
Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Hybrid of Evolution and Reinforcement Learning for Othello
Players

Kyung-Joong Kim, Heejin Choi and Sung-Bae Cho
Dept. of Computer Science, Yonsei University

134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749, South Korea
kjkimgcs.yonsei.ac.kr, heinchgnaver.com, sbchogcs.yonsei.ac.kr

Abstract-Although the reinforcement learning and
evolutionary algorithm show good results in board evaluation
optimization, the hybrid of both approaches is rarely addressed
in the literature. In this paper, the evolutionary algorithm is
boosted using resources from the reinforcement learning. 1) The
initialization of initial population using solution optimized by
temporal difference learning 2) Exploitation of domain
knowledge extracted from reinforcement learning. Experiments
on Othello game strategies show that the proposed methods can
effectively search the solution space and improve the
performance.

Keywords: Othello, Reinforcement Learning, Temporal
Difference Learning, Domain Knowledge

I. INTRODUCTION

Reinforcement learning [1] and evolutionary algorithm [2]
are separately used to learn the strategies of board games.
Although evolutionary algorithm is known for good
performance in games, they require much computational
resource compared to the reinforcement learning. Meanwhile,
reinforcement learning can learn strategies quickly with
relatively less computational resources. The hybridization of
the both methods can improve the pure evolutionary
algorithm for optimizing game evaluation function [3].

Because reinforcement learning can find a good solution
quickly with less resource, it is promising to exploit
reinforcement learning first and pass the results to the
evolutionary algorithm for further optimization. In CEC 2006
Othello competition, the hybrid of evolutionary algorithm
and temporal difference learning method won the final league
[4]. It showed relatively high generalization ability compared
to other models using either temporal difference learning or
evolutionary algorithm. The method used in the best player is
to exploit the best individual from the temporal difference
learning as a seed for the evolutionary algorithm.

It is also promising to use domain knowledge extracted
from reinforcement learning like self-playing in the
evolutionary process. It is known that the incorporation of
domain knowledge is useful for the pure evolution to improve
the performance [5][6][7]. Its idea is to exploit previously
easily accessible domain knowledge to leverage the pure
evolutionary approach. Opening list, opening DB, endgame

DB, and transcripts of previous games can be used as domain
knowledge. Addition of such knowledge might minimize the
evolution time and quality of final output. Because the
domain knowledge could restrict the search space to be
explored, it is expected that the evolutionary algorithm can
find good solution easily and fast.

Othello is a very short game that requires only 60 moves by
both players. Because of this, the importance of opening is
very important. Slight advantage in the early stage of game
often becomes huge difference in the end of the game.
Although advantage in the early stage doesn't mean win of
the game, it is true that the player with the advantage have
more probability of winning. Also, the game is very difficult
to estimate the results of the final score because there is huge
fluctuation in the score at the end game stage. Expert players
investigate all possible lines from the current board
configuration and decide the best line at the endgame stage.

Strong Othello programs like LOGISTELLO [8], NTEST
[9] and WZEBRA [10] have their own opening book. It
contains pre-calculated evaluation value for each move in the
early stage of the game. The value is calculated from the
self-playing of thousands of games. For each game, the final
score is used to evaluate the opening used in the game. If the
game is finalized with 34-30 as Black win, the opening used
is evaluated with +4 for Black. Although this is a bit different
from temporal difference learning, it is similar that the
knowledge is from self-playing of one player.
We propose two methods for hybrid the reinforcement

learning and evolutionary algorithm. 1) Initialization of the
population in evolutionary algorithm using solution
optimized by temporal difference learning 2) Evolution of
Othello strategies using opening book from self-playing and
endgame solver that quickly calculates the goodness of the
position in the endgame stage.

II. RELATED WORKS

There are many publications about the learning of game
strategies using evolutionary computation. They can be
categorized into pure evolution, the hybrid of evolutionary
algorithm with domain knowledge, and hybrid of
reinforcement learning with evolution.

The most successful example of the pure evolutionary
approach for the game is the Fogel's checkers program [2].

1-4244-0709-5/07/$20.00 ©2007 IEEE 203

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

They have applied evolutionary neural network for the
evaluation of checkers. Without help of domain knowledge,
they can evolve master-level player and evaluate the
performance in the game site.

In Othello, Miikkulainen et al. applied neural network
optimized by genetic algorithm without game tree [11]. They
showed that their evolved neural network learnt the mobility
strategy and the world-class level player checked the
transcripts of the play with comments.

Chong et al. evolved neural networks as an evaluation
function in the game tree for Othello [12]. They observed the
evolution of the neural networks based on the winning rates
against static strategies. They reported that the evolutionary
neural networks can improve their performance through the
evolution. Also, they evaluated the effect of the spatial
preprocessing layer, self-adaptive mutation, and tournament
selection.
Kim et al. used opening knowledge (well-known opening

list) and endgame DB (from Chinook) for evolving checkers
strategies [5]. In the middle stage of the game, speciation
algorithm is used to generate diverse evolutionary neural
networks for the evaluation of the leaf node in the game tree.
They reported that the incorporation of expert knowledge can
speed up the evolution and improve the performance.

Kim et al. used opening knowledge (well-known opening
list) to boost the performance of evolutionary Othello players
[6]. Opening list summarized by human experts is used in the
early stage of each game played in the evolution. The
experimental results show that the evolution with the opening
knowledge show improved performance. Because they used
position-based evaluation of board configuration, it is not
possible to achieve comparable performance to the other
programs. Also, they used only 1-ply game tree for the middle
stage of the game.

Fogel et al. used opening database and endgame database
to evolve the evolutionary chess players. They used three
object neural networks that cover different areas of chess
boards. Also, they used material values of pieces and
positional value tables. The evolved strategies showed good
performance compared to previous knowledge-based players.

The relationships between the reinforcement learning and
the evolutionary algorithm are one of the interesting research
issues. The both methods are compared separately or
combined for synergism.

Lucas et al. compared two learning methods for acquiring
position evaluation for small Go boards [13]. The methods
studied are temporal difference learning using the self-play
gradient-descent method and co-evolutionary learning using
an evolutionary strategy. They concluded that the temporal
difference learning usually performs better than the
co-evolutionary algorithm in the standard setup. However, in
the right configuration, the co-evolutionary algorithm
performs better than the counterpart.

Lucas et al. compares the use of temporal difference
learning (TDL) versus co-evolutionary learning (CEL) for

acquiring position evaluation functions for the game of
Othello [14]. For Othello, they reported that TDL learns
much faster than CEL, but that properly tuned CEL can learn
better playing strategies.

Singer proposed the hybridization of evolutionary
algorithm and reinforcement learning for Othello game
strategy acquisition [3]. In each generation, reinforcement
learning is used to train the individual ofthe population. They
reported that the strategy evolved for 3 months played at
roughly intermediate level.

III. METHODS

A. The Game of Othello
Othello is a deterministic game which is played by two

players. It is usually played on 8x8 boards and there are 64
squares. It is a kind of perfect information game and both
players have no hidden information. Each disc is similar to
coin but each side has different colors. One is white, the other
is black. At the initial stage of the game, both players choose
his color. If one player chooses white, the other player is
black. The initial board configuration is shown figure 1.
Initially, four discs are placed in the center of the board.

The game always starts with black player. The rule of the
game is very simple. The only rule is sandwiching other
player's discs by using his discs and flipping the discs
sandwiched to his disc color. The capturing is possible in any
direction and multiple directional capturing is also available.
The game is continued until there is no available move for
both players. At the last stage ofthe game, the one with more
discs wins the game. If there is equal number of discs, the
game called as draw.

Figure 1. The in I board conflg
WZEBRA)

iration (Image from

B. Overview of the Proposed Methods
The proposed method is composed of two stages. At first,

temporal difference learning is used to find premature
solution. It discovers the area that has many high performance
solutions. After finding the useful solution, it is used to find
better strategies using evolutionary algorithm. The
knowledge from the first strategy can be stored in a different
form for the evolutionary search. For example, they (the
knowledge from reinforcement learning) are weights of
neural networks or opening DB. The evolutionary algorithm
can be many different forms. Both of co-evolutionary
algorithm and evolution with fixed evaluation function can be
used.

204

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

The knowledge from the self-playing can be used to
initialize the population of the evolutionary algorithm and it
also can be directly used in the evaluation function of the
evolution. By exploiting previously discovered knowledge
from reinforcement learning, the evolutionary algorithm can
discover better strategy.

C. Initialization ofPopulation Using TDL Results
This section is related to the CEC 2006 competition and

introduces the method used for winning the award [4]. The
purpose of the competition is to promote the research on a
new method for evolving Othello strategy. Othello is very
complex game and enough to be used as a platform for many
variants of evolutionary algorithms. They provided two
different forms of strategy representation: weight matrix for
positional strategy and multi-layer perceptrons. The
preliminary round, the submitted strategies are evaluated
using static opponent with standard heuristics. Because the
game is a kind of deterministic one, there are only two
different games between two strategies. To increase the
number ofgames between them, 10% randomness is added to
the selection of moves for both players.

After playing 1000 games with the static strategy, the
number of win, draw and loss are used to calculate score.
Based on the score, the players are ranked. Because they are
ranked based on the results against the static strategy, it is
expected that player biased to the static strategy would get
high rank. The final winner is determined from the
competition among the best players from each person (final
round). In this stage, the player that has more generalization
capability against other best players of each person will get
high probability ofwin the competition. In the competition, it
is not allowed to see other player's strategy and thus it was
not possible to create a strategy specifically tailored to be
superior to the other submitted strategies.

1: /* TDL B: The best strategy learnt from TDL *
2: /* POP: Population of evolutionary search *
3: /* POP[i] ith individual of the population *
4: /* POP SIZE: Population size */
5: /*MAX GEN The maximum number of

generation*/
6:
7: FOR (i= 1;i<POP SIZE;i++) { POP[i]=TDL B;}
8:
9: FOR (i=1;i<MAX GEN;i++) {

10: fitness evaluation(POP);
11: roulette_wheel_selection(POP);
12: /* mutation */
13: FOR(= 1 <POP SIZEJ++){
14: FOR (all segments of POPU]) {
15: IF(rand(< mutation probability)
16: IF(rand(%2==0){
17: Segment of POPU]+=0.01;}
18: ELSE{
19: Segment ofPOPU]-= 0.01;}}}
20: elitist(POP); }

Figure 2. The pseudo code of the hybrid algorithm.

In the competition, we have used a hybrid of temporal
difference learning and evolution for learning strategy.
Temporal difference learning is a kind of reinforcement
learning [15]. The strategy that is discovered from the
temporal difference learning is used as a seed of evolutionary
search. The pseudo code ofthe proposed method is described
in figure 2. Temporal difference learning is useful to learn
strategy fast but there is still room for adjusting the
parameters of TDL results using evolutionary algorithm.
Lucas et al. mentioned that evolutionary algorithm could
produce better results compared to TDL but requires more
computational resources and tuning [13][14]. The proposed
algorithm can save the time for evolutionary algorithm by
exploiting TDL that learns a good strategy quickly.

D. Exploiting Knowledgefrom Self-Playing
Previously, we have used well-summarized opening list

in the process of evolutionary Othello player [6]. The list has
76 openings that are frequently used by human players. It has
only the name and the sequence of the openings. There is no
evaluation value for each opening. Also, it is limited to the
most popular openings and it cannot deal with variations of
popular openings. Strong Othello programs have their own
opening books that cover huge number ofopening lines. They
learn the opening book automatically from their self-playing
games and transcripts of top-players [16]. They adjust and
expand the opening book based on the results of the game.

There are two ways to construct opening books for strong
Othello programs [17][18]. The first method is manually
constructing books with the help of experts and transcripts. It
selects popular and important opening lines manually. The
second method is based on the results of the huge number of
games. If the game of result is loss, the opening used get
negative reward. The assumption of this approach is that the
result ofthe game is largely related to the selection ofopening
and errors on the other stages have relatively low effect on the
results. However, this assumption is not true for real-world
situation. Although the player selects bad opening, it can
make a win by the mistake of the other players at the end of
the game. The way to overcome this shortcoming is to use
self-play of strong programs with high depth because it
makes relatively low error and reveals the effect of openings
clearly.

In this paper, the opening knowledge from self-play and
games between top players is used in the process of evolution.
The knowledge can be regarded as results of reinforcement
learning. The results of games are used to give reward of
openings. By playing more games, the relevance of openings
are continuously updated based on reward value. If the
knowledge can be exploited, the scope that evolutionary
algorithm covers is minimized. Furthermore, endgame solver
can calculate the results of the game perfectly and quickly.
Both of the knowledge can significantly reduce the
complexity of learning Othello players. Figure 3 summarizes
the pseudo code of the knowledge-incorporated evolutionary
algorithm.

205

Proceedings of the 2007 IEEE Symposium on

Computational Intelligence and Games (CIG 2007)

Figure 3. Knowledge incorporated evolutionary algorithm.

IV. EXPERIMENTAL RESULTS

A. Hybrid ofTDL and Evolution
Kim et al. won the CEC 2006 Othello competition [4].

They initialized the population of evolutionary algorithm
with known well-playing individual learnt from temporal
difference learning. Their evolutionary algorithm used only
simple mutation and the evolved strategy is slightly different
from the original seed. But the competition results show that
the evolved strategies have better generalization capability
than other players including the original seed player.

The CEC competition has 904 entries (submissions) from
more than 10 persons. Each person can submit more than one

strategy. The strategy learnt from TDL is acquired from the
competition website (organizer opened it) and it is ranked in
the top 10. It is downloadable from http:Halgoval.essex.
ac.uk:8080/othello/html/SampleMLP.txt. It is represented
with multi-layer perceptron (MLP) with 64 input neurons, 32
hidden neurons and 1 output neuron. The depth of the game

tree is set to 1. It is because the purpose of the competition is
to find a way to evolve strategies rather than optimizing the
game tree search. The parameters of hybrid algorithm are as

follows. The population size is 50, the maximum number of
generation is 100, and mutation rate is 0.01. There are two
mutations: w'=w+0.01 and w=w-0.01. The fitness of the
individual is calculated from the following equation.

Fitness = (Number of wins) x 1.0 + (Number of draws) x 0.5

Each individual plays 1000 games against standard heuristics
represented weights matrix [6].

Figure 4 shows the change of fitness and although it starts
from the near 630, it converges to the 640. The analysis
showed that only 80 parameters are different from the initial
networks learnt from TDL among total 2113 parameters.

Figure 4. The fitness change of hybrid evolution (each point
is averaged the previous 20 generations to smooth the graph).

At the preliminary league, the best solution of the hybrid
algorithm (kjkim-mlp-3) is ranked as 3rd among 904
submissions. It is not the best player in the trial league. The
final competition league shows that the proposed method
performs better than other strategies. The result of the
competition is from [4] and summarized in table I, II, and III.

There are 12 finalists from 12 persons. In the table,
mlp-again2 (2nd rank in the preliminary league, it is the same

one with the player used for the initialization of population)
shows low rank compared to the proposed one. Although the
preliminary league showed that the proposed method gets low
rank compared to the mlp-again2, the proposed method
outperforms the mlp-again2 in the final round.

TABLE I
SUMMARIZATION OF COMPETITION RESULTS (RANDOMNESS iN MovE
SELECTION = 0%) EACH PLAYER HAS 2 GAMES WITH OTHER PLAYERS.
ran Win Draw Loss Name
k

1 20 0 2 kjkim-mlp-3
2 17 1 4 Alez V

3 17 0 5 NButtBradfordlb
4 14 2 6 mlp-again2
5 13 2 7 delete-me-cel-1-1

0

6 13 1 8 brookdale4
7 8 2 12 tomyO
8 7 1 14 fedevadeculo
9 5 0 17 last weeb I

10 5 1 16 jesz3
11 5 2 15 Jorge
12 1 2 19 tpr-tdl-01-500000

In the web page's report, the proposed algorithm
(kjkim-mlp-3) outperforms the player learnt from TDL which
is used for initialization of the population of the hybrid

206

1: /* OPENING: Opening knowledge from self-play *
2: /* ENDGAME: Endgame solver */
3: /* POP: Population of evolutionary search *
4: /* POP[i] ith individual of the population *
5: /* POP SIZE: Population size */
6: /*MAX-GEN: The maximum number of generation*/
7:
8: FOR (i=1;i<MAX GEN; i++) {
9: Offspring = mutate (POP);

10: FOR (=I <POP SIZE*2j++){
11: index_list=select_opponents(POP,Offspring);
12: /* do game betweenj and index list *
13: FOR(k=I1;k<60;k++){
14: IF(current sequence is not out-of-opening)
15: OPENING;
16: ELSE IF(empty squares < threshold)
17: ENDGAME;
18: ELSE
19: execute_game_tree(;
20: }
21: }
22: POP=select(POP+Offspring);
23: }

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

algorithm. For 1000 games (1% randomness), kjkim-mlp-3
gets 723 wins and 10 draws.

TABLE II
SUMMARIZATION OF COMPETITION RESULTS (RANDOMNESS IN MOVE

SELECTION = I %) EACH PLAYER HAS 20 GAMES WITH OTHER PLAYERS.

ran Win Draw Loss Name
k
1 181 4 35 kjkim-mlp-3
2 170 7 43 Alez V
3 161 12 47 mlp-again2
4 157 5 58 NButtBradfordlb
5 138 10 72 brookdale4
6 137 17 66 delete-me-cel-i-I

7 73 7 140 fedevadeculo
8 70 14 136 tomyO
9 58 17 145 Jorge
10 55 7 158 jesz3
11 46 2 172 last weebl
12 17 12 191 tpr-tdl-01-500000

TABLE III
SUMMARIZATION OF COMPETITION RESULTS (RANDOMNESS IN MOVE

SELECTION = 100%) EACH PLAYER HAS 20 GAMES WITH OTHER PLAYERS.

ran Win Draw Loss Name
k
1 163 1 56 kjkim-mlp-3
2 161 4 55 mlp-again2
3 158 3 59 Alez V
4 153 9 58 brookdale4
5 150 6 64 delete-me-cel-i-I

6 147 5 68 NButtBradfordlb
7 73 7 140 Fedevadeculo
8 71 5 144 Jorge
9 68 4 148 jesz3
10 67 3 150 tomyO
11 58 6 156 last weebl
12 21 7 192 tpr-tdl-01-500000

B. Knowledge-Incorporated Evolution
In the Othello community, the widely used Othello

programs are WZEBRA and NTEST. They are one of the
strongest programs in the world. The source code of the
ZEBRA is available on the internet under GPL
(htt:Hrd.aastse/theo/ r.t). WZEBRA is a
windows version of ZEBRA. It contains opening books with
more than 500,000 positions. In this paper, we used the
opening book in the evolution stage and endgame solver is
used when the number of empty squares is below 4. To
increase diversity of openings chosen from the opening DB,
the opening is randomly selected among the best 3 moves. It
will help the evolutionary player can deal with many
variations of good openings.

The neural network used for evaluating the configuration
of board is the same with the Fogel's method used for
checkers [2]. Previously, Chung et al. used the architecture

for Othello [12]. The depth of game tree used for evolution
and competition among the final evolved strategies is 2. The
population size is 20. Spatial preprocessing layer is used as
the same with [12]. The number of games played for the
fitness evaluation is 5. There are four different versions of
evolution.
EV, EV O, EV_E, and EV_OE. EV represents evolution, 0
represents opening and E represents endgame. EV_0E
represents evolution with opening and endgame knowledge.
EV means pure evolution without domain knowledge. EV 0
and EV E mean the evolution with only one domain
knowledge (either opening or endgame).

450000

400000

350000

300000

-4- EV
E_E
EV_O
EV_OE

, 250000
a)

200000

1 50000

1 00000

50000

1 3 5 7 9 11 13 15 17 19 21 23
generation

Figure 5. The evolution time of the four different versions
(EV > EV_E > EV_O > EVO_E)

Figure 5 shows the evolution time of the four different
versions. Because opening knowledge save the time for game
tree searching, it reduces much time for evolution. Also,
endgame solver reduces the evolution time. It means that
domain knowledge can significantly reduce required time for
the evolution. Table IV compares the number of generations
evolved for the same time span.

TABLE IV
THE NUMBER OF GENERATIONS EVOLVED FOR 3 DAYS

EV EV_E EV_O EV_O_E
of

300 327 597 770generations

We have compared individuals evolved using the same time
(computational resource). EV (300 generations), EV_E (327
generations), EV 0 (597 generations), and EVO_E (770
generations) are compared. The results are summarized in
table V. It shows that if they used the same computational
resource, the one with opening and endgame performs the
best. However, the effect of endgame is relatively high. The
number of games is 800 (20 individuals x 20 individuals x 2
games (change of colors)).
We have compared individuals evolved with the same

number of generations (450 generations). Table VI
summarizes the results. In this case, the EV 0 E
outperforms other strategies clearly. Meanwhile, the EV 0
performs worse than EV. This results show that the

207

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

incorporation of knowledge can save the time and discover
better strategies combined with knowledge.

TABLE V
THE COMPARISON OF FOUR VERSIONS WITH TH-E SAME COMPUTATIONAL

CONSUMPTION
Win Draw Loss

EV0_ E vs.EV 498 24 278
EV0_ E vs.EV 0 509 26 265
EV_O_E vs.EV_E 392 19 389
EV Ovs.EV 386 29 385
EV_E vs.EV 545 13 242

EV_E vs.EV 0 496 28 276

TABLE VI
THE COMPARISON OF FOUR VERSIONS WITH THE SAME NUMBER OF

GENERATIONS
Win Draw Loss

EV0_ E vs.EV 494 21 285
EV_O_E vs.EV_O 532 17 251
EV_O_E vs.EV_E 399 22 379
EV Ovs.EV 355 28 417
EV_E vs.EV 463 18 319

EV_E vs.EV 0 517 24 259

Figure 6 shows the analysis the game between EV 0 E
and EV (with the same number of generations). EV 0 E
leads the game in the early stage of the game using opening
knowledge. After 12 moves of the white, the game is
out-of-opening. From the point, the EV_0E used
evolutionary neural networks to evaluate the board
configuration with game tree (depth = 2). Because of the big
mistake of EV 0 E at 15th move, the game is led by EV.
However, after 22nd move ofthe EV, the game is again leaded
by the EV_OE and it controls the game to the end of the
game.

The reason that the EV 0 performs worse than EV E is
the early out-of-opening. Although EV_E has low
performance at the early stage of the game, it can reverse the
results at the end stage of the game. It is better to go
out-of-opening as earlier as possible because it minimizes the
effect of opening knowledge. Figure 7 shows the situation
that describes such phenomenon. At the early stage of the
game, the game is leaded by EV_O. Until 10th move, the
game is not out-of-opening and EV 0 has gained advantage.
After the out-of-opening, the EV E has gained control of the
game slightly but it is returned to the EV 0 after 30th moves.
However, the EV E performs better at the end stage of the
game. Because the endgame solver has invoked when the
number of empty squares is 4, the slight win at the end stage
of the game means the win of the EV E.

Figure 8 shows the game between EV 0 E and EV_0.
Because both players use the opening knowledge, the game is
continued with tie score until 26th moves. After out-of-the
opening, there is some fluctuation but the EV_0E controls
the game and finally the endgame solver leads the win of the
EV 0 E.

Figure 9 shows the results between EV E and EV_OE. It
shows that the EV 0 E has gained lead of the game at the
early stage of the game. Although it loses the control
immediately, the control of the game is returned to EV 0 E
after 18th moves. Although the EV E performs well in the
middle of the game, it is not enough to reverse the results of
the game. Because both players have the endgame solver, the
good job of the EV_E at the middle stage of the game cannot
regain the lead of the game.
The analysis showed that the evolutionary neural networks

has adapted to the domain knowledge and its synergy provide
time save and performance improvement.

+70

+50o

+40

+30

+20

+10

0

-10.
10 30 40 50 60

Figure 6. The analysis of the game between EV E 0
(black) and EV (white). + means black leads the game.

+40

+30

+20

+10

0

-10

0 . .t .. .J

10 20D Nit 303

/ X;

40 iiI V 50 }, 60

Figure 7. The analysis of the game between EV_O (black)
and EV_E (white).

+20

10i2. I40

-10
I

Figure 8. Analysis of the game between EVO_E (black)
and EV_O (white).

208

4...............................

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

and reinforcement learning," Lecture Notes in Computer
Science, vol. 2074, pp. 377-389, 2001.

[4] CEC 2006 Othello Competition Results,
30 66040 c,I

[5] K.-J. Kim, and S.-B. Cho, "Systematically incorporating
domain-specific knowledge into evolutionary speciated
checkers players," IEEE Transactions on Evolutionary
Computation, vol. 9, no. 6, pp. 615-627, 2005.

[6] K.-J. Kim, and S.-B. Cho, "Evolutionary Othello players
boosted by opening knowledge," IEEE Congress on

Evolutionary Computation, pp. 984-991, 2006.
[7] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon, "A

self-learning evolutionary chess program," Proceedings
ofthe IEEE, vol. 92, no. 12, pp. 1947-1954, 2004.

[8] M. Buro, "Improving heuristic mini-max search by
supervised learning," Artificial Intelligence, vol. 134, no.

1-2, pp. 85-99, 2002.
[9] NTEST,

[10] WZEBRA, h
[11] D. E. Moriarty and R. Miikkulainen, "Discovering

complex Othello strategies through evolutionary neural
networks," Connection Science, vol. 7, pp. 195-209,
1995.

[12] S. Y. Chong, M. K. Tan, and J. D. White, "Observing the
evolution ofneural networks learning to play the game of
Othello," IEEE Transactions on Evolutionary
Computation, vol. 9, no. 3, pp. 240-251, 2005.

[13] T. P. Runarsson, and S. M. Lucas, "Co-evolution versus

self-play temporal difference learning for acquiring
position evaluation in small-board Go," IEEE
Transactions on Evolutionary Computation, vol. 9, no. 6,
pp. 628-640, 2005.

[14] S. M. Lucas, and T. P. Runarsson, "Temporal difference
learning versus co-evolution for acquiring Othello
position evaluation," IEEE Symposium on

Computational Intelligence and Games, pp. 52-59,2006.
[15] R. Sutton and A. G. Barto, Reinforcement Learning,

MIT Press, 1998.
[16] M. Buro, "Toward opening book learning," ICCA

Journal, vol. 22, no. 2, pp. 98-102, 1999.
[17] T. R. Lincke, "Strategies for the automatic construction

of opening books," Lecture Notes in Computer Science,
vol. 2063, pp. 74-86, 2001.

[18]R. M. Hyatt, "Book learning -A methodology to tune an

opening book automatically," ICCA Journal, vol. 22, no.

1, pp. 3-12, 1999.

Figure 9. The analysis of the game between EV_E (black)
and EV_OE (white).

V. CONCLUSIONS

This work attempted to incorporate the results of
reinforcement learning (TDL and self-playing) to the
evolutionary neural networks. Strategy learned from TDL is
used to initialize the evolutionary search and the evolved
strategy performs better than the initial TDL strategy clearly.
In our work, the effect of domain knowledge incorporation in
the evolutionary Othello players is systematically evaluated.
It shows that the effect of endgame is large than the one of
opening DB. The use of the both knowledge performs better
than one with single knowledge. Because the effect of
knowledge is different, it is useful to control the level of
performance and knowledge insertion effort effectively. As a

future work, we have to expand the depth of game tree and
adopt a deeper endgame solver.

ACKNOWLEDGEMENTS

This research was supported by the MIC(Ministry of
Information and Communication), Korea, under the
ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information
Technology Assessment), IITA-2006-(C1090-0603-0046)

REFERENCES

[1] G. Tesauro, "Temporal difference learning and
td-gammon," Communications ofthe ACAI, vol. 38, no. 3,
pp. 58-68, 1995.

[2] D. B. Fogel, Blondie24: Playing at the Edge of AI,
Morgan Kaufmann, 2002.

[3] J. A. Singer, "Co-evolving a neural-net evaluation
function for Othello by combining genetic algorithms

209

+20-

+10.

0-

-10-

20

30-

-40-

10- -, 110A
0 20'

