the com-
petition against static player. Standard heuristic WPC is used to evaluate
the performance of the individual. Figure 7 depicts the standard WPC. Its
darkness represents the weight of each position. In Othello, four corners are
extremely important and the weight of the corners is 1.0. Other places except
the ones near the corner has the similar (0.01∼0.1) weights. The positions near
the corners are very dangerous because it gives a chance to the opponent to
capture the corner. Because it is static, it cannot evaluate well the dynamics
of the relevance of position, but it is still strong compared to other random
approaches.

The fitness of the WPC is evaluated based on the 1000 games between the
standard WPCs. Given two deterministic strategies, there can be only two
games (changing the color). This makes the fitness evaluation difficult and

1.0−0.250.10.050.050.1−0.25

−0.25−0.250.010.010.010.01

0.10.010.050.020.020.05

0.050.010.020.010.010.02

0.050.010.020.010.010.020.05

0.05

0.10.010.050.020.020.050.01

0.01

0.01

0.01

0.1

0.1

−0.25−0.250.010.010.010.010.25

0.25

1.0−0.250.10.050.050.1−0.25

−0.25

−0.25

1.0

1.0

Fig. 7. Weights of the heuristic
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random moves are used. 10% of moves of both players are decided randomly.
It allows 1000 games among them being different but it also makes the fitness
of each WPC unstable. To preserve good solutions for the next generation,
elitist approach is used.

If the number of wins is W , the number of loses is L, and the number of
draws is D, the fitness is defined as follows.

fitness = W ∗ 1.0 + D ∗ 0.5

The weights are widely used in real Othello tournament.
The weights of each position are initialized as a value between -1 to 1.

Until out-of-opening, the WPC in the population uses opening knowledge.
After out-of-opening, the WPC evaluates the relevance of board and decides
the next move. Among possible moves, the one with the highest WPC is se-
lected. Roulette-wheel selection is used and 1-point crossover is applied to the
converted 1-dimensonal array of the 8×8 board. Mutation operator changes
an element of the vector as a new value ranging from -1 to 1.

4 Experimental Results

4.1 Checkers

Speciation algorithm is used to generate diverse strategies and improve the
performance of evolutionary strategies by combining multiple strategies [43].
The non-speciated evolutionary algorithm uses a population size of 100 and
limits the run to 50 generations. The speciated evolutionary algorithm sets
the population size to 100, generations to 50, the mutation rate to 0.01 and
crossover rate to 1.0. The number of leagues (used to select the best player
from each species) is 5 (5 means that each player selects 5 players from the
species randomly and the competition results are used for the selection).
Evolving checkers using speciation requires 10 hours on a Pentium III 800MHz
(256MB RAM). The non-speciated evolutionary algorithm uses only mutation
but the speciated evolutionary algorithm uses crossover and mutation. The
non-speciated evolutionary algorithm is the same as Chellapilla and Fogel’s
checkers program. The parameters of a simple EA are Population Size=100,
Mutation rate=1.0, Generation=50. The parameters of the speciated EA are
Population Size=100, Mutation rate=0.01, Crossover rate=1.0 and Genera-
tion=50. They have the same number of individuals for evolution and the
game that they played for one generation is the same to ours.

The Chinook endgame database (2∼6 pieces) is used for revision when the
estimated value from the neural network is between 0.25 and 0.75 or between
-0.25 and -0.75. Time analysis indicates that the evolution with knowl-
edge takes much less time than that without knowledge in simple evolution
(Figure 8) and the knowledge-based evolution takes a little more time than
that without knowledge in the speciated evolution (Figure 8). This means that
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Fig. 8. Comparison of running time (Diff = Time(Without Knowledge)-Time(With
Knowledge))

Table 3. The competition results between the speciated players using both
opening and endgame DB and the speciated player with one of the knowledge
(Win/Lose/Draw)

Speciated EA with opening and
endgame DB

Speciated EA with opening DB 14/6/10

Speciated EA with opening and
endgame DB

Speciated EA with endgame DB 9/10/11

Speciated EA with opening DB Speciated EA with endgame DB 5/13/12

the insertion of knowledge within a limited scope can accelerate the speed of
the evolutionary algorithm because it can reduce the computational require-
ment for finding an optimal endgame sequence by using the endgame DB.
Since we have used two different machines to evolve simple and speciated
versions, respectively, direct comparison of evolution time between them is
meaningless. In the speciated evolution, the insertion of knowledge increases
the evolution time and an additional 5 hours are needed for 80 generations.
Table 3 shows the effect of the stored knowledge (opening and endgame data-
bases) in speciation.

4.2 Othello

The parameters of the evolution are as follows. The maximum generation is
100, population size is 50, crossover rate is 0.8, and mutation rate is 0.01. The
best fitness is about 540 in the evolution of WPC with opening knowledge.
After then, it converges to 500 though the population size is 50. The best
individual at the 1st generation is 400. It means that the incorporation of the
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opening knowledge gives some individuals the high performance gain. The
average fitness at the 1st generation is about 200. It is not quite different
with the one of evolution without opening. That means the incorporation of
opening does not increase the performance of all individuals in the population.

The evolution finds solutions that can do well after the opening and it can
significantly reduce the burden for the WPC. Though the generations from
21 to 45 show performance degradation, the best individual that exploits the
advantage of opening emerges at 51. The comparison of the maximum fitness
over the evolution between the one with opening and the one without opening
shows that the one with opening shows better fitness during evolution. Though
the competition dose not support opening and the direct comparison against
them is not possible, the 550 is about rank 12 in the CEC competition in
2006 [44].

The comparison of the average fitness between them shows that the average
fitness of the one with opening is larger than that without opening, but it
finally converges to the same value. It means the incorporation of opening
does not give huge advantage to the population. The average fitness of the
1st generation is not different and it means that the evolution finds more
improved individuals that exploit the opening knowledge. Figure 9 shows the
average of 10 runs.

5 Concluding Remarks

In this chapter, we presented several methods to incorporate domain knowl-
edge into evolutionary board game players: checkers and Othello. Well-defined
opening and endgame knowledge can be easily incorporated into the evolu-
tionary induction procedure of strategies and experimental results confirm



Evolutionary Algorithms for Board Game Players 87

that the presented methods can improve the performance of evolved strate-
gies compared to that without knowledge.
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