
 

 

 

  

Abstract — In pattern recognition area, an ensemble approach 

is one of promising methods to increase the accuracy of 

classification systems. It is interesting to use the ensemble 

approach in evolving game strategies because they maintain a 

population of solutions simultaneously. Simply, an ensemble is 

formed from a set of strategies evolved in the last generation. 

There are many decision factors in the ensemble of game 

strategies: evolutionary algorithms, fusion methods, and the 

selection of members in the ensemble. In this paper, several 

evolutionary algorithms (evolutionary strategy, simple genetic 

algorithm, fitness sharing, and deterministic crowding 

algorithm) are compared with three representative fusion 

methods (majority voting, average, and weighted average) with 

selective ensembles (compared with the ensemble of all 

members). Additionally, the computational cost of an exhaustive 

search for the selective ensemble is reduced by introducing 

multi-stage evaluations. The ensemble approach is tested on the 

Othello game with a weight piece counter representation. The 

proposed ensemble approach outperforms the single best 

individual from the evolution and ensemble searching time is 

reasonable.  

I. INTRODUCTION 

 Ensemble is a method to combine multiple decision models 

expecting synergism to increase the performance of systems 

[1][2].  It is composed of a number of models and each 

member contributes to the final decision of the ensemble. If 

each model’s decision boundary is different, they can generate 

a new one by combining them. If they can cooperate well, the 

final decision boundary could be better than one of each 

member. In this way, the ensemble can improve the accuracy 

and the generalization capability on unseen dataset.  

There are many factors in the success of the ensemble 

system. Each member should be good although it is not 

necessary to be the best. Also, they’re not identical because 

there is no performance gain from the combination of the same 

models [3]. The number of members is important and there is 

evidence that the combination of the many models could be 

worse than the one of subsets of them [4]. Finally, there are 

many different ways to combine outputs from each member to 

generate the final decision [5].  

     Evolutionary game is a promising research area that 

combines a lot of games with evolutionary algorithms [6]. 

Fogel et al. evolved master-level players for a game of 
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checkers and chess [7][8]. There is a good source of 

references for this area [9]. There are many different types of 

games raging from traditional board games (chess, checkers, 

go, Othello, and backgammon) to video games. It opens door 

to designing game strategies with limited expert knowledge.  

    It is natural to use the ensemble approach in the 

evolutionary algorithms because it maintains a number of 

solutions simultaneously [10][11]. Unlike other search 

algorithms, it is a population-based search and results in 

multiple models. Simply, an ensemble is formed with the 

individuals in the last generation. It is possible to form 

ensembles without multiple runs of learning.  

    There is a little attention on the ensemble research for 

evolutionary games. The main focus of the evolutionary 

games research is to exploit the best individual in the last 

generation. There are few papers on this topic. Kim et al. 

combined several neural network strategies evolved for a 

game of checkers [12]. Yang et al. introduced the coalition of 

multiple strategies in iterated prisoner’s dilemma (IPD) game 

[13]. 

     In this paper, an ensemble approach is systematically 

tested in the platform of Othello. The control parameters of 

the ensemble are the way to evolve each member, a fusion 

method, and the choice of members from candidates. There 

are several choices for each factor and their effect is 

investigated on the game of Othello. Additionally, a new 

method is proposed to minimize the computational cost in 

finding an ensemble exhaustively.  

    The rest of this paper is organized as follows. Section II 

describes backgrounds of the proposed methods: Rules of 

Othello, computational intelligence approaches for the game, 

and the ensemble approaches for evolutionary games. Section 

III applies ensemble approaches to the game of Othello. 

Control parameters of the ensemble are the learning methods 

for individual members, selection of members from a pool of 

strategies, and fusion methods. Section IV describes the 

experimental results and analysis.  

      

II. BACKGROUNDS 

A. A Game of Othello 

   Othello has a very simple rule but it takes lifetime to 

master the game for human. The only rule for the game is to 

sandwich other player’s discs with one’s own discs and the 

captured discs flip to one’s disc. The goal of the game is to 

maximize the number of discs after the end of game. It is 
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played on an 8×8 board and a game ends when there is no 

valid move or the board is full. Figure 1 explains the rule of 

the Othello. It is difficult because there are many 

tactics/strategies and drastic change of scores at the end of 

the game.  

     It is not surprising that there are annual world Othello 

championships because it is a challenging game to human.  

Unlike computers, human relies on pattern recognition, 

logical thinking and selective attention. Learning the 

expert-level skills is not an easy task and it requires a lot of 

time and several thousands of games played with others.  

 

  
(a) Initial configuration (b) Legal moves 

  
(c) Legal moves  (d) After D6 is played 

Figure 1. Examples of Othello rules 

B. Computational Intelligence for Othello  

    Othello is a popular game in computational intelligence 

society because of its complexity. Buro et al. developed 

world-class level Othello programs called Logistello [14]. 

Lucas et al. compared temporal difference learning (TDL) 

with co-evolutionary learning (CEL) for the game [15]. 

Runarsson et al. investigate the effect of look-ahead depth of 

a game tree in learning position evaluation functions for 

Othello. Chong et al. use evolutionary algorithms to learn 

spatial neural networks as an evaluation function for board 

configuration of Othello [17].  

     There are many different types of representation for 

Othello strategy. Lucas proposed �-Tuple systems to 

represent Othello strategy [18]. It outperformed the best 

strategy in Othello competition at Congress on Evolutionary 

Computation 2006. In many cases, a simple weight piece 

counter representation is used [16][15]. It was an 8×8 matrix 

and each entry has a weight for each square of the board. In 

[17], a spatial neural network representation was used. 91 

sub-boards are extracted from each board configuration and 

they are inputted to a neural network.  

      At Congress on Evolutionary Computation 2006, 

Othello competition was organized and opened to public to 

submit their evolved strategies. At that time, the only 

representation was weight piece counter and multi-layer 

neural networks. Kim et al. won the competition with a 

method of an incremental hybrid learning seeded with 

strategies learned by TDL [19].  

     Othello is a deterministic game and small randomness is 

introduced to increase the number of games between two 

players. “Deterministic” means that the game score is 

always the same if it is played in the same sequence. This 

limits the number of games between two distinct strategies 

to 2. This is because there is no randomness throughout the 

game.  Lucas et al. introduced small randomness in the game 

of Othello to increase the number of unique games between 

two players [15]. This was also used in the Othello 

competition.  

    Monte-Carlo (MC) algorithms are used in Othello playing. 

This method is promising in the game of Go. For each move, 

it simply continues the game by playing random moves until 

it reaches to the end of the game. Among candidates, the one 

with the highest winning ratio is chosen as the next move. 

This is simple but has potential to compete against the 

traditional min-max search with a game tree. However, this 

is computationally expensive to get correct statistics. Archer 

evaluates the MC algorithm with Othello game [20]. 

Hingston et al. evolved a weight piece counter to guide 

selectively the MC algorithm [21]. Nijssen boosted MC 

algorithm with domain knowledge and it was competitive 

against a powerful program WZEBRA (look-ahead depth=1, 

no opening knowledge) [22].  

     

C. An Ensemble Approach for Evolutionary Games 

    There are few works on ensemble approaches for 

evolutionary games. Kim et al. used a deterministic crowding 

genetic algorithm to evolve diverse spatial neural networks for 

checkers [12]. Distinct strategies are identified with clustering 

algorithms and they are combined with majority voting. It 

outperforms the single best player evolved with a standard 

genetic algorithm. Yang et al. proposed a collective decision 

making of IPD strategies evolved [13]. The final output of the 

ensemble is calculated with weighted averaging.  

 

 

 
Figure 2. Overview of the ensemble framework 
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III. AN ENSEMBLE OF EVOLUTIONARY PLAYERS 

     In this section, each component of the ensemble is 

introduced step by step (summarized in Figure 2). There are 

many different types of evolutionary algorithms to evolve 

game strategies. In this paper, we deal with four different 

algorithms (a standard genetic algorithm (GA), evolutionary 

strategy, a GA with fitness sharing, and deterministic 

crowding GA). We compare two different approaches in the 

member selection of ensembles (the combination of all 

candidates and selective ensemble). In case of the selective 

approach, there are a large number of possible ensembles and 

an efficient heuristic is required to minimize computational 

cost to find good one. Finally, three representative fusion 

methods are defined in the game domain (voting, averaging, 

and weighted averaging).  

A. Evolutionary Algorithms  

• Standard Genetic Algorithm (SGA): Each strategy is 

represented with a real-value vector. Selection is done with 

fitness-proportionate selection (roulette wheel selection). 

Mutation and crossover are used to generate offspring. 

Fitness can be calculated statically based on the results of 

games against well-known heuristics or dynamically 

against each other.  

 

• Evolutionary Strategy (ES): This method is successful in 

checkers, Othello, and chess domain [7][8][17]. Each 

strategy is represented with a real-value vector and 

additional self-adaptive parameters associated to the vector. 

It uses only mutation and each parent generates one 

offspring. Among the pool of parents and offspring, the best 

half is chosen as the next generation’s new parents. The 

updating rule for the weight and self-adaptive parameter is 

shown in [7]. Because it is based on tournament selection, it 

can maintain the diversity of population [17].  

 

• Genetic Algorithm with Fitness Sharing (FSGA): This 

approach is the same with the SGA except that it readjusts 

the fitness based on the similarity of individuals [23]. The 

original fitness of the individual is f and it is readjusted to fs. 

� is the population size and σ is a sharing radius. )(id is 

the distance with the ith strategy.  
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• Deterministic Crowding Genetic Algorithm (DCGA) 

(Figure 3): It is similar to evolutionary strategies but 

parents compete against their children [24]. Two parents 

generate two offspring with genetic operators (crossover 

and mutation). From a pair of similar parents and child, the 

one with higher fitness is chosen for the next generation’s 

new parents.  

 

 

B. Member Selection  

    The members of an ensemble are chosen from the 

population of the last generation and it is not trivial to choose 

the members for an ensemble because of its huge ensemble 

search space. If the population size is �, there are � candidates 

for the member of the ensemble. A straightforward approach 

is to combine all candidates available. It generates one 

ensemble of � members. A subset of � members would lead to 

2
�
 possible ensembles. If the size of the ensemble is fixed as M, 

the number of possible ensembles is �CM. Clustering 

algorithms are used in [10][12][25]. From each cluster, the 

best player is chosen as a representative one and the final 

ensemble is formed with the representatives.  

     In this paper, two approaches are adopted and compared. 

The first one is combining all individuals in the population of 

the last generation. The next one is enumerative search of the 

ensemble candidates with fixed size. In case of ensemble size 

= 3, the total number of ensembles is �C3. The best one among 

all candidates is chosen as a final ensemble. Although there is 

no additional computational cost to form an ensemble for the 

first approach, it is known that the combination of all may not 

be better than one of the subsets of them. Meanwhile, the 

second approach requires a lot of computational cost to 

enumerate all ensembles and evaluate them.       

 

// P : The population of game strategies 

// pi : ith individual of P 

// fitness(pi) : Return the fitness of pi 

// d(pi,pj): Return the distance between pi and pj 

// shuffling() : Randomly rearrange the order of individuals  

// survive(pi): pi survives to the next generation  

 

FOR (gen = 0; gen < MAX_GEN; gen++) { 

   Shuffling();  

   FOR (I = 0; i < POP_SIZE; I += 2) { 

      c1,c2=crossover(pi, pi+1);  

      c1=mutation(c1); c2=mutation(c2); 

      IF ((d(pi,c1)+ d(pi+1,c2))< (d(pi,c2)+ d(pi+1,c1)) { 

          IF (fitness(pi) > fitness(c1)) survive (pi); 

          ELSE survive (c1); 

          IF (fitness(pi+1) > fitness(c2)) survive (pi+1); 

          ELSE survive (c2); 

      } 

      Else { 

          IF (fitness(pi) > fitness(c2)) survive (pi); 

          ELSE survive (c2); 

          IF (fitness(pi+1) > fitness(c1)) survive (pi+1); 

          ELSE survive (c1); 

} }} 

Figure 3. A pseudo code for DCGA 

 

C. Exhaustive Ensemble Searching with Multi-Stage 

Evaluations for Time Saving  

    In this paper, a new multi-stage evaluation method is 

proposed to reduce computational cost in enumerative 
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search of an ensemble (Figure 4). The bottleneck of the 

exhaustive search is the evaluation of an ensemble by 

playing a number of games. The accuracy of the evaluation 

is related to the number of games played by the ensemble. If 

G is the games played, the total computational cost for the 

enumerative search is �CM × G. In the new evaluation 

method, each ensemble is evaluated from low accuracy to 

high accuracy step by step.  If it is identified that the 

ensemble is not better than the best one in low accuracy 

evaluation, it passes the high accuracy evaluation and goes 

to the next ensemble. 

 

 

// T : The total number of possible ensembles  

//    : Individuals are sorted based on their performance 

//    : Enumeration is based on the sorted order  

// evaluate (i,G) : Return a scoring point from G games  

// B : The best ensemble found  

// Bs : The scoring point of B 

FOR (i = 0; i < T; i++) { 

   FOR (g = MIN_G; g ≤ MAX_G; g×=STEP_SIZE) { 

      S=evaluate(i,g); 

      IF(
GMAX

B

g

S S

_
< )  break;  // normalized comparison 

      ELSE IF(g==MAX_G) { B=i;Bs=S} 

}}                                                     

Figure 4. A pseudo code of enumerative search based on the 

multi-stage evaluation (Scoring point = the number of win + 

the number of draw×0.5) 

 

D. Fusion Methods  

    In this paper, three representative fusion methods are 

defined in the domain of game. The ensemble is defined as 

E={m1,m2,…,mM}, where it is composed of M members. Let’s 

assume that there are L legal moves by the ensemble player at 

current board configuration. In a majority voting method, each 

member of the ensemble votes for one of L legal moves. The 

one with the highest vote is decided as the next move of an 

ensemble. In an averaging method, the evaluation value for 

each legal move is averaged over all members of the ensemble. 

In a weighted averaging method, their contribution to the 

averaging is weighted based on a prior knowledge on each 

member’s performance.  

IV. EXPERIMENTAL RESULTS ON OTHELLO GAME 

    TABLE 1 summarizes the parameters used in the 

experiments. The population sizes of the SGA and FSGA are 

double the ones of ES and DCGA. In SGA and FSGA, only 

parents are evaluated but in ES and DCGA, the parents and 

offspring are evaluated together. For a fair comparison, the 

population size is adjusted. In FSGA and DCGA, Euclidean 

distance of WPC is used as a distance measure. In FSGA, the 

sharing radius is decided as the half of the average distances 

among all individuals. The final results are average of 10 runs. 

The size of the ensemble is fixed to 3.    

     Othello is used as a game to test the ensemble approaches. 

Because the game is deterministic, 10% randomness is 

applied in the move selection [15]. In evolution stage, the 

scoring point (# of wins + # of draw×0.5) against standard 

heuristic [26] is used as a fitness function. In G games, the 

choice of color is even (half of the game is played with black 

and the remaining is played with white).  

     

TABLE 1. PARAMETERS OF THE EXPERIMENTS  

(a) Parameters dependent on evolutionary algorithm 
 SGA ES FSGA DCGA 

Population Size 20 10 20 10 

Crossover Rate 0.8 - 0.8 0.8 

Mutation Rate 0.1 1.0 0.1 0.1 

 

(b) Common parameters 
Evaluations per one Generation 20 

G in Evolution 100 

Randomness )(ε in Move Selection 0.1 

Maximum Generation 1000 

# of Runs 10 

MIN_G, MAX_G, STEP_SIZE in the Ensemble 

Search 
100,10000,10 

Size of an Ensemble 3 

*G: The number of games played in the evaluation 

 

    Computational cost is one of the important issues in this 

research. Weight piece counter (WPC) is chosen as a 

representation because it is very fast to calculate evaluation. It 

is possible to use multi-layer neural networks or spatial neural 

networks as a representation but it is much slower than one of 

WPC. For one run, the number of games played is 

20×100×1000=2×10
6
.  To minimize the computational cost 

for the exhaustive ensemble searching, the best 10 individuals 

from the last generation is chosen. The possible number of 

ensembles is 10C3=
!3

!10
=120. For accurate evaluation, in 

ensemble searching, 10000 games are played for each 

candidate. If there is no time saving heuristic, the games 

played for the exhaustive search is 120×10000=1.2×10
6
.  

    Figure 5 shows the average and maximum fitness of the 

four evolutionary algorithms. ES and DCGA are better than 

GA and DCGA. GA converges in the early stage of evolution. 

FSGA is a bit worse than the GA until 800 generations but it is 

nearly the same at 1000 generations. ES converges at 400 

generations but DCGA steadily increases its fitness. Explicit 

mechanism to increase diversity causes slow convergence of 

evolution.  

    TABLE 2 summarizes the max, average and min of the 

individuals in the last generation. It shows that ES is the best 

one and the second is DCGA. SGA and FSGA are worse than 

the two methods. There is difference between SGA and FSGA. 

In ES, every individual obtains high score and there is small 

difference between max and min. However, in DCGA, there is 

a big difference between max and min.  
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(a) Average fitness 

 
(b) Maximum fitness 

Figure 5. Progress of the evolution (Y-axis is a fitness) 

    

     

     

TABLE 2. THE SCORING POINT OF THE INDIVIDUALS 

IN THE LAST GENERATION  

(10000 games against heuristic, ε =0.1) 

 MAX AVG MIN 

SGA 4225±481 4125±387 4249±427 

ES 5551±327 5343±366 5055±393 

FSGA 4248±429 4107±570 4077±592 

DCGA 5434±347 5181±376 4590±689 

     

   The best individual scores 6315. It comes from evolutionary 

strategies (Figure 6). In a positional evaluation like WPC, the 

corners are very important and the next square to the corners 

are dangerous area. This WPC reflects this idea very well. 

Because ES allows continuously growing its weight value, 

there is big weight (90.87344).  

 

 
Figure 6. WPC that scores the best (6315) 

 

 

TABLE 3 summarizes the uniqueness and average distance of 

the population of the last generation. For SGA and FSGA, the 

best 10 individuals are chosen from 20. Uniqueness is defined 

as the number of unique individuals. The average distance is 

calculated from the sum of distances from 10×9 pairs. The ES 

and DCGA show the highest uniqueness (10). SGA and FSGA 

maintain 4~5 unique individuals and there are identical 

individuals in the population. FSGA is a bit better than SGA in 

terms of uniqueness. In ES, the real-value in WPC can 

increase continuously and the average distance is too high. In 

SGA, FSGA, and DCGA, the real-value ranges from 0 to 1.0. 

DCGA maintains higher average distance than SGA and 

FSGA. 

 

 

 

TABLE 3. UNIQUENESS AND AVERAGE DISTANCE 

ANALYSIS 

 Uniqueness Average Distance 

SGA 4.7±1.8 0.9±0.5 

ES 10.0±0.0 1192169±2558915 

FSGA 5.2±1.9 0.9±0.7 

DCGA 10.0±0.0 3.7±1.9 

 

TABLE 4. THE PERFORMANCE OF THE BEST 

ENSEMBLE FOUND AGAINST STANDARD 

HEURISTICS  

(10000 games, ε =0.1) 

 

(a) Performance of the ensemble of all 

 
Best Single 

Individual 

Majority 

Voting 
Averaging 

Weighted 

Averaging 

SGA 4225±481 4266±422 4286±±±±385 4279±428 

ES 5551±±±±327 5462±349 5401±410 5406±405 

FSGA 4248±429 4327±444 4313±451 4338±±±±474 

DCGA 5434±±±±347 5366±351 5286±471 5277±504 

 

(b) Performance of the ensemble of three members 

 
Best Single 

Individual 

Majority 

Voting 
Averaging 

Weighted 

Averaging 

SGA 4225±481 4401±417 4421±±±±415 4415±420 

ES 5551±327 5627±±±±338 5621±351 5606±356 

FSGA 4248±429 4466±474 4476±±±±458 4460±452 

DCGA 5434±347 5538±322 5544±297 5550±±±±317 

 

(c) Computational cost for exhaustive search (10 runs, 3 

fusion methods) 

 

# of Games 

(without time 

saving) 

(A) 

# of games 

(with time 

saving) 

(B) 

Gain 

(A/B) 

SGA 3.6×10
7
 4.73×10

6
 7.6 

ES 3.6×10
7
 3.43×10

6
 10.5 

FSGA 3.6×10
7
 4.76×10

6
 7.5 

DCGA 3.6×10
7
 3.30×10

6
 10.9 

 

 

A. Ensemble against the Heuristics  

The exhaustive searching for the ensemble is done with 

the time saving algorithm. It is compared with the 

combination of all individuals. The criterion to select the best 

ensemble is the performance against the standard heuristics. In 
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the weighted averaging, the weight of the individuals is 

decided based on the performance against the standard 

heuristics (10000 games, ε =0.1).  

In TABLE 4, the performance of an ensemble is 

summarized with computational cost comparison. The 

combination of all individuals is not always better than the 

single best individual from the last generation. In SGA and 

FSGA, the ensemble performs better than the single best one 

but it is not true in ES and DCGA. The ensemble of 3 

members outperforms the best single individual and the 

combination of all individuals. It is not clear which fusion 

method is the best. In the exhaustive ensemble search, total 

number of games is 10 runs × 3 fusion methods × 1.2×10
6
 

=3.6×10
7
. The number of games is 7~10 times smaller than 

the original one when the multi-stage evaluation approach is 

used. In ES and DCGA, the cost gain is bigger than one of GA 

and FSGA.  

The best ensemble scores 6425. It is from evolutionary 

strategies with the weighted averaging method. Figure 7 

shows the weight piece counter matrix for three members in 

the best ensemble. The rank of the three individuals is 1
st
, 2

nd
 

and 7
th

 among 10 individuals in the last generation. The 

average score of the members is 6220 and the performance 

gain from the ensemble is 205 games.  

Figure 8 shows a new WPC derived from the three WPC’s. 

If the entry in 1
st
 WPC is x1 and the weight for the WPC is w1, 

the new WPC is defined as follows.  

332211 wxwxwxx ×+×+×=  

If the weighted averaging requires three evaluations per move, 

the new WPC results in the same output with one evaluation 

per move. This is also available to the averaging fusion 

method.  

 
(a) Individual score = 6315 

 
(b) Individual score = 6131 

 
(c) Individual score = 6214 

 

Figure 7. The ensemble that scores the best (6425) 

B. Ensemble against the Best Single Individual 

TABLE 5 summarizes the performance of ensembles 

against the best single individual. The best ensemble is found 

by an exhaustive search with the time saving heuristics. The 

ensemble size is fixed as three in the search. If the scoring 

point is larger than 5000, it means that the ensemble 

outperform against the single best player. In the weighted 

averaging, the weight is decided based on the performance 

against standard heuristics (10000 games, ε =0.1). The 

combination of all individuals is worse than the single best one. 

In the ensemble of three members, the ensemble outperforms 

against the single best player with any fusion methods. Like 

the previous results, it is not clear which fusion method is 

superior. In ES and DCGA, the ensemble gains more score 

than the one from GA and FSGA. The computational cost gain 

from the time saving algorithm is approximately 8~18.  

 

 
 

Figure 8. New WPC derived from the three members in the best 

ensemble 

TABLE 5. THE PERFORMANCE OF THE BEST 

ENSEMBLE FOUND AGAINST THE BEST SINGLE 

INDIVIDUAL  

(10000 games, ε =0.1) 

(a) Performance of the ensemble of all 

 
Majority 

Voting 
Averaging 

Weighted 

Averaging 

SGA 4988±±±±330 4923±352 4917±359 

ES 5087±±±±612 4914±432 4918±442 

FSGA 4984±±±±  85 4966±122 4958±131 

DCGA 4921±173 4925±380 4941±±±±350 

 

(b) Performance of the ensemble of three members 

 
Majority 

Voting 
Averaging 

Weighted 

Averaging 

SGA 5152±269 5211±±±±306 5211±307 

ES 5483±±±±420 5462±457 5437±393 

FSGA 5202±±±±214 5195±190 5194±167 

DCGA 5430±282 5606±±±±417 5599±407 

 

(c) Computational cost for exhaustive search (10 runs, 3 

fusion methods) 

 

# of Games 

(without time 

saving) 

(A) 

# of games 

(with time 

saving) 

(B) 

Gain 

(A/B) 

SGA 3.6×10
7
 3.80×10

6
 9.5 

ES 3.6×10
7
 2.20×10

6
 16.3 

FSGA 3.6×10
7
 4.28×10

6
 8.4 

DCGA 3.6×10
7
 1.98×10

6
 18.1 
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C. Discussion  

Diversity is related to the success of the evolution. In the 

uniqueness and average distance analysis show the reason of 

success by the ES and DCGA. They maintain higher 

uniqueness and diversity than SGA and FSGA. In the analysis 

of the population of the last generation, ES and DCGA 

outperform the SGA and FSGA.  

Diversity and good base member is a key in the success of 

the ensemble. ES and DCGA maintain high diversity and good 

individuals. It leads to the good ensembles and they 

outperform SGA and FSGA. Because SGA and FSGA have 

individuals with less fitness and the diversity is low, there is 

limitation to get comparable results with the ES and DCGA.  

    Computational cost issue is important in game evolution. It 

is possible to get better performance with the introduction of 

complex representation (Multi-layer neural networks, and 

spatial neural networks) but they takes a lot of time. Also, the 

ply-depth can be increased but it increases computational cost 

significantly. In the ensemble searching, the time saving 

algorithm is essential to get results in a reasonable time. The 

factor is approximately 7~18. Although this time saving 

sacrifices the accuracy of the enumerative search, it is 

important to get good ensemble in a reasonable time.  

  

V. CONCLUSIONS AND FUTURE WORKS 

There is performance gain from forming an ensemble of 

game strategies evolved. From the experiment on Othello 

game, the ensemble from the population of the last generation 

can outperform the best individual player. Selective 

ensembles are better than the one of all individuals. The use of 

evolutionary algorithm and the choice of the member is 

directly related to the success of the ensemble.  

    The enumerative search of ensemble can be improved with 

other techniques. Genetic algorithms are used to search for 

ensemble of several classifiers for bioinformatics problem 

[27]. In this method, there is no restriction on the size of the 

ensemble. Greedy approach is one of the techniques to form 

an ensemble and they can be applied to the game domain [28]. 

It starts from an empty ensemble and adds the member that 

maximizes the performance increase. On the other hand, it is 

possible to start from full ensemble and delete one member at 

a time in a greedy manner.  

    The speed of the evolution is dependent on the time 

required to do a game between two strategies. A bit-board 

representation could be used to reduce the time for one game. 

In the representation, each entry of the board is represented as 

two bits and bitwise operators are used to update the board. 

Another way to increase the speed of evaluation is to use 

distributed computing. GPU (Graphical Processing Unit) in a 

graphic card is ready to do highly parallel computing with less 

expensive hardware. Multi-core machines can be used to 

accelerate the speed of evolution.  

    The strategies from co-evolution can be benefit from the 

ensemble approach. In this work, we only consider the 

evolution against static heuristic player and the final solution 

has less generalization ability. Co-evolution is promising to 

increase winning ratio against unseen strategies. The same 

enumerative ensemble searching can be used to the population 

of the last generation of the co-evolution.  
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