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Abstract

There has been extensive research of developing the
controller for a mobile robot. Especiaily, several
researchers have constructed the mobile robet controller
that can avoid obstacles, evade predators, or catch
moving prey by evolutionary algorithms such as genetic
algorithm and genetic programming. In this line of
research, we have also developed a method of applying
CAM-Brain, evolved neural networks based on cellular
amtomata (CA), to control a mobile robot. However, the
direct evolution has a difficulty that the controller cannot
generalize well to new environments. We attempt to
solve it by incremental evolution, which starts with
simpler environments and gradually develops the
controller with more general and complex environments.
We combine several behaviors evolved or programmed
by dynamic selection mechanism for higher behaviors. In
this paper, we evaluate the performance of robot using
Khepera simulator. Simulation results show the
possibility of easily developing higher behaviors by
integrating CAM-Brain behavior modules.

1. Introduction

There are many studies of constructing mobile robot
coniroller with different approaches such as evolving
peural network by genetic algorithm 1], using genetic
programming [2], combining fuzzy controller with
genetic algorithm [3] and programming [4]. In previous
work [5], we presented CAM-Brain, evolved neural
networks based on cellular automata {5,6], and applied it
1o controlling a mobile robot.

However, the controller obtained had a difficulty to adapt
in changing environment. We attempt to devise a
sophisticated method based on incremental evolution for
solving this problem. Incremental evolution does not
evolve controller directly to do goal behavior in an
environment, bui starting with simpler environments
gradually develops the controller with more general and
complex environments [7, 8].

The controller composed of one module has a difficulty
to make the robet to perform complex behavier. To
overcome this shortcoming, some researchers combine
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several modules evolved or programmed to do a simple
behavior such as “going straight,” “avoiding obstacles,”
“secking object,” and so on. They expect the controller
combined with several modules can do complex
behaviors [4,9,10].

In this paper, we also attempt to combine several neural
networks for solving this problem. Each neural network
can be evolved or programmed. Evolved neural network
is based on CAM-Brain model, and a programmed
module controls the robot directly. We apply Pattie
Maes’s Action Selection Mechanism (MASM) [10] to
combine modules and control a mobile robot in
simulated environments. The rest of this paper introduces
CAM-Brain model, incremental evolution and basic
behaviors, and presents the integration method in detail.
The detailed description of simulation follows, and the
results of simulation are given.
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Figure t: The evolution process of CAM-Brain.
2. CAM-Brain

CAM-Brain is a model based on CA which can
perform complicated behavior by combining simple rules,
and developed by its own chromosome: One



chromosome is mapped to exactly one neural network
module. Therefore, with genetic algorithm working on
this chromosome, it is possible to evolve and adapt the
structure of the neural network for a specific task. Figure
1 shows the evolution process of CAM-Brain. One
chromosome corresponds to one neural network. CAM-
Brain finds optimal neural network structure using
genetic algorithm. It is the basic idea of CAM-Brain that
brain-like system can be constructed by combining many
neural network modules of various functions [5,6]. This
section illustrates a design of CA-space for developing a
neural network module.

2.1 CoDi Model

CAM-Brain's neural network structure composed of
blank, neuron, axon and dendrite is grown inside 2-D or
3-D CA-space by state, neighborhoods and rules encoded
by chromosome. If cell state is blank, it represents empty
space and cannot transmit any signals. Neuron cell
collects signals from surrounding axon cells. Axon cell
sends signals received from neurons to the neighberhood
cells. Dendrite cell coliects signals from neighborhood
cells and passes them to the connected neuron in the end
5.6}

The growth phase organizes neural structure and makes
the signal trails among neurons. First, a chromosome is
randomly made and the states of all cells are initialized
as blank. At this point some of the cells are specified as
neuron with some probability. A neuron cell sends axon
and dendrite growth signals to the direction decided by
chromosome. Axon growth signal is sent to two
directions and dendrite growth signal is sent to the other
remaining  directions. Next the blank cell received
growth signal changes to axon or dendrite cell according
1o the type of growth signal. Tt sends the signals received
from other cells to the direction determined by
chromosceme. Finally, repeating this process, the neural
network is obtained when the state of every cell changes
no longer.

Figure 2 shows the growing process in 4 X 4 2-D CA-
space. In this figure, the cell which has oblique lines is
blank ¢ell, and the blank arrows show the direction of
signaling decided by chromosome. Figure 2(a) shows the
process of sending a neuron in blank cells, where a
neuron is located in (X, yz). Figure 2(b) shows that the
newron cell sends growth signal to swrounding cells.
Figure 2(c) shows that the cell state is changed by
growth signal. Figure 2(d) shows that blank cells grow
into axon or dendrite. In a neuron, the dendrite collects
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signals and sends to the neuron, and the axon distributes
signals originated from the neuron.

Signaling phase transmits the signal from input to output
cells continuously. The trails of signaling are transmitted
with evolved structure at the growth phase. Each cell
plays a different role according to the type of cells. If the
cell type is neuron, it gets the signal from connected
dendrite cells and gives the signal to neighborhood axon
cells when the sum of signals is greater than threshold. 1f
the cell type is dendrite, it collects data from the faced
cells and eventually passes them to the neuron body. The
position of input and output cells in CA-space is decided
in advance. At first, if input cells produce the signal, it is
sent to the faced axon cells, which distribute that signal.
Then, neighborhood dendrite cells belonged to other
neurons collect and send this signal to the neurons
connected. The neurons that have received the signal
from dendrite cells send it to axon cells. Finally, dendrite
cells of output neuron receive and send this signal to the
output neurons. Output value can be obtamed from
output neurons. During signaling phase, the fitness is
evaluated by the output in this process. Figure 3 shows
the process of signaling after neuron, axen and dendrite
have been made.
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Figure 2: Growth phase; (a) Black arrow represents a
neuron focated in (X2, ¥;). (b) The neuron sends growth
signals. () The cell state is decided according to the type
of growth signals. (d) Propagating growth signals, blank
cells become axon or dendrite.

2.2 Evolution of CAM-Brain

In general, simple genectic algorithm generates the
population of individuals and evolves them with genetic



operators such as selection, mutation, and crossover. We
have used the genetic algorithm to search the optimal
neural network. At first, a half of the population that has

better fitness value is selected to produce new population.

Two individuals in the new population are randomly
selected and parts of them are exchanged by one-point
crossover. The crossover is occurred at the satne position
in the chromosomes to maintain the same length in
chromosomes. Mutation is operated in the segment of
chromosome. The genetic algorithm generates a new
population from the fittest individuals for the given
problem.

Collechog, sipea

Figure 3 Signaling phase.
3. Incremental Evolution

Evaluation tasks {r, fz, f3, ..., 4} are derived by
transforming a goal task in incremental evolution, where
n is the number of tasks and /1y is the goal task. In this set,
1; is easier task than 1., for all i O<i<n. Thus, population
is evaluated in task £ and then task f;,; and it does in goal
task, #,, finally [7]. It is expected to preduce complex and
general behaviors which can adapt in changing
envircnment. Figure 4 shows the incremental evolution
of CAM-Brain. In this process, task is changed into more
difficult one and new population is created from
successful individuals when satisfied controller for the
task is found.

The robot controller is evolved incrementally by starting
with simpler environments and gradually evolving the
controller with more general and complex environments.
The environments get more sophisticated from straight
movement to left and right tum movements.
Consequently, the robot controller that can move straight
and turn left and right can be obtained.

After the CAM-Brain module is evolved in the
environment intended to go straight, successful
chromosomes are copied to the next population. Then it
is evolved in the envirenment intended (o go straight and
mm right. Progressing this process the controller evolves
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to go straight and tum left and right. Efficient evolution
is expected because of the reduced search space by
incremental evolution [8]. Figure 5 shows the trajectories
of the successful robot in eack environment
Environments are gradually bended from (a) to (f) and
generality of successful controller are improved step by
step.
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Figure 5: Trajectories of the successful robot in each
environment.

4, Action Selection Mechanism

Maes's Action Selection Mechanism (MASM) was
proposed originally as an improvement over previous
approaches to action selection in the field of Al I
particular, it was proposed as an improvement on
traditional planning systems and reactive systems [10].

4.1 Components

MASM is composed of nodes, internal finks and external
links. Each node has a set of preconditions. The
preconditions are logical conditions about the
environment that are required to be true in order for the
node to be executable. The add list consists of conditions
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about the environment that the node is likely to make
true. The delete list consists of conditions that are likely
to be made false by the execution of the node. The final
two components of the node are the activation level and
the code that gets run if the node is executed. The
internal and external links are specified in table 1.

Table 1: Internal and external links.

Internal links

If (proposition X is false) and
{proposition X is a precondition of
node A) and (proposition X is in the
add list of node B), then there is an
active predecessor link from A to B.

Predecessor
link

If (proposition X is false) and
(proposition X is in the add list of
node A) and (proposition X is a
precondition of node B) and (the
node A is executable), then there is
an active successor link from A to B.

Successor link

If (proposiion X 1is true) and
(proposition X is a precondition of
node A) and (proposition X is in the
delete list of node B), then there is an
active conflictor link from A to B.

Conflictor link

External links

If (proposition X about the
environment is trug} and (proposition
X is a precondition of node A), then
there is an active link from the sensor
of the proposition X to node A,

From sensors
of the

environment

If (goal Y has an activation greater
than zero) and (goal Y is in the add
list of node A), then there is an active
link from the goal Y to node A.

From goals

If {(goal Y has an activation greater
than zero) and (goal Y is in the delete
list of node A), then there is an active
link from the goal Y to node A.

From protected
goals

4.2 Procedure of Action Selection

The procedure used to select a node to execute at each
time step is as follows:

1. Calculate the excitation coming in from the
environment and the moetivations.

2. Spread excitation along the predecessor, successor,
and conflictor links.

0-7803-7203-4/01/$10.00 ©2001 IEEE

3. Normalize the node activations so that the average
activation becomes equal to the constant 7.

4. Check to see if there are any executable nodes and,
choose and execute the one with the highest
activation.

5. If there is no executable node, reduce the global
threshold and go to step 1.

A node is executable if al! its preconditions are true
and if its activation is greater than the global thresh
old. ¥f more than one node is executable, the one w
ith the highest activation is chosen.

5. Experimental Results

In order to show that higher behaviors can emerge by
combining lower simple behaviors, we have conducted
the simulation with Khepera robot.
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Figure 6: Simulation environment (simple environment).
5.1 Basic Behaviors
In this paper, four basic behaviors are defined as follows.

® Recharging Battery : If a robot arrives at battery
recharge area, battery is recharged. This module
enables the robot to operate as long as possible.

» Following Light : The robot goes to stronger light.
This medule must be operated to go to the battery
recharge area because the light source exists in that
area.

e Avoiding Obstacle : If the obstacles exist around the
robot, it aveids them without bumping against them.

e Going Straight : If there is nothing around the robot,
it goes ahead This module takes it to move
continuously without stopping.

Basic behaviors are programmed or evolved on CAM-
Brain. Recharging Battery and Going Straight modules
are programmed. Avoiding Obstacle and Following
Light are evolved on CAM-Brain. Figure 6 shows the
simulation environment. In this environment, black fan-
shaped area represents “Battery Recharge Area” and
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robot can recharge battery only in this area. Light source
exists in “Battery Recharge Area” and guides the robot
to the black area.

5.2 Module Integration

In this section we apply the action selection mechanism
to the robot control. Our environment requires 5 states,
such as “In battery recharge area,” “Obslacles are close,”
“Near battery recharge area,” “Light is low,” and
“Nothing around the robot.” They are set as follows :

o “In battery recharge area” : Check if robot is in
battery recharge area.

o “Obstacles are close” : Check if the maximum value
of distance sensors is larger than 700.

o “Near battery recharge area” : Check if the
distance from robot to light source is less than 800.

o “Light is Jow”: Check if the minimum value of light
sensors is larger than 400.

o “Nothing around the robot” : Check if the maximum
value of distance sensors is less than 700.

We set 2 goals such as “Full battery,” and ‘Not zero
battery.” Because robot’s battery decreases while robot
moves, the robot intends to maintain kigh battery value
to Iive long. They are set as follows :

o “Full battery” :

€=
m

¢ : Value of “Full battery”
m : Maximum battery
n :Robot's battery

*“Not zero battery” : Check if battery is less than half of
the maxirmum battery.

5 states are binary-valued and 2 goals are of continuous
values. Our MASM model is composed of 4 nodes, 5
staies, 2 goals and their relationships. Figure 7 shows our
MASM model. In this figure, each circle represents basic
behavior module and each rectangle represents sensor or
goal. Lines represent the relatonship among components
of ASM.

Each node has preconditions. Node must fulftll all
preconditions to be executed. Table 2 describes
preconditions and add lists of the nodes. Each node has
one or two preconditions. The relationships among nodes
are decided by successor links or predecessor links, If
predecessor link is from A node to B node, successor
link from B node to A node exists. If node A and node B
are connected, they exchange their activation values
while activation spreads.
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Table 2: Preconditions and add lists of nodes

Preconditions
Recharging In battery recharge area
Battery
Following Light is Jow,
Light Near battery recharge area
Avoiding Obstacles are close
Obstacle
Going Nothing arcund the robot
Straight
Add lists
Recharging Full Battery,
Battery Not zero battery
Following In battery recharge area
Light
Avoiding Nothing around the robot
Obstacle
Going Obstacles are close, In battery recharge
Straight area, Near battery recharge area
Sensors Nodes Goals
batery | |
recharge [ |7 TTTTTTeeal
|__orea | e
= "
= | (%)
Ligntis | 1.7 .
o Not zero
battery
Nothing -
2rotund o ik i
the robot
w\_Obstace
Obstacies o
e [

Figure 7: MASM model. Solid lines denote goal or
predecessor connections, and dashed lines denote sensor
OF SuUCCessoT connections.

5.3 Result Analysis

Robot moves during 9329 steps. Figure 8 shows the
robot trajectory in simple environment. This figure
shows the robot navigates the environment without
burmping and recharges batiery. When robot is in bartery
recharge area, the state of “In battery recharge area”
becomes true, and recharging battery module can be
selected, because “In battery recharge area” is a
precondition of recharging battery module. When
battery is low, the corresponding goals increase and
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following light module is selected more frequently than
other behavior modules.

Figure 9: Action selection of robot (O=Recharging
Battery 1=Following Light 2=Avoiding obstacle
3=Going Straight).

Robot selects avoiding obstacle and following light
modules successively before battery recharge area. This
makes robot go battery recharge area without bumping
obstacles. By selecting lower level behaviors, robot can
perform higher behavior which we cannot make easily.
Figure 9 shows the sequence of the action selection in
the environment. Robot selects frequently “Following
Light” “Going Straight,” and “Avoiding Obstacles.”

6. Condusions

In this paper, we apply Maes's Action Selection
Mechanism to dynamically controlling a robot in simple
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environment. Robot selects basic behaviors from
behavior networks. MASM gets signals from
environments and internal motivations, and spreads the
activation among intermal links. We have four basic
behaviors which are evolved on CAM-Brain or
programmed. The r1obot controller is evolved
incrementally by starting with simpler environments and
gradually evolving the controller with more general and
complex environments. Incremental evolution can evolve
CAM-Brain module more efficiently than direct
evolution, and the controller evoived by this method
adapts to new environments. For higher behavior, several
basic behavior modules are combined by action selection
mechanism. Robot achieves goals by selecting basic
behaviors. Contribution of this research is applying
action selection mechanism to combining incrementally
evolved neural network mobile robot controllers.
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