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Abstract. In this paper, we propose an intelligent middleware framework based 
on the concept of the autonomic computing. Because decisions for optimizing a 
system are highly dependent on the status of the system in the near future, pre-
dictions of the status can boost up the performance of system. Bayesian net-
works that are frequently used in the domain of user modeling are adopted as a 
diagnosis engine. Since there are many different kinds of behavioral patterns, it 
is impossible to model all of them into a single model. A Bayesian network is 
learned for each typical behavioral pattern. Experimental results show that the 
proposed method offers a promising way of intelligent middlewares. 

1   Introduction 

Component-based applications are independent of component’s location and flexible 
in the change of its structure. When a user makes use of a process or takes a service 
from a server using internet at distributed environment, a middleware organizes a 
component set of applications for a user on real time to satisfy user’s request. Mean-
while, it can optimize components structure of an application for improvement of the 
performance according to a user’s environment. Such a process is called as autonomic 
computing [1], which is a skill for the development of an adaptive application reflect-
ing immediately to changing system and updating its function by component insertion 
or deletion. It continuously optimizes itself to provide a service requested, given the 
state of a user's environment. 

This paper proposes an intelligent middleware using Bayesian networks for auto-
nomic computing, which is more flexible. Because Bayesian network is based on the 
probability theory, it can naturally deal with such uncertainties without any significant 
effort. Also, it can provide two directional inferences (forward and backward). Intelli-
gent middleware consists of data collection, performance analysis and component 
configuration or reconfiguration. When a user operates a distributed application at the 
circumstance of distributed systems, the middleware collects information about the 
system and the component set. After processing collected data, they are inputted to 
the diagnosis engine and used as evidences of Bayesian networks in the diagnosis 
engine for the performance analysis and the system diagnosis. The inferred result 
from the learned Bayesian network can be used to make the decision of component 
swapping.  
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2   Diagnosis Engine Using Bayesian Networks 

System resources and the user’s behavior are considered as relevant information 
sources to infer future resource levels. System resources include the speed of the 
network, free memory, CPU usage, and the type of device. User behavior can be mod-
eled from the history of application execution, whether the system is on or off, usage 
time, and the switching of tasks. Eric Horvitz et al. attempted to model the user’s 
behavior patterns through activities on the desktop with the help of a camera and 
acoustic sensors [5]. Because our platform assumes the reconfiguration of middle-
ware, the information sources for inference are at a relatively lower level than those of 
application reconfiguration. 

1: /* n : Number of variables */ 
2: /* A[i,j] : Score gain when an edge from the jth node to the ith node is connected */ 
3: /* Score(B) : Score of Bayesian network structure B */  
4: /* Score(B, j i) : Return a score when B has an edge (j i) */ 
5: /* Find_Max(A) : Return an edge (j i) that has the maximum A[i,j] */ 
6: /* Min : minus infinity */ 
7: /* )( ixAncestors : A set of nodes that have a path from the node to ix  */ 

8: /* )( ixDecendants : A set of nodes that have a path from ix  to the node */ 

9: /* Stop(); If all (i,j), A[i,j] ≤ 0 or A[i,j]=Min then True */ 
10: FOR i=1 to n { φ=)( ixPa ; } 

11: FOR i=1 to n FOR j=1 to n 
12:    IF i ≠ j THEN A[i,j]=Score(B, j i) – Score(B); 
13: WHILE(TRUE) { 
14:    (i, j)=Find_Max(A); 
15:    IF A[i,j]>0 THEN }{)()( jii xxPaxPa ∪= ; 

16:    A[i,j]=Min; 
17:    FOR a=1 to n  FOR b=1 to n  
18:       IF ){)( jja xxAncestorsx ∪∈  && ){)( iib xxDecendantsx ∪∈  

19:       THEN A[a,b]=Min; 
20:    FOR k=1 to n {IF A [i,k]>Min THEN A[i,k]=Score(B, k i) – Score(B); } 
21:    IF Stop()==True THEN break; 
22: } 

Fig. 1. Overview of the greedy search for Bayesian network 

We use >< BB θ,  to denote a Bayesian network with a structure B  and probabil-

ity parameters .Bθ  >< BBP θ,  denotes the joint probability distribution of all the 

variables of this network. A possible structure of a Bayesian network can be drawn as 
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Bayesian probabilistic inference is one of the most popular models for inference 
and representation of environments with insufficient information [6][7]. Usually the 
structure is designed by an expert. To develop appropriate Bayesian networks for this 
specific problem given a little prior knowledge, learning is essential. Using a scoring 
function that returns a numerical value for the appropriateness of the given data in the 
Bayesian networks, search algorithms such as greedy and genetic algorithms attempt 
to maximize the score.  

From an empty network with no edge, the greedy algorithm repeats the procedure 
of adding an edge that maximizes a score gain on the current structure and fixes the 
new structure as a current one until the structure converges. Though the algorithm can 
get stuck in the local minimum, it can perform well if the number of variables is rela-
tively small. If the number of variables is large, a global search algorithm such as a 
genetic algorithm is a more appropriate choice. In this domain, we assume that rele-
vant variables are selected by the expert and the learning procedure is conducted by 
the greedy algorithm. Figure 1 shows the pseudo code of the greedy search. 

The intelligent middleware adopts the Bayesian network as a diagnosis engine for 
the performance analysis of distributed applications. A structure of Bayesian network 
is important to improve the efficiency of the diagnosis engine. It is difficult to develop 
highly efficient diagnosis engine using only one structure of Bayesian network which 
is suitable for various users. Therefore, the intelligent middleware creates Bayesian 
networks of the diagnosis engine dynamically according to the pattern of users' com-
puter usage. For example, when a user executes a distributed application, the intelli-
gent middleware collects data in advance about system environment and executed 
process list. Such data are used for learning Bayesian networks. The Bayesian net-
work is maintained if the diagnosis engine produces good performance. Otherwise, 
when the engine does not work or the pattern of a computer usage is changed, Bayes-
ian networks will be reconstructed again.  

3   Experimental Results 

Data were collected from a student and a programmer for two hours. After installing a 
monitoring program, they used their computers in the same way as usual. The moni-
toring program collected the usage patterns of specific programs and system resource 
information. The student played continuously an online game with the player of an-
other computer and the programmer worked for programming and accessed steadily a 
database for inquiring data. In addition, they performed several kinds of programs and 
also their systems executed many basic processes for system management. Table 1 
shows the details of the process executed by a user and a system. 

A half of the data which present the proper change of a system state is used for 
training and the remaining is used for test. The purpose of the Bayesian network was 
to infer the future CPU load given the current CPU load and the user’s current job list. 
From the preliminary study, the performance of a distributed application showed 
unexpected quality degradation when the CPU load was kept 100% for more than 5 
seconds, but when the CPU load was kept 100% for less than 5 seconds, it did not 
affect the performance of the application. Sometimes the CPU load became the state 
of 100% for less than 5 seconds. In this case, most of the cases was the time when a 
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user executed new process. It did not make a system problem or degrade the perform-
ance of the system. Otherwise, when the CPU load was kept 100% for more than 5 
seconds, we could predict a system problem led to a system overload. In this paper, 
the Bayesian network infers the probability of the event that CPU is kept 100% for 
more than 5 seconds.  

Table 1.  List of process executed by a user and a system 

 List of processes 

User 1 

SystemIdleProcess, System, smss, csrss, winlogon, services, lsass, ati2evxx0, sv
chost0, svchost1, svchost2, svchost3, svchost4, spoolsv ,ati2evxx1, explorer, V3
monnt, V3monsvc, myLinker, DrVirus, ctfmon, msmsgs, trayapp, alg, LCDPlye
r, wscntfy, CDSLicenseMng, conime, taskmgr, CpuUsage, ProcMon, TalesWea
ver, InphaseNXD, IEXPLORE, skcbgm, npkagt, regsvr32, npkcsvc, npdownv 

User 2 

SystemIdleProcess, System, smss, csrss, winlogon, services, lsass, svchost, spo
olsv, explorer, MsgPlus, monsysnt, v3p3at, daemon, ctfmon, ProtHelp, ClientS
M, conime, ahnsdsv, ahnsd, AszTray, monsvcnt, v3impro, msnmsgr, putty, TO
AD, notepad, editplus, CpuUsage, ProcMon, EMEDITOR, IEXPLORE, v3syso
n, rundll32, npcopyv, npdownv, NPMON, logon, sucer, supdate, autoup 
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(a) user 1 
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(b) user 2 

Fig. 2. CPU load change in the training data (one hour) 
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(a) user 1 

 

(b) user 2 

Fig. 3. The structure of Bayesian networks 

Table 2. Prediction accuracy of the Bayesian networks on the test data 

CPU load is 100% CPU load is not 100% Accuracy  
User 1 User 2 User 1 User 2 User 1 User 2 

CPU load 
is 100% 

1275 17 83 3 93.88% 85.00% 

CPU load 
is not 100% 

81 5 2135 3572 96.34% 99.86% 

Total 1356 22 2218 3575 95.41% 99.77% 

Figure 2 shows the CPU load changes in the data of user 1 and user 2. Figure 3 
shows the structure of the learned Bayesian networks of user 1 and user 2.  The 
learned networks contain relatively small nodes because some nodes have no edge. 
The structures depend on the computer usage pattern of each user, which led to the 
different structures of Bayesian networks for user 1 and user 2. The Bayesian network 
of user 1 has four nodes. For user 2, the Bayesian network has nine nodes. Table 2 
shows the prediction accuracy of the learned models. The Bayesian network for user 1 
shows 95.41% prediction accuracy and the model for user 2 shows 99.77% prediction 
accuracy. 
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4   Conclusions and Future Works 

In this paper, we have proposed a middleware framework for distributed applications. 
Because distributed environments are highly dynamic and contain uncertainties due to 
noise and network delays, it is crucial to develop robust diagnosis engines. Bayesian 
networks can model probabilistic dependencies among random variables provide a 
flexible two-directional inference mechanism (forward and backward inferences). 
Experimental results show that the proposed method is promising enough to estimate 
future states given evidence for selecting proper services. To deal with various situa-
tions, it is necessary to use more than one Bayesian network. In this context, the man-
agement of several Bayesian networks including construction, aggregation, and re-
placement has to be developed as an independent system module. It is also necessary 
to adapt previous learned models given the recently collected data. 
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