Ensemble Evolution of Checkers Players with Knowledge
of Opening, Middle and Endgame

Kyung-Joong Kim and Sung-Bae Cho

Department of Computer Science, Yonsei University
134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749 South Korea
{kjkim, sbcho}@cs.yonsei.ac.kr

Abstract. In this paper, we argue that the insertion of domain knowledge into
ensemble of diverse evolutionary checkers can produce improved strategies and
reduce evolution time by restricting search space. The evolutionary approach
for game is different from the traditional one that exploits knowledge of the
opening, middle, and endgame stages, so that it is not sometimes efficient to
evolve simple heuristic that is found easily by humans because it is based
purely on a bottom-up style of construction. In this paper, we have proposed the
systematic insertion of opening knowledge and an endgame database into the
framework of evolutionary checkers. Also, common knowledge, the combina-
tion of diverse strategies is better than the single best one, is inserted into the
middle stage and is implemented using crowding algorithm and a strategy com-
bination scheme. Experimental results show that the proposed method is prom-
ising for generating better strategies.

1 Introduction

Incorporating a priori knowledge, such as expert knowledge, meta-heuristics, human
preferences, and most importantly domain knowledge discovered during evolutionary
search, into evolutionary algorithms has gained increasing interest in recent years [1].
In this paper, we propose a method for systematically inserting expert knowledge into
an evolutionary checkers framework at the opening, middle, and endgame stages. In
the opening stage, openings defined by the American Checkers Federation (ACF) are
used. In previous work, we have used speciation techniques to search for diverse
strategies that embody different styles of game play and have combined them using
voting for higher performance [2]. This idea comes from the common knowledge that
the combination of diverse well-playing strategies can defeat the best one because
they can complement each other for higher performance. Finally, we have used an
endgame database from Chinook, the first man-machine checkers champion. Figure 1
explains the conceptual framework of the proposed method.

The most important idea is the systematical integration of three domain knowledge
(opening DB, middle stage knowledge and endgame DB). The middle stage knowl-
edge is coming from the Korean event in the game of Go. In 2003, Internet site
TYGEM (http://www.tygem.co.kr) held a many-to-one style game between Hoon
Hyun Cho, one of the greatest go players, and 3000 amateur players. The winner of

Q. Yang and G. Webb (Eds.): PRICAI 2006, LNAI 4099, pp. 950-[954.]2006.
© Springer-Verlag Berlin Heidelberg 2006

Ensemble Evolution of Checkers Players 951

the game was Cho. After the game, he said that it was a very difficult game because
there was no obvious mistake of amateur players. Speciation algorithm for evolution-
ary checkers is adopted for an implementation of the knowledge.

Opening DB

Two Similar Neural
Networks

Generating
Neural Network
Population

Board
Evaluation
of Leaf Nodes
Using NN

Generating
Game
Tree

Genetic
Operation

Game
Organizer

Endgame DB

Next Applying

Decision of
Next
Move

Min-Max
Search

Crowding
Algorithm

Generation

Winner Neural
Network

Speciated neural network evolution Checkers game playing

Fig. 1. Conceptual diagram of the proposed method

2 Incorporating Knowledge into Evolutionary Checkers
2.1 Opening Stage

The opening move is the most important opportunity to defeat an expert player be-
cause trivial mistakes in the opening can lead to an early loss. The first move in
checkers is played by red and there are seven choices (9-13, 9-14, 10-14, 10-15, 11-
15, 11-16, and 12-16). Usually, 11-15 is the best move for red but there are many
other alternatives. They are described with specific names, such as Edinburgh, Double
Corner, Denny, Kelso, Old Faithful, Bristol, and Dundee, respectively. For each
choice, there are many well established more sequences which range in length from 2
to 10. The longest sequence is described as the White Doctor: 11-16, 22-18, 10-14,
25-22, 8-11, 24-20, 16-19, 23-16, 14-23, 26-19. Careful analysis over decades of
tournament play has proven the usefulness or fairness of the opening sequences. Ini-
tial sequences are decided by the opening book until the move is out of the book.
Each player chooses their opening randomly and the seven first choices have the same
probability to be selected as an opening.

2.2 Evolutionary Speciated Checkers

Following Fogel [3], a checkers board is represented by a vector of length 32 and
components in the vector could have a value of {-K, -1, 0, +1, +K}, where K is the

952 K.-J. Kim and S.-B. Cho

value assigned for a king, 1 is the value for a regular checker, and O represents an
empty square. For reflecting spatial features of the board configuration, sub-boards of
the board are used as an input. One board can have 36 3x3 sub-boards, 25 4x4 sub-
boards, 16 5x5 sub-boards, 9 6x6 sub-boards, 4 7x7 sub-boards and 1 8x8 sub-board.
91 sub-boards are used as an input to the feed-forward neural network. The sign of the
value indicates whether or not the piece belongs to the player or the opponent. The
closer the output of the network is to 1.0, the better the position is. Similarly, the
closer the output is to -1.0, the worse the board.

The architecture of the network is fixed and only the weights can be adjusted by
evolution. Each individual in the population represents a neural network (weights and
biases) that is used to evaluate the quality of the board configuration. Additionally,
each neural network has the value of K and self-adaptive parameters for weights and
biases. An offspring P',i=1,...,p for each parent P,i=1.,,,p is created by

0,'(j) = 0;()exp(N ;(0.1), j=1...N,,
w;' () =wi(j)+0;'()HN;O]), j=1..N,

where Ny, is the number of weights and biases in the neural network (here this is

5046), 7=1/424/N,, =0.0839, and N ;0.0 is the standard Gaussian random variable

resampled for every ;. In fitness evaluation, each individual chooses five opponents
from a population pool and plays games with the players. Fitness increases by 1 for a
win while the fitness of an opponent decreases by 2 for a loss. In a draw, the fitness
values of both players remain the same. After all the games are played, the fitness
values of all players are determined.

In this paper, we utilize a crowding algorithm [4], a popular form of speciation al-
gorithm, for searching for diverse neural networks. In this algorithm, one neural net-
work is selected from two similar individuals based on the result of game played
between them (usually, a crowding algorithm uses their fitness but in this case, we
cannot use fitness because of the dynamic property of fitness landscape). A crowding
algorithm is one of the representative speciation methods that attempt to discover
diverse species in a search space. The distance between two neural networks is calcu-
lated by using Euclidean distance between their weights. To discover clusters of indi-
viduals in the population at the last generation with arbitrary shape, density-based
clustering methods have been used. DBSCAN (Density-based Spatial Clustering of
Applications with Noise) is one of the algorithms [5]. Representative players from
each cluster are chosen by tournament of all players in the same cluster. Moves of
combined players are determined using a simple voting of the representative players.
It picks the move that has the greatest number of votes. If there is no clear winner, one
of the moves that have the greatest votes is selected randomly.

2.3 Endgame Stage

The estimated quality of the board is calculated using the evolved neural networks
to evaluate the leaf nodes of the tree with min-max algorithm. If the value of f (es-
timated goodness of the next moves) is not reliable, we refer to the domain specific
knowledge and revise f. The decision rule for querying the domain knowledge must

Ensemble Evolution of Checkers Players 953

be defined previously as follows. IF (f<0.75 and f>0.25) or (f<-0.25 and f>-0.75)
THEN querying the domain knowledge.

3 Experimental Results

The non-speciated evolutionary algorithm uses a population size of 15 and limits the
run to 60 generations. The speciated evolutionary algorithm sets the population size to
15 and generations to 60. The mutation rate is 0.01 and crossover rate is 1.0. The
number of leagues (it is used to select the best player from each species) is 5 (5 means
that each player selects 5 players from species randomly and the competition results
are used for the selection).

= With Knowledge

Without Knowledge

Time (hours)

1 " 21 31 41 51

Generation

Fig. 2. Comparison of running time (Simple evolution)

The Chinook endgame DB (2~6 pieces) is used for revision when the estimated
value from the neural network is between 0.25 and 0.75 or between -0.25 and -0.75.
Time analysis indicates that the evolution with knowledge takes much less time than
that without knowledge in simple evolution (Figure 2). This means that the insertion
of knowledge within a limited scope can accelerate the speed of evolutionary algo-
rithm because it can reduce computational requirement for finding optimal endgame
sequence by using endgame DB. Table 1 summarizes the competition results between
the best individual in the evolution with knowledge and the best individual in the
evolution without knowledge for each generation. The knowledge incorporation mo-
del can perform better than the one without knowledge. Table 2 shows the competi-
tion results in the speciated evolution. Table 3 shows the effect of the stored kno-
wledge (opening and endgame DB) in speciation.

Table 1. Experimental results on opening and endgame knowledge incorporation (Win/
Lose/Draw) for simple evolution. Evolution with the stored knowledge performs better than
that without the knowledge. (Op=Opening knowledge, SGA=Simple GA, E=Endgame knowl-
edge).

Generations
Op+SGA+E | SGA 1~14 | 15~29 | 30~44 | 45-59 | Total
Red White | 5/0/10 | 3/3/9 | 3/0/12 | 5/3/7 | 16/6/38
White Red 4318 | 41209 5406 | 429 | 17/11/32

954 K.-J. Kim and S.-B. Cho

Table 2. Experimental results on opening and endgame knowledge incorporation (Win/Lose/
Draw) for speciated evolution. Evolution with the stored knowledge performs better than that
without the knowledge. (S=Speciation).

. Generations
Op+8+E | Speciated 127567 30-44 | 45-59 Total
Red White 5/1/9 473/8 6/0/9 8/2/5 | 23/6/31
White Red 7305 5/2/8 8/4/3 6/2/7 | 26/11/23

Table 3. The competition results between the speciated players using both opening and end-
game DB and the speciated player with one of the knowledge

Op+S+E Op+S Total
Red White 6/2/7
White Red 8/4/3
Op+S+E S+E Total
Red White 5/5/5
White Red 4/5/6
Op+S S+E Total
Red White 3/6/6
White Red 2/7/6

4 Conclusion and Future Work

The final conclusion of the experiment is SGA < Speciated < Op+S < S+E = Op+S+E
(SGA < Speciated is from the results of [2]). The effect of opening knowledge is not
so big because they have only the limited sequences. The limited opening knowledge
can prevent the player from making a big mistake but it is not much useful when the
opponent chooses a move that is not included in the opening sequence. Multiple di-
verse neural networks can perform better than the single best one but there is always
problem of combination and averaging may not work. As a future work, sophisticated
combination method should be explored for better performance.

References

1. Jin, Y.: Knowledge Incorporation in Evolutionary Computation, Springer (2004)

2. Kim, K.-J. and Cho, S.-B.: Evolving speciated checkers players with crowding algorithm.
Proc. of the 2002 Congress on Evolutionary Computation (2002) 407-412

3. Fogel, D.B.: Blondie24: Playing at the Edge of Al. Morgan Kaufmann (2001)

4. Mahfoud, S. W.: Niching methods. Handbook of Evolutionary Computation, C6.1, IOP
Publishing and Oxford University Press, (1997)

5. Ester, M., Kriegel, H.-P., Sander J. and Xu, X.: A density-based algorithm for discovering
clusters in large spatial databases with noise. Knowledge Discovery and Data Mining
(1996) 226-231

	Introduction
	Incorporating Knowledge into Evolutionary Checkers
	Opening Stage
	Evolutionary Speciated Checkers
	Endgame Stage

	Experimental Results
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

