

Abstract — In pattern recognition area, an ensemble approach

is one of promising methods to increase the accuracy of

classification systems. It is interesting to use the ensemble

approach in evolving game strategies because they maintain a

population of solutions simultaneously. Simply, an ensemble is

formed from a set of strategies evolved in the last generation.

There are many decision factors in the ensemble of game

strategies: evolutionary algorithms, fusion methods, and the

selection of members in the ensemble. In this paper, several

evolutionary algorithms (evolutionary strategy, simple genetic

algorithm, fitness sharing, and deterministic crowding

algorithm) are compared with three representative fusion

methods (majority voting, average, and weighted average) with

selective ensembles (compared with the ensemble of all

members). Additionally, the computational cost of an exhaustive

search for the selective ensemble is reduced by introducing

multi-stage evaluations. The ensemble approach is tested on the

Othello game with a weight piece counter representation. The

proposed ensemble approach outperforms the single best

individual from the evolution and ensemble searching time is

reasonable.

I. INTRODUCTION

 Ensemble is a method to combine multiple decision models

expecting synergism to increase the performance of systems

[1][2]. It is composed of a number of models and each

member contributes to the final decision of the ensemble. If

each model’s decision boundary is different, they can generate

a new one by combining them. If they can cooperate well, the

final decision boundary could be better than one of each

member. In this way, the ensemble can improve the accuracy

and the generalization capability on unseen dataset.

There are many factors in the success of the ensemble

system. Each member should be good although it is not

necessary to be the best. Also, they’re not identical because

there is no performance gain from the combination of the same

models [3]. The number of members is important and there is

evidence that the combination of the many models could be

worse than the one of subsets of them [4]. Finally, there are

many different ways to combine outputs from each member to

generate the final decision [5].

 Evolutionary game is a promising research area that

combines a lot of games with evolutionary algorithms [6].

Fogel et al. evolved master-level players for a game of

Kyung-Joong Kim is a postdoctoral researcher at the department of

mechanical and aerospace engineering, Cornell University, Ithaca, NY,

14850, USA (kk499@cornell.edu)

Sung-Bae Cho is a professor at the department of computer science,

Yonsei University, Seoul 120-749, South Korea (sbcho@cs.yonsei.ac.kr)

checkers and chess [7][8]. There is a good source of

references for this area [9]. There are many different types of

games raging from traditional board games (chess, checkers,

go, Othello, and backgammon) to video games. It opens door

to designing game strategies with limited expert knowledge.

 It is natural to use the ensemble approach in the

evolutionary algorithms because it maintains a number of

solutions simultaneously [10][11]. Unlike other search

algorithms, it is a population-based search and results in

multiple models. Simply, an ensemble is formed with the

individuals in the last generation. It is possible to form

ensembles without multiple runs of learning.

 There is a little attention on the ensemble research for

evolutionary games. The main focus of the evolutionary

games research is to exploit the best individual in the last

generation. There are few papers on this topic. Kim et al.

combined several neural network strategies evolved for a

game of checkers [12]. Yang et al. introduced the coalition of

multiple strategies in iterated prisoner’s dilemma (IPD) game

[13].

 In this paper, an ensemble approach is systematically

tested in the platform of Othello. The control parameters of

the ensemble are the way to evolve each member, a fusion

method, and the choice of members from candidates. There

are several choices for each factor and their effect is

investigated on the game of Othello. Additionally, a new

method is proposed to minimize the computational cost in

finding an ensemble exhaustively.

 The rest of this paper is organized as follows. Section II

describes backgrounds of the proposed methods: Rules of

Othello, computational intelligence approaches for the game,

and the ensemble approaches for evolutionary games. Section

III applies ensemble approaches to the game of Othello.

Control parameters of the ensemble are the learning methods

for individual members, selection of members from a pool of

strategies, and fusion methods. Section IV describes the

experimental results and analysis.

II. BACKGROUNDS

A. A Game of Othello

 Othello has a very simple rule but it takes lifetime to

master the game for human. The only rule for the game is to

sandwich other player’s discs with one’s own discs and the

captured discs flip to one’s disc. The goal of the game is to

maximize the number of discs after the end of game. It is

Ensemble Approaches in Evolutionary Game Strategies: A Case

Study in Othello

Kyung-Joong Kim and Sung-Bae Cho

978-1-4244-2974-5/08/$25.00 ©2008 IEEE 212

played on an 8×8 board and a game ends when there is no

valid move or the board is full. Figure 1 explains the rule of

the Othello. It is difficult because there are many

tactics/strategies and drastic change of scores at the end of

the game.

 It is not surprising that there are annual world Othello

championships because it is a challenging game to human.

Unlike computers, human relies on pattern recognition,

logical thinking and selective attention. Learning the

expert-level skills is not an easy task and it requires a lot of

time and several thousands of games played with others.

(a) Initial configuration (b) Legal moves

(c) Legal moves (d) After D6 is played

Figure 1. Examples of Othello rules

B. Computational Intelligence for Othello

 Othello is a popular game in computational intelligence

society because of its complexity. Buro et al. developed

world-class level Othello programs called Logistello [14].

Lucas et al. compared temporal difference learning (TDL)

with co-evolutionary learning (CEL) for the game [15].

Runarsson et al. investigate the effect of look-ahead depth of

a game tree in learning position evaluation functions for

Othello. Chong et al. use evolutionary algorithms to learn

spatial neural networks as an evaluation function for board

configuration of Othello [17].

 There are many different types of representation for

Othello strategy. Lucas proposed �-Tuple systems to

represent Othello strategy [18]. It outperformed the best

strategy in Othello competition at Congress on Evolutionary

Computation 2006. In many cases, a simple weight piece

counter representation is used [16][15]. It was an 8×8 matrix

and each entry has a weight for each square of the board. In

[17], a spatial neural network representation was used. 91

sub-boards are extracted from each board configuration and

they are inputted to a neural network.

 At Congress on Evolutionary Computation 2006,

Othello competition was organized and opened to public to

submit their evolved strategies. At that time, the only

representation was weight piece counter and multi-layer

neural networks. Kim et al. won the competition with a

method of an incremental hybrid learning seeded with

strategies learned by TDL [19].

 Othello is a deterministic game and small randomness is

introduced to increase the number of games between two

players. “Deterministic” means that the game score is

always the same if it is played in the same sequence. This

limits the number of games between two distinct strategies

to 2. This is because there is no randomness throughout the

game. Lucas et al. introduced small randomness in the game

of Othello to increase the number of unique games between

two players [15]. This was also used in the Othello

competition.

 Monte-Carlo (MC) algorithms are used in Othello playing.

This method is promising in the game of Go. For each move,

it simply continues the game by playing random moves until

it reaches to the end of the game. Among candidates, the one

with the highest winning ratio is chosen as the next move.

This is simple but has potential to compete against the

traditional min-max search with a game tree. However, this

is computationally expensive to get correct statistics. Archer

evaluates the MC algorithm with Othello game [20].

Hingston et al. evolved a weight piece counter to guide

selectively the MC algorithm [21]. Nijssen boosted MC

algorithm with domain knowledge and it was competitive

against a powerful program WZEBRA (look-ahead depth=1,

no opening knowledge) [22].

C. An Ensemble Approach for Evolutionary Games

 There are few works on ensemble approaches for

evolutionary games. Kim et al. used a deterministic crowding

genetic algorithm to evolve diverse spatial neural networks for

checkers [12]. Distinct strategies are identified with clustering

algorithms and they are combined with majority voting. It

outperforms the single best player evolved with a standard

genetic algorithm. Yang et al. proposed a collective decision

making of IPD strategies evolved [13]. The final output of the

ensemble is calculated with weighted averaging.

Figure 2. Overview of the ensemble framework

2132008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

III. AN ENSEMBLE OF EVOLUTIONARY PLAYERS

 In this section, each component of the ensemble is

introduced step by step (summarized in Figure 2). There are

many different types of evolutionary algorithms to evolve

game strategies. In this paper, we deal with four different

algorithms (a standard genetic algorithm (GA), evolutionary

strategy, a GA with fitness sharing, and deterministic

crowding GA). We compare two different approaches in the

member selection of ensembles (the combination of all

candidates and selective ensemble). In case of the selective

approach, there are a large number of possible ensembles and

an efficient heuristic is required to minimize computational

cost to find good one. Finally, three representative fusion

methods are defined in the game domain (voting, averaging,

and weighted averaging).

A. Evolutionary Algorithms

• Standard Genetic Algorithm (SGA): Each strategy is

represented with a real-value vector. Selection is done with

fitness-proportionate selection (roulette wheel selection).

Mutation and crossover are used to generate offspring.

Fitness can be calculated statically based on the results of

games against well-known heuristics or dynamically

against each other.

• Evolutionary Strategy (ES): This method is successful in

checkers, Othello, and chess domain [7][8][17]. Each

strategy is represented with a real-value vector and

additional self-adaptive parameters associated to the vector.

It uses only mutation and each parent generates one

offspring. Among the pool of parents and offspring, the best

half is chosen as the next generation’s new parents. The

updating rule for the weight and self-adaptive parameter is

shown in [7]. Because it is based on tournament selection, it

can maintain the diversity of population [17].

• Genetic Algorithm with Fitness Sharing (FSGA): This

approach is the same with the SGA except that it readjusts

the fitness based on the similarity of individuals [23]. The

original fitness of the individual is f and it is readjusted to fs.

� is the population size and σ is a sharing radius.)(id is

the distance with the ith strategy.

{ }
σ

σ
σ

>

≤−
=

∑

=

=

)(0

)(
)(

1
)(

)(
0

id

id
id

ish

ish

f
f

�

i

s

• Deterministic Crowding Genetic Algorithm (DCGA)

(Figure 3): It is similar to evolutionary strategies but

parents compete against their children [24]. Two parents

generate two offspring with genetic operators (crossover

and mutation). From a pair of similar parents and child, the

one with higher fitness is chosen for the next generation’s

new parents.

B. Member Selection

 The members of an ensemble are chosen from the

population of the last generation and it is not trivial to choose

the members for an ensemble because of its huge ensemble

search space. If the population size is �, there are � candidates

for the member of the ensemble. A straightforward approach

is to combine all candidates available. It generates one

ensemble of � members. A subset of � members would lead to

2
�
 possible ensembles. If the size of the ensemble is fixed as M,

the number of possible ensembles is �CM. Clustering

algorithms are used in [10][12][25]. From each cluster, the

best player is chosen as a representative one and the final

ensemble is formed with the representatives.

 In this paper, two approaches are adopted and compared.

The first one is combining all individuals in the population of

the last generation. The next one is enumerative search of the

ensemble candidates with fixed size. In case of ensemble size

= 3, the total number of ensembles is �C3. The best one among

all candidates is chosen as a final ensemble. Although there is

no additional computational cost to form an ensemble for the

first approach, it is known that the combination of all may not

be better than one of the subsets of them. Meanwhile, the

second approach requires a lot of computational cost to

enumerate all ensembles and evaluate them.

// P : The population of game strategies

// pi : ith individual of P

// fitness(pi) : Return the fitness of pi

// d(pi,pj): Return the distance between pi and pj

// shuffling() : Randomly rearrange the order of individuals

// survive(pi): pi survives to the next generation

FOR (gen = 0; gen < MAX_GEN; gen++) {

 Shuffling();

 FOR (I = 0; i < POP_SIZE; I += 2) {

 c1,c2=crossover(pi, pi+1);

 c1=mutation(c1); c2=mutation(c2);

 IF ((d(pi,c1)+ d(pi+1,c2))< (d(pi,c2)+ d(pi+1,c1)) {

 IF (fitness(pi) > fitness(c1)) survive (pi);

 ELSE survive (c1);

 IF (fitness(pi+1) > fitness(c2)) survive (pi+1);

 ELSE survive (c2);

 }

 Else {

 IF (fitness(pi) > fitness(c2)) survive (pi);

 ELSE survive (c2);

 IF (fitness(pi+1) > fitness(c1)) survive (pi+1);

 ELSE survive (c1);

} }}

Figure 3. A pseudo code for DCGA

C. Exhaustive Ensemble Searching with Multi-Stage

Evaluations for Time Saving

 In this paper, a new multi-stage evaluation method is

proposed to reduce computational cost in enumerative

214 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

search of an ensemble (Figure 4). The bottleneck of the

exhaustive search is the evaluation of an ensemble by

playing a number of games. The accuracy of the evaluation

is related to the number of games played by the ensemble. If

G is the games played, the total computational cost for the

enumerative search is �CM × G. In the new evaluation

method, each ensemble is evaluated from low accuracy to

high accuracy step by step. If it is identified that the

ensemble is not better than the best one in low accuracy

evaluation, it passes the high accuracy evaluation and goes

to the next ensemble.

// T : The total number of possible ensembles

// : Individuals are sorted based on their performance

// : Enumeration is based on the sorted order

// evaluate (i,G) : Return a scoring point from G games

// B : The best ensemble found

// Bs : The scoring point of B

FOR (i = 0; i < T; i++) {

 FOR (g = MIN_G; g ≤ MAX_G; g×=STEP_SIZE) {

 S=evaluate(i,g);

 IF(
GMAX

B

g

S S

_
<) break; // normalized comparison

 ELSE IF(g==MAX_G) { B=i;Bs=S}

}}

Figure 4. A pseudo code of enumerative search based on the

multi-stage evaluation (Scoring point = the number of win +

the number of draw×0.5)

D. Fusion Methods

 In this paper, three representative fusion methods are

defined in the domain of game. The ensemble is defined as

E={m1,m2,…,mM}, where it is composed of M members. Let’s

assume that there are L legal moves by the ensemble player at

current board configuration. In a majority voting method, each

member of the ensemble votes for one of L legal moves. The

one with the highest vote is decided as the next move of an

ensemble. In an averaging method, the evaluation value for

each legal move is averaged over all members of the ensemble.

In a weighted averaging method, their contribution to the

averaging is weighted based on a prior knowledge on each

member’s performance.

IV. EXPERIMENTAL RESULTS ON OTHELLO GAME

 TABLE 1 summarizes the parameters used in the

experiments. The population sizes of the SGA and FSGA are

double the ones of ES and DCGA. In SGA and FSGA, only

parents are evaluated but in ES and DCGA, the parents and

offspring are evaluated together. For a fair comparison, the

population size is adjusted. In FSGA and DCGA, Euclidean

distance of WPC is used as a distance measure. In FSGA, the

sharing radius is decided as the half of the average distances

among all individuals. The final results are average of 10 runs.

The size of the ensemble is fixed to 3.

 Othello is used as a game to test the ensemble approaches.

Because the game is deterministic, 10% randomness is

applied in the move selection [15]. In evolution stage, the

scoring point (# of wins + # of draw×0.5) against standard

heuristic [26] is used as a fitness function. In G games, the

choice of color is even (half of the game is played with black

and the remaining is played with white).

TABLE 1. PARAMETERS OF THE EXPERIMENTS

(a) Parameters dependent on evolutionary algorithm
 SGA ES FSGA DCGA

Population Size 20 10 20 10

Crossover Rate 0.8 - 0.8 0.8

Mutation Rate 0.1 1.0 0.1 0.1

(b) Common parameters
Evaluations per one Generation 20

G in Evolution 100

Randomness)(ε in Move Selection 0.1

Maximum Generation 1000

of Runs 10

MIN_G, MAX_G, STEP_SIZE in the Ensemble

Search
100,10000,10

Size of an Ensemble 3

*G: The number of games played in the evaluation

 Computational cost is one of the important issues in this

research. Weight piece counter (WPC) is chosen as a

representation because it is very fast to calculate evaluation. It

is possible to use multi-layer neural networks or spatial neural

networks as a representation but it is much slower than one of

WPC. For one run, the number of games played is

20×100×1000=2×10
6
. To minimize the computational cost

for the exhaustive ensemble searching, the best 10 individuals

from the last generation is chosen. The possible number of

ensembles is 10C3=
!3

!10
=120. For accurate evaluation, in

ensemble searching, 10000 games are played for each

candidate. If there is no time saving heuristic, the games

played for the exhaustive search is 120×10000=1.2×10
6
.

 Figure 5 shows the average and maximum fitness of the

four evolutionary algorithms. ES and DCGA are better than

GA and DCGA. GA converges in the early stage of evolution.

FSGA is a bit worse than the GA until 800 generations but it is

nearly the same at 1000 generations. ES converges at 400

generations but DCGA steadily increases its fitness. Explicit

mechanism to increase diversity causes slow convergence of

evolution.

 TABLE 2 summarizes the max, average and min of the

individuals in the last generation. It shows that ES is the best

one and the second is DCGA. SGA and FSGA are worse than

the two methods. There is difference between SGA and FSGA.

In ES, every individual obtains high score and there is small

difference between max and min. However, in DCGA, there is

a big difference between max and min.

2152008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

(a) Average fitness

(b) Maximum fitness

Figure 5. Progress of the evolution (Y-axis is a fitness)

TABLE 2. THE SCORING POINT OF THE INDIVIDUALS

IN THE LAST GENERATION

(10000 games against heuristic, ε =0.1)

 MAX AVG MIN

SGA 4225±481 4125±387 4249±427

ES 5551±327 5343±366 5055±393

FSGA 4248±429 4107±570 4077±592

DCGA 5434±347 5181±376 4590±689

 The best individual scores 6315. It comes from evolutionary

strategies (Figure 6). In a positional evaluation like WPC, the

corners are very important and the next square to the corners

are dangerous area. This WPC reflects this idea very well.

Because ES allows continuously growing its weight value,

there is big weight (90.87344).

Figure 6. WPC that scores the best (6315)

TABLE 3 summarizes the uniqueness and average distance of

the population of the last generation. For SGA and FSGA, the

best 10 individuals are chosen from 20. Uniqueness is defined

as the number of unique individuals. The average distance is

calculated from the sum of distances from 10×9 pairs. The ES

and DCGA show the highest uniqueness (10). SGA and FSGA

maintain 4~5 unique individuals and there are identical

individuals in the population. FSGA is a bit better than SGA in

terms of uniqueness. In ES, the real-value in WPC can

increase continuously and the average distance is too high. In

SGA, FSGA, and DCGA, the real-value ranges from 0 to 1.0.

DCGA maintains higher average distance than SGA and

FSGA.

TABLE 3. UNIQUENESS AND AVERAGE DISTANCE

ANALYSIS

 Uniqueness Average Distance

SGA 4.7±1.8 0.9±0.5

ES 10.0±0.0 1192169±2558915

FSGA 5.2±1.9 0.9±0.7

DCGA 10.0±0.0 3.7±1.9

TABLE 4. THE PERFORMANCE OF THE BEST

ENSEMBLE FOUND AGAINST STANDARD

HEURISTICS

(10000 games, ε =0.1)

(a) Performance of the ensemble of all

Best Single

Individual

Majority

Voting
Averaging

Weighted

Averaging

SGA 4225±481 4266±422 4286±±±±385 4279±428

ES 5551±±±±327 5462±349 5401±410 5406±405

FSGA 4248±429 4327±444 4313±451 4338±±±±474

DCGA 5434±±±±347 5366±351 5286±471 5277±504

(b) Performance of the ensemble of three members

Best Single

Individual

Majority

Voting
Averaging

Weighted

Averaging

SGA 4225±481 4401±417 4421±±±±415 4415±420

ES 5551±327 5627±±±±338 5621±351 5606±356

FSGA 4248±429 4466±474 4476±±±±458 4460±452

DCGA 5434±347 5538±322 5544±297 5550±±±±317

(c) Computational cost for exhaustive search (10 runs, 3

fusion methods)

of Games

(without time

saving)

(A)

of games

(with time

saving)

(B)

Gain

(A/B)

SGA 3.6×10
7
 4.73×10

6
 7.6

ES 3.6×10
7
 3.43×10

6
 10.5

FSGA 3.6×10
7
 4.76×10

6
 7.5

DCGA 3.6×10
7
 3.30×10

6
 10.9

A. Ensemble against the Heuristics

The exhaustive searching for the ensemble is done with

the time saving algorithm. It is compared with the

combination of all individuals. The criterion to select the best

ensemble is the performance against the standard heuristics. In

216 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

the weighted averaging, the weight of the individuals is

decided based on the performance against the standard

heuristics (10000 games, ε =0.1).

In TABLE 4, the performance of an ensemble is

summarized with computational cost comparison. The

combination of all individuals is not always better than the

single best individual from the last generation. In SGA and

FSGA, the ensemble performs better than the single best one

but it is not true in ES and DCGA. The ensemble of 3

members outperforms the best single individual and the

combination of all individuals. It is not clear which fusion

method is the best. In the exhaustive ensemble search, total

number of games is 10 runs × 3 fusion methods × 1.2×10
6

=3.6×10
7
. The number of games is 7~10 times smaller than

the original one when the multi-stage evaluation approach is

used. In ES and DCGA, the cost gain is bigger than one of GA

and FSGA.

The best ensemble scores 6425. It is from evolutionary

strategies with the weighted averaging method. Figure 7

shows the weight piece counter matrix for three members in

the best ensemble. The rank of the three individuals is 1
st
, 2

nd

and 7
th

 among 10 individuals in the last generation. The

average score of the members is 6220 and the performance

gain from the ensemble is 205 games.

Figure 8 shows a new WPC derived from the three WPC’s.

If the entry in 1
st
 WPC is x1 and the weight for the WPC is w1,

the new WPC is defined as follows.

332211 wxwxwxx ×+×+×=

If the weighted averaging requires three evaluations per move,

the new WPC results in the same output with one evaluation

per move. This is also available to the averaging fusion

method.

(a) Individual score = 6315

(b) Individual score = 6131

(c) Individual score = 6214

Figure 7. The ensemble that scores the best (6425)

B. Ensemble against the Best Single Individual

TABLE 5 summarizes the performance of ensembles

against the best single individual. The best ensemble is found

by an exhaustive search with the time saving heuristics. The

ensemble size is fixed as three in the search. If the scoring

point is larger than 5000, it means that the ensemble

outperform against the single best player. In the weighted

averaging, the weight is decided based on the performance

against standard heuristics (10000 games, ε =0.1). The

combination of all individuals is worse than the single best one.

In the ensemble of three members, the ensemble outperforms

against the single best player with any fusion methods. Like

the previous results, it is not clear which fusion method is

superior. In ES and DCGA, the ensemble gains more score

than the one from GA and FSGA. The computational cost gain

from the time saving algorithm is approximately 8~18.

Figure 8. New WPC derived from the three members in the best

ensemble

TABLE 5. THE PERFORMANCE OF THE BEST

ENSEMBLE FOUND AGAINST THE BEST SINGLE

INDIVIDUAL

(10000 games, ε =0.1)

(a) Performance of the ensemble of all

Majority

Voting
Averaging

Weighted

Averaging

SGA 4988±±±±330 4923±352 4917±359

ES 5087±±±±612 4914±432 4918±442

FSGA 4984±±±± 85 4966±122 4958±131

DCGA 4921±173 4925±380 4941±±±±350

(b) Performance of the ensemble of three members

Majority

Voting
Averaging

Weighted

Averaging

SGA 5152±269 5211±±±±306 5211±307

ES 5483±±±±420 5462±457 5437±393

FSGA 5202±±±±214 5195±190 5194±167

DCGA 5430±282 5606±±±±417 5599±407

(c) Computational cost for exhaustive search (10 runs, 3

fusion methods)

of Games

(without time

saving)

(A)

of games

(with time

saving)

(B)

Gain

(A/B)

SGA 3.6×10
7
 3.80×10

6
 9.5

ES 3.6×10
7
 2.20×10

6
 16.3

FSGA 3.6×10
7
 4.28×10

6
 8.4

DCGA 3.6×10
7
 1.98×10

6
 18.1

2172008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

C. Discussion

Diversity is related to the success of the evolution. In the

uniqueness and average distance analysis show the reason of

success by the ES and DCGA. They maintain higher

uniqueness and diversity than SGA and FSGA. In the analysis

of the population of the last generation, ES and DCGA

outperform the SGA and FSGA.

Diversity and good base member is a key in the success of

the ensemble. ES and DCGA maintain high diversity and good

individuals. It leads to the good ensembles and they

outperform SGA and FSGA. Because SGA and FSGA have

individuals with less fitness and the diversity is low, there is

limitation to get comparable results with the ES and DCGA.

 Computational cost issue is important in game evolution. It

is possible to get better performance with the introduction of

complex representation (Multi-layer neural networks, and

spatial neural networks) but they takes a lot of time. Also, the

ply-depth can be increased but it increases computational cost

significantly. In the ensemble searching, the time saving

algorithm is essential to get results in a reasonable time. The

factor is approximately 7~18. Although this time saving

sacrifices the accuracy of the enumerative search, it is

important to get good ensemble in a reasonable time.

V. CONCLUSIONS AND FUTURE WORKS

There is performance gain from forming an ensemble of

game strategies evolved. From the experiment on Othello

game, the ensemble from the population of the last generation

can outperform the best individual player. Selective

ensembles are better than the one of all individuals. The use of

evolutionary algorithm and the choice of the member is

directly related to the success of the ensemble.

 The enumerative search of ensemble can be improved with

other techniques. Genetic algorithms are used to search for

ensemble of several classifiers for bioinformatics problem

[27]. In this method, there is no restriction on the size of the

ensemble. Greedy approach is one of the techniques to form

an ensemble and they can be applied to the game domain [28].

It starts from an empty ensemble and adds the member that

maximizes the performance increase. On the other hand, it is

possible to start from full ensemble and delete one member at

a time in a greedy manner.

 The speed of the evolution is dependent on the time

required to do a game between two strategies. A bit-board

representation could be used to reduce the time for one game.

In the representation, each entry of the board is represented as

two bits and bitwise operators are used to update the board.

Another way to increase the speed of evaluation is to use

distributed computing. GPU (Graphical Processing Unit) in a

graphic card is ready to do highly parallel computing with less

expensive hardware. Multi-core machines can be used to

accelerate the speed of evolution.

 The strategies from co-evolution can be benefit from the

ensemble approach. In this work, we only consider the

evolution against static heuristic player and the final solution

has less generalization ability. Co-evolution is promising to

increase winning ratio against unseen strategies. The same

enumerative ensemble searching can be used to the population

of the last generation of the co-evolution.

ACKNOWLEDGMENTS

THIS RESEARCH WAS SUPPORTED BY MKE, KOREA UNDER

ITRC IITA-2008-(C1090-0801-0046).

REFERENCES

[1] R. Polikar, “Ensemble based systems in decision

making,” IEEE Circuits and Systems Magazine, vol. 6,

no. 3, pp. 21-45, 2006.

[2] L. I. Kuncheva, Combining Pattern Classifiers: Methods

and Algorithms, Wiley, 2004.

[3] G. Brown, J. Wyatt, R. Harris, and X. Yao, “Diversity

creation methods: A survey and categorization,”

Information Fusion, vol. 6, no. 1, pp. 5-20, 2005.

[4] Z.-H. Zhou, J. Wu, and W. Tang, “Ensembling neural

networks: Many could be better than all,” Artificial

Intelligence, vol. 137, no. 1, pp. 239-263, 2002.

[5] A. Verikas, A. Lipnickas, K. Malmqvist, M. Bacauskiene,

and A. Gelzinis, “Soft combination of neural classifiers:

A comparative study,” Pattern Recognition Letters, vol.

20, no. 4, pp. 429-444, 1999.

[6] S. M. Lucas, “Computational intelligence and games:

Challenges and opportunities,” International Journal of

Automation and Computing, vol. 5, pp. 45-57, 2008.

[7] K. Chellapilla, and D. Fogel, “Evolution, neural networks,

games, and intelligence,” Proceedings of the IEEE, vol.

87, no. 9, pp. 1471-1496, 1999.

[8] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon, “A

self-learning evolutionary chess program,” Proceedings

of the IEEE, vol. 92, no. 12, pp. 1947-1954, 2004.

[9] S. Lucas, and G. Kendall, “Evolutionary computation and

games,” IEEE Computational Intelligence Magazine, pp.

10-18, Feb 2006.

[10] K.-J. Kim, and S.-B. Cho, “Evolutionary ensemble of

diverse artificial neural networks using speciation,”

�eurocomputing, vol. 71, no. 7-9, pp. 1604-1618, 2008.

[11] X. Yao, and Md. M. Islam, “Evolving artificial neural

network ensembles,” IEEE Computational Intelligence

Magazine, vol. 3, no. 1, pp. 31-42, 2008.

[12] K.-J. Kim, and S.-B. Cho, “Systematically incorporating

domain-specific knowledge into evolutionary speciated

checkers players,” IEEE Transactions on Evolutionary

Computation, vol. 9, no. 6, pp. 615-627, 2005.

[13] S.-R. Yang, and S.-B. Cho, “Co-evolutionary learning

with strategic coalition for multiagents,” Applied Soft

Computing, vol. 5, pp. 193-203, 2005.

[14] M. Buro, “How machines have learned to play Othello,”

IEEE Intelligent Systems, vol. 14, no. 6, pp. 12-14, 1999.

[15] S. M. Lucas, and T. P. Runarsson, “Temporal difference

learning versus co-evolution for acquiring Othello

218 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

position evaluation,” IEEE Symposium on

Computational Intelligence and Games, pp. 52-59, 2006.

[16] T. Runarsson, and E. O. Jonsson, “Effect of look-ahead

search depth in learning position evaluation functions

for Othello using ε -greedy exploration,” IEEE

Symposium on Computational Intelligence and Games,

pp. 210-215, 2007.

[17] S. Y. Chong, M. K. Tan, and J. D. White, “Observing the

evolution of neural networks learning to play the game of

Othello,” IEEE Transactions on Evolutionary

Computation, vol. 9, no. 3, pp. 240-251, 2005.

[18] S. M. Lucas, “Learning to play Othello with N-tuple

systems,” Australian Journal of Intelligent Information

Processing, vol. 4, pp. 1-20, 2008.

[19] K.-J. Kim, H-J. Choi, and S.-B. Cho, “Hybrid of

evolution and reinforcement learning for Othello

players,” IEEE Symposium on Computational

Intelligence and Games, pp. 203-209, 2007.

[20] R. Archer, Analysis of Monte Carlo Techniques in

Othello, B.S. Thesis, The University of Western

Australia, 2007.

[21] P. Hingston, and M. Masek, “Experiments with

Monte-Carlo Othello,” IEEE Congress on Evolutionary

Computation, pp. 4059-4064, 2007.

[22] P. Nijssen, Playing Othello using Monte Carlo, B.S.

Thesis, Universiteit Maastricht, Netherland, 2007.

[23] D. E. Goldberg, Genetic Algorithms in Search,

Optimization and Machine Learning, Addison-Wesley,

1989.

[24] T. Baeck, D. B. Fogel, and Z. Michalewicz, Evolutionary

Computation 2: Advanced Algorithms and Operators,

Taylor & Francis, 2000.

[25] Y. Liu, X. Yao and T. Higuchi, “Evolutionary ensembles

with negative correlation learning,” IEEE Transactions

on Evolutionary Computation, vol. 4, no. 4, pp. 380-387,

2000.

[26] T. Yoshioka, S. Ishii, and M. Ito, “Strategy acquisition

for the game “Othello” based on reinforcement learning,”

IEICE Transactions on Information and Systems, E82-D

12, pp. 1618-1626, 1999.

[27] K.-J. Kim and S.-B. Cho, “An evolutionary algorithm

approach to optimal ensemble classifiers for DNA

microarray data analysis,” IEEE Transactions on

Evolutionary Computation, vol. 12, no. 3, pp. 377-388,

2008.

[28] I. Partalas, G. Tsoumakas, E. Hatzikos, and I. Vlahavas,

“Ensemble selection for water quality prediction,”

Proceedings of the 10
th

 International Conference on

Engineering Applications of �eural �etworks, pp.

428-435, 2007.

2192008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

