

The Systematic Analysis of Evolved Neural Controllers for Quadruped

Robots

Sehar Shahzad Farooq

o

 KyungJoong Kim

 Sehar146@gmail.com, kimkj@sejong.ac.kr

Department of Computer Science and Engineering, Sejong University, South Korea

Abstract

Evolutionary robotics is an approach that employs evolutionary computation to develop a

controller for an autonomous robotic system. Evolutionary computing usually operates depending

on a population of candidate controllers, initially selected from a random distribution. The

population is iteratively modified according to the fitness function. In this paper, an automatic

control system is designed for the Quadruped Robots using Evolutionary Neural Network (ENN)

and the performance is measured in terms of the distance travelled by the robot from its origin.

The developed ENN helps the robot to choose the best possible solution that provide with the

maximum distance. The evolved neural controllers are analyzed and the results show the

performance of the quadruped robot in terms of number of iterations over the distance covered to

the desired direction.

1. Introduction

The classical approach to control a robotic

system consists of three modules i.e. perception,

planning and action. First of all, while designing a

controller for robotic system, tasks need to be defined.

Then, the instruction set is designed for the controller

and finally, the robotic system performs its actions in

accordance with predefined strategies. It suffers from

the uncertainty in the unknown or changing

environments [1].

It is necessary to make a robot which builds

controllers automatically from the interaction with

environments. Instead of the predefined strategies, it

is necessary to learn a new strategy suitable for the

new or changing environment. The interaction means

the robot tests its control mechanism and body shapes

in the environment. Using some realistic simulators

(for example, physics-based simulators), the robot

can run thousands of testing in a few seconds.

Under the name of evolutionary computation,

there are a lot of different optimization algorithms

inspired by biological evolution. The evolutionary

robotics (ER) combines the robot learning with

evolutionary computation. It evolves a controller of

robots from the scratch using some genetic operators

(selection, crossover and mutations). Based on the

output of the learning phase, the algorithm suggests

the most feasible and suitable action which the

robotic system should perform [2].

In this paper, we developed an automatic control

system in which the robot learns about the

environment using ENN algorithm first. Based on the

interaction with the environment, the robot

determines a number of things such as 1) direction to

move, 2) how much step size it should take, and 3)

the pattern of steps. We built our simulator based on

the open evolutionary robotics platform

with a

simple quadruped robot show that the evolution could

generate walking behavior automatically. In addition

to the evolution, we attempt to analyze the properties

of the neural networks evolved to see their working

mechanism. It is challenging to analyze the results

from the automatic design but it can give some

insights to the human designers.

2. A Quadruped Robot

The design of a robot simulation required a

physics engine. For this purpose, ODE (Open

Dynamics Engine) is used. ODE is an open source

physics engine to simulate rigid body dynamics. It is

stable and mature platform. It has special features

such as advanced joint types, collision detection with

friction and more suitable for simulating vehicles in

virtual reality environment. As mentioned earlier,

ODE is an open source, therefore it is provided with a

number of built-in test applications. We use one of

these applications which simulate a buggy. We

modified the buggy simulation and design our

quadruped robot depicted in Fig. 1.

The developed quadruped robot consists of a

main body which is connected with four upper legs

(Hip) and these legs are further connected with four

lower legs (Knee). The length and width of the body

is 1.25m while the depth is 0.15m. The height of the

body is adjusted by the lower legs length. The length

2013년 한국컴퓨터종합학술대회 논문집

1450

of upper and lower legs is kept the same during

simulation for the analysis.

Fig. 1 Physical design of a quadruped robot

Each part of the body is connected with a hinge

joint. The constraints of two parts are in the same

location and in line to the hinge axis. The movement

of joints is limited between [-45

o

, 45

o

].

These joints are then attached to motors that

force the legs either inward or outward of the joints

with a force capable to react sufficiently. The knees

can move back and forth while hips can move up and

down. With the help of knees and hips, the robot

body can move to the desired direction. The speed

and force of the motor is controlled and adjusted

using the proposed algorithm to avoid the robot from

jittering.

Moreover, a binary touch sensor is connected at

the bottom of each lower leg which can provide

information of the collision of the robot with the

ground. Each sensor fires when it collides with the

ground and stops when the leg is off the ground. The

force of gravity is set to -9.8m/s

2

. In this paper, we

used built-in collision detection mechanism provided

by ODE. Initially, the robot is set to zero position in

the simulation window and the fitness measures how

far the main body of the robot moves at a particular

iteration.

Before applying ENN to the robot, it is checked

with a fixed angle provided to each motor. The speed

and force of every motor is adjusted to avoid the

robot for jittering.

3. Evolutionary Neural Network

ENN is one of the suitable techniques to find the

best possible solution out of a number of candidate

solutions for the problem. In a typical ENN, the

solution is optimized in such a way that the fitness of

individual solution (in a set of random population) is

measured at first using the fitness objective function,

then those candidate solution with lower fitness are

discarded and the remaining solutions are modified.

Among those remaining solutions, each one is again

examined and the candidate solution with the highest

fitness value is considered to be the best solution.

The process of ENN is started with a random

population. A 4x8 matrix is randomized between

values [-1, 1]. The order of the matrix is set because

the quadruped robot has four sensors and eight

actuators. Random values from [-1, 1] give a

directional angle to move hips and knees either

inward or outward. The robot covers a distance from

its origin by using a pattern of movements defined by

ENN. The positive distance covered by the

quadruped robot is measured and is considered as the

fitness of ENN. This fitness is compared with the

parent fitness and if the fitness is greater than the

parent fitness then child matrix becomes the parent

and older parent matrix is discarded. The new parent

matrix is perturbed with a specified value of 0.05 and

new child matrix is created. The process is repeated

for three hundred iterations and the matrix with the

highest fitness is measured. The final parent matrix is

considered to be the best solution.

The ENN performs evolution on a set of matrix

which contains the information of motor angles that

are to be applied to the quadruped robot. The input to

ENN is given by the sensors while the output is

applied to motors attached to each joint of the robot.

Inputs are binary values while the synapse weight

matrix consists of continuous values from [-1, 1],

which gives continuous output values in this range.

The synapse value indicates the influence of source

neuron to the target neuron. The activation of a

neuron for the next time step can be expressed as

Where is the number of neurons connected to ,

activation of neuron is , synapse weight

connects neuron to , and is the thresholding

function.

ENN interface with ODE simulation such that a

4x8 matrix is outputted in a text file which is read by

simulation. The output of ENN is scaled between [-

45

o

, 45

o

] before applying to motors. The motors force

Hips and Knees to move in either positive or negative

direction to produce a certain distance from the origin.

ODE writes out the distance covered (By the robot)

with the given solution which ENN reads the fitness

value. The fitness is compared and the parent matrix

is modified to repeat the cycle. The simulation runs

for 300 iterations.

4. The Analysis of Evolved Neural Controllers

There are twelve number of neurons scattered

around 360

o

 in Fig. 2.

Each neuron influences on all other neurons. The

gray lines show the negative while black lines show

2013년 한국컴퓨터종합학술대회 논문집

1451

the positive synapse values. The width of the synapse

lines indicates the magnitude of the synapse weight.

The positive and negative synapses produce a pattern

for the robot to move far from the origin.

The direction, step size and the pattern of steps is

depicted in Fig. 3. The robot moves towards right

direction in counter clock wise rotation with only one

leg at the ground while pushing from second leg.

When the second leg touches the ground, the third leg

pushes the robot in the same direction. The inward to

outward movement of the actuator forces the robot to

move in air while the other leg touched with the

ground support the robot from falling down.

The graph in Fig. 4 Shows the number of

iterations and the average distance with standard

error travelled by the robot per iteration. The

increment in distance per iteration is the performance

of ENN.

5. Conclusion and Future Works

Although ENN outputs the fitness which is

sufficient enough to optimize the quadruped robotic

system but there is a room for improvement. In future,

different evolutionary algorithms like Distributed

Evolutionary Algorithm and NeuroEvolution of

Augmented Topology (NEAT) can be applied to the

same quadruped robot to obtain the maximum

outcome. Furthermore, the simulation environment

can be modified with some obstacles in the path and

the control system is forced to avoid these hurdles

and find a suitable direction to move. A fault

tolerance in the quadruped robot can be introduced

and an automatic control system for fault tolerant

quadruped robot can be designed based on this work.

Acknowledgement

This research was supported by the Original

Technology Research Program for Brain Science

through the National Research Foundation of Korea

(NRF) funded by the Ministry of Science, ICT and

Future Planning (2010-0018950).

References

[1] M. Givehchi, A. Ng, and L. Wang,

"Evolutionary optimization of robotic assembly

operation sequencing with collision-free paths,"

Journal of Manufacturing Systems, vol. 30, pp.

196-203, 2011.
[2] S.-I. Lee and S.-B. Cho, "Observational

emergence in evolutionary fuzzy robotics,"

International Journal of Modelling,

Identification and Control, vol. 3, no. 1, pp. 88-

96, 2008.

[3] Josh Bongard, (2013, March 28). LUDOBOTS

Morphology Evolution & Cognition Lab,

"Evolutionary Robotics". Retrieved from

http://www.uvm.edu/~ludobots/index.php/Main/

EvolutionaryRobotics

Fig. 2 Effect of synapse weight over the best neurons

Fig. 3 The best quadruped robot movements

Fig. 4 Fitness of ENN over iterations

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300

F
it

n
e

ss

Iterations

2013년 한국컴퓨터종합학술대회 논문집

1452

	The Systematic Analysis of Evolved Neural Controllers for Quadruped Robots

