
D.-S. Huang, K. Li, and G.W. Irwin (Eds.): ICIC 2006, LNCS 4113, pp. 1047 – 1052, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Embodiment of Autonomic Computing in the
Middleware for Distributed System with Bayesian

Networks

Bo-Yoon Choi, Kyung-Joong Kim, and Sung-Bae Cho

Dept. of Computer Science, Yonsei University
134 Shinchon-dong, Sudaemoon-Ku, Seoul 120-749, South Korea

bychoi@sclab.yonsei.ac.kr, kjkim@cs.yonsei.ac.kr,
sbcho@cs.yonsei.ac.kr

Abstract. In this paper, we propose an intelligent middleware framework based
on the concept of the autonomic computing. Because decisions for optimizing a
system are highly dependent on the status of the system in the near future, pre-
dictions of the status can boost up the performance of system. Bayesian net-
works that are frequently used in the domain of user modeling are adopted as a
diagnosis engine. Since there are many different kinds of behavioral patterns, it
is impossible to model all of them into a single model. A Bayesian network is
learned for each typical behavioral pattern. Experimental results show that the
proposed method offers a promising way of intelligent middlewares.

1 Introduction

Component-based applications are independent of component’s location and flexible
in the change of its structure. When a user makes use of a process or takes a service
from a server using internet at distributed environment, a middleware organizes a
component set of applications for a user on real time to satisfy user’s request. Mean-
while, it can optimize components structure of an application for improvement of the
performance according to a user’s environment. Such a process is called as autonomic
computing [1], which is a skill for the development of an adaptive application reflect-
ing immediately to changing system and updating its function by component insertion
or deletion. It continuously optimizes itself to provide a service requested, given the
state of a user's environment.

This paper proposes an intelligent middleware using Bayesian networks for auto-
nomic computing, which is more flexible. Because Bayesian network is based on the
probability theory, it can naturally deal with such uncertainties without any significant
effort. Also, it can provide two directional inferences (forward and backward). Intelli-
gent middleware consists of data collection, performance analysis and component
configuration or reconfiguration. When a user operates a distributed application at the
circumstance of distributed systems, the middleware collects information about the
system and the component set. After processing collected data, they are inputted to
the diagnosis engine and used as evidences of Bayesian networks in the diagnosis
engine for the performance analysis and the system diagnosis. The inferred result
from the learned Bayesian network can be used to make the decision of component
swapping.

1048 B.-Y. Choi, K.-J. Kim, and S.-B. Cho

2 Diagnosis Engine Using Bayesian Networks

System resources and the user’s behavior are considered as relevant information
sources to infer future resource levels. System resources include the speed of the
network, free memory, CPU usage, and the type of device. User behavior can be mod-
eled from the history of application execution, whether the system is on or off, usage
time, and the switching of tasks. Eric Horvitz et al. attempted to model the user’s
behavior patterns through activities on the desktop with the help of a camera and
acoustic sensors [5]. Because our platform assumes the reconfiguration of middle-
ware, the information sources for inference are at a relatively lower level than those of
application reconfiguration.

1: /* n : Number of variables */
2: /* A[i,j] : Score gain when an edge from the jth node to the ith node is connected */
3: /* Score(B) : Score of Bayesian network structure B */
4: /* Score(B, j i) : Return a score when B has an edge (j i) */
5: /* Find_Max(A) : Return an edge (j i) that has the maximum A[i,j] */
6: /* Min : minus infinity */
7: /*)(ixAncestors : A set of nodes that have a path from the node to ix */

8: /*)(ixDecendants : A set of nodes that have a path from ix to the node */

9: /* Stop(); If all (i,j), A[i,j] ≤ 0 or A[i,j]=Min then True */
10: FOR i=1 to n { φ=)(ixPa ; }

11: FOR i=1 to n FOR j=1 to n
12: IF i ≠ j THEN A[i,j]=Score(B, j i) – Score(B);
13: WHILE(TRUE) {
14: (i, j)=Find_Max(A);
15: IF A[i,j]>0 THEN }{)()(jii xxPaxPa ∪= ;

16: A[i,j]=Min;
17: FOR a=1 to n FOR b=1 to n
18: IF){)(jja xxAncestorsx ∪∈ &&){)(iib xxDecendantsx ∪∈

19: THEN A[a,b]=Min;
20: FOR k=1 to n {IF A [i,k]>Min THEN A[i,k]=Score(B, k i) – Score(B); }
21: IF Stop()==True THEN break;
22: }

Fig. 1. Overview of the greedy search for Bayesian network

We use >< BB θ, to denote a Bayesian network with a structure B and probabil-

ity parameters .Bθ >< BBP θ, denotes the joint probability distribution of all the

variables of this network. A possible structure of a Bayesian network can be drawn as
a directed acyclic graph.),,(EVB = where the set of nodes },...,,{ 21 nxxxV = repre-

sents the domain variables and ,E a set of arcs, represents the direct dependency

among the variables. For each variable ,Vxi ∈ the conditional probability distribution

is)),(|(ii xPaxP where)(ixPa represents the parent set of the variable .ix

∏
=

=>=<
n

i
iinB xPaxPxxxPBP

1
21))(|(),...,,(,θ

 The Embodiment of Autonomic Computing in the Middleware for Distributed System 1049

Bayesian probabilistic inference is one of the most popular models for inference
and representation of environments with insufficient information [6][7]. Usually the
structure is designed by an expert. To develop appropriate Bayesian networks for this
specific problem given a little prior knowledge, learning is essential. Using a scoring
function that returns a numerical value for the appropriateness of the given data in the
Bayesian networks, search algorithms such as greedy and genetic algorithms attempt
to maximize the score.

From an empty network with no edge, the greedy algorithm repeats the procedure
of adding an edge that maximizes a score gain on the current structure and fixes the
new structure as a current one until the structure converges. Though the algorithm can
get stuck in the local minimum, it can perform well if the number of variables is rela-
tively small. If the number of variables is large, a global search algorithm such as a
genetic algorithm is a more appropriate choice. In this domain, we assume that rele-
vant variables are selected by the expert and the learning procedure is conducted by
the greedy algorithm. Figure 1 shows the pseudo code of the greedy search.

The intelligent middleware adopts the Bayesian network as a diagnosis engine for
the performance analysis of distributed applications. A structure of Bayesian network
is important to improve the efficiency of the diagnosis engine. It is difficult to develop
highly efficient diagnosis engine using only one structure of Bayesian network which
is suitable for various users. Therefore, the intelligent middleware creates Bayesian
networks of the diagnosis engine dynamically according to the pattern of users' com-
puter usage. For example, when a user executes a distributed application, the intelli-
gent middleware collects data in advance about system environment and executed
process list. Such data are used for learning Bayesian networks. The Bayesian net-
work is maintained if the diagnosis engine produces good performance. Otherwise,
when the engine does not work or the pattern of a computer usage is changed, Bayes-
ian networks will be reconstructed again.

3 Experimental Results

Data were collected from a student and a programmer for two hours. After installing a
monitoring program, they used their computers in the same way as usual. The moni-
toring program collected the usage patterns of specific programs and system resource
information. The student played continuously an online game with the player of an-
other computer and the programmer worked for programming and accessed steadily a
database for inquiring data. In addition, they performed several kinds of programs and
also their systems executed many basic processes for system management. Table 1
shows the details of the process executed by a user and a system.

A half of the data which present the proper change of a system state is used for
training and the remaining is used for test. The purpose of the Bayesian network was
to infer the future CPU load given the current CPU load and the user’s current job list.
From the preliminary study, the performance of a distributed application showed
unexpected quality degradation when the CPU load was kept 100% for more than 5
seconds, but when the CPU load was kept 100% for less than 5 seconds, it did not
affect the performance of the application. Sometimes the CPU load became the state
of 100% for less than 5 seconds. In this case, most of the cases was the time when a

1050 B.-Y. Choi, K.-J. Kim, and S.-B. Cho

user executed new process. It did not make a system problem or degrade the perform-
ance of the system. Otherwise, when the CPU load was kept 100% for more than 5
seconds, we could predict a system problem led to a system overload. In this paper,
the Bayesian network infers the probability of the event that CPU is kept 100% for
more than 5 seconds.

Table 1. List of process executed by a user and a system

 List of processes

User 1

SystemIdleProcess, System, smss, csrss, winlogon, services, lsass, ati2evxx0, sv
chost0, svchost1, svchost2, svchost3, svchost4, spoolsv ,ati2evxx1, explorer, V3
monnt, V3monsvc, myLinker, DrVirus, ctfmon, msmsgs, trayapp, alg, LCDPlye
r, wscntfy, CDSLicenseMng, conime, taskmgr, CpuUsage, ProcMon, TalesWea
ver, InphaseNXD, IEXPLORE, skcbgm, npkagt, regsvr32, npkcsvc, npdownv

User 2

SystemIdleProcess, System, smss, csrss, winlogon, services, lsass, svchost, spo
olsv, explorer, MsgPlus, monsysnt, v3p3at, daemon, ctfmon, ProtHelp, ClientS
M, conime, ahnsdsv, ahnsd, AszTray, monsvcnt, v3impro, msnmsgr, putty, TO
AD, notepad, editplus, CpuUsage, ProcMon, EMEDITOR, IEXPLORE, v3syso
n, rundll32, npcopyv, npdownv, NPMON, logon, sucer, supdate, autoup

0

20

40

60

80

100

120

1 701 1401 2101 2801 3501

Time (Sec)

C
P
U
 L
o
a
d

(a) user 1

0

20

40

60

80

100

120

1 701 1401 2101 2801 3501

Time (Sec)

C
P
U
 L
o
a
d

(b) user 2

Fig. 2. CPU load change in the training data (one hour)

 The Embodiment of Autonomic Computing in the Middleware for Distributed System 1051

(a) user 1

(b) user 2

Fig. 3. The structure of Bayesian networks

Table 2. Prediction accuracy of the Bayesian networks on the test data

CPU load is 100% CPU load is not 100% Accuracy
User 1 User 2 User 1 User 2 User 1 User 2

CPU load
is 100%

1275 17 83 3 93.88% 85.00%

CPU load
is not 100%

81 5 2135 3572 96.34% 99.86%

Total 1356 22 2218 3575 95.41% 99.77%

Figure 2 shows the CPU load changes in the data of user 1 and user 2. Figure 3
shows the structure of the learned Bayesian networks of user 1 and user 2. The
learned networks contain relatively small nodes because some nodes have no edge.
The structures depend on the computer usage pattern of each user, which led to the
different structures of Bayesian networks for user 1 and user 2. The Bayesian network
of user 1 has four nodes. For user 2, the Bayesian network has nine nodes. Table 2
shows the prediction accuracy of the learned models. The Bayesian network for user 1
shows 95.41% prediction accuracy and the model for user 2 shows 99.77% prediction
accuracy.

1052 B.-Y. Choi, K.-J. Kim, and S.-B. Cho

4 Conclusions and Future Works

In this paper, we have proposed a middleware framework for distributed applications.
Because distributed environments are highly dynamic and contain uncertainties due to
noise and network delays, it is crucial to develop robust diagnosis engines. Bayesian
networks can model probabilistic dependencies among random variables provide a
flexible two-directional inference mechanism (forward and backward inferences).
Experimental results show that the proposed method is promising enough to estimate
future states given evidence for selecting proper services. To deal with various situa-
tions, it is necessary to use more than one Bayesian network. In this context, the man-
agement of several Bayesian networks including construction, aggregation, and re-
placement has to be developed as an independent system module. It is also necessary
to adapt previous learned models given the recently collected data.

Acknowledgement

This research was supported by Brain Science and Engineering Research Program
sponsored by Korean Ministry of Commerce, Industry and Energy.

References

1. Jephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer, vol. 36,
no. 1, January (2003) 41-50

2. Kon, F. et al.: Design, Implementation, and Performance of an Automatic Configuration
Service for Distributed Component Systems. Software-Practice and Experience, vol. 34,
(2004) 1-39

3. Diaconescu, A., Murphy, J.: A Framework for Automatic Performance Monitoring, Analy-
sis and Optimization of Component based Software Systems. Proceedings of the 2nd ICSE
Workshop on Remote Analysis and Measurement of Software Systems, (2004) 29-34

4. Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian Networks: The Combina-
tion of Knowledge and Statistical Data. Machine Learning. vol. 20, (1995) 197-243

5. Horvitz, E., Kadie, C. M., Paek, T., Hovel, D.: Models of Attention in Computing and
Communications: From Principles to Applications, Communications of the ACM, vol. 46,
no. 3, (2003) 52-59

6. Charniak, E.: Bayesian Networks without Tears. AI Magazine, vol. 12, no. 4, (1991) 50-63
7. Stephenson, T.: An Introduction to Bayesian Network Theory and Usage. IDIAP-RR00-03,

(2000)

	Introduction
	Diagnosis Engine Using Bayesian Networks
	Experimental Results
	Conclusions and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

