Ensemble Approaches in Evolutionary Game Strategies: A Case
Study in Othello

Kyung-Joong Kim and Sung-Bae Cho

Abstract — In pattern recognition area, an ensemble approach
is one of promising methods to increase the accuracy of
classification systems. It is interesting to use the ensemble
approach in evolving game strategies because they maintain a
population of solutions simultaneously. Simply, an ensemble is
formed from a set of strategies evolved in the last generation.
There are many decision factors in the ensemble of game
strategies: evolutionary algorithms, fusion methods, and the
selection of members in the ensemble. In this paper, several
evolutionary algorithms (evolutionary strategy, simple genetic
algorithm, fitness sharing, and deterministic crowding
algorithm) are compared with three representative fusion
methods (majority voting, average, and weighted average) with
selective ensembles (compared with the ensemble of all
members). Additionally, the computational cost of an exhaustive
search for the selective ensemble is reduced by introducing
multi-stage evaluations. The ensemble approach is tested on the
Othello game with a weight piece counter representation. The
proposed ensemble approach outperforms the single best
individual from the evolution and ensemble searching time is
reasonable.

I. INTRODUCTION

Ensemble is a method to combine multiple decision models
expecting synergism to increase the performance of systems
[1][2]. Tt is composed of a number of models and each
member contributes to the final decision of the ensemble. If
each model’s decision boundary is different, they can generate
a new one by combining them. If they can cooperate well, the
final decision boundary could be better than one of each
member. In this way, the ensemble can improve the accuracy
and the generalization capability on unseen dataset.

There are many factors in the success of the ensemble
system. Each member should be good although it is not
necessary to be the best. Also, they’re not identical because
there is no performance gain from the combination of the same
models [3]. The number of members is important and there is
evidence that the combination of the many models could be
worse than the one of subsets of them [4]. Finally, there are
many different ways to combine outputs from each member to
generate the final decision [5].

Evolutionary game is a promising research area that
combines a lot of games with evolutionary algorithms [6].
Fogel et al. evolved master-level players for a game of
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checkers and chess [7][8]. There is a good source of
references for this area [9]. There are many different types of
games raging from traditional board games (chess, checkers,
g0, Othello, and backgammon) to video games. It opens door
to designing game strategies with limited expert knowledge.

It is natural to use the ensemble approach in the
evolutionary algorithms because it maintains a number of
solutions simultaneously [10][11]. Unlike other search
algorithms, it is a population-based search and results in
multiple models. Simply, an ensemble is formed with the
individuals in the last generation. It is possible to form
ensembles without multiple runs of learning.

There is a little attention on the ensemble research for
evolutionary games. The main focus of the evolutionary
games research is to exploit the best individual in the last
generation. There are few papers on this topic. Kim ef al.
combined several neural network strategies evolved for a
game of checkers [12]. Yang e al. introduced the coalition of
multiple strategies in iterated prisoner’s dilemma (IPD) game
[13].

In this paper, an ensemble approach is systematically
tested in the platform of Othello. The control parameters of
the ensemble are the way to evolve each member, a fusion
method, and the choice of members from candidates. There
are several choices for each factor and their effect is
investigated on the game of Othello. Additionally, a new
method is proposed to minimize the computational cost in
finding an ensemble exhaustively.

The rest of this paper is organized as follows. Section II
describes backgrounds of the proposed methods: Rules of
Othello, computational intelligence approaches for the game,
and the ensemble approaches for evolutionary games. Section
IIT applies ensemble approaches to the game of Othello.
Control parameters of the ensemble are the learning methods
for individual members, selection of members from a pool of
strategies, and fusion methods. Section IV describes the
experimental results and analysis.

II. BACKGROUNDS

A. A Game of Othello

Othello has a very simple rule but it takes lifetime to
master the game for human. The only rule for the game is to
sandwich other player’s discs with one’s own discs and the
captured discs flip to one’s disc. The goal of the game is to
maximize the number of discs after the end of game. It is



played on an 8x8 board and a game ends when there is no
valid move or the board is full. Figure 1 explains the rule of
the Othello. It is difficult because there are many
tactics/strategies and drastic change of scores at the end of
the game.

It is not surprising that there are annual world Othello
championships because it is a challenging game to human.
Unlike computers, human relies on pattern recognition,
logical thinking and selective attention. Learning the
expert-level skills is not an easy task and it requires a lot of
time and several thousands of games played with others.
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Figure 1. Examples of Othello rules

B. Computational Intelligence for Othello

Othello is a popular game in computational intelligence
society because of its complexity. Buro et al. developed
world-class level Othello programs called Logistello [14].
Lucas et al. compared temporal difference learning (TDL)
with co-evolutionary learning (CEL) for the game [15].
Runarsson et al. investigate the effect of look-ahead depth of
a game tree in learning position evaluation functions for
Othello. Chong et al. use evolutionary algorithms to learn
spatial neural networks as an evaluation function for board
configuration of Othello [17].

There are many different types of representation for
Othello strategy. Lucas proposed N-Tuple systems to
represent Othello strategy [18]. It outperformed the best
strategy in Othello competition at Congress on Evolutionary
Computation 2006. In many cases, a simple weight piece
counter representation is used [16][15]. It was an 8x8 matrix
and each entry has a weight for each square of the board. In
[17], a spatial neural network representation was used. 91
sub-boards are extracted from each board configuration and
they are inputted to a neural network.

At Congress on Evolutionary Computation 2006,
Othello competition was organized and opened to public to
submit their evolved strategies. At that time, the only
representation was weight piece counter and multi-layer

neural networks. Kim ef al. won the competition with a
method of an incremental hybrid learning seeded with
strategies learned by TDL [19].

Othello is a deterministic game and small randomness is
introduced to increase the number of games between two
players. “Deterministic” means that the game score is
always the same if it is played in the same sequence. This
limits the number of games between two distinct strategies
to 2. This is because there is no randomness throughout the
game. Lucas et al. introduced small randomness in the game
of Othello to increase the number of unique games between
two players [15]. This was also used in the Othello
competition.

Monte-Carlo (MC) algorithms are used in Othello playing.
This method is promising in the game of Go. For each move,
it simply continues the game by playing random moves until
it reaches to the end of the game. Among candidates, the one
with the highest winning ratio is chosen as the next move.
This is simple but has potential to compete against the
traditional min-max search with a game tree. However, this
is computationally expensive to get correct statistics. Archer
evaluates the MC algorithm with Othello game [20].
Hingston et al. evolved a weight piece counter to guide
selectively the MC algorithm [21]. Nijssen boosted MC
algorithm with domain knowledge and it was competitive
against a powerful program WZEBRA (look-ahead depth=1,
no opening knowledge) [22].

C. An Ensemble Approach for Evolutionary Games
There are few works on ensemble approaches for

evolutionary games. Kim et al. used a deterministic crowding
genetic algorithm to evolve diverse spatial neural networks for
checkers [12]. Distinct strategies are identified with clustering
algorithms and they are combined with majority voting. It
outperforms the single best player evolved with a standard
genetic algorithm. Yang et al. proposed a collective decision
making of IPD strategies evolved [13]. The final output of the
ensemble is calculated with weighted averaging.
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Figure 2. Overview of the ensemble framework
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III. AN ENSEMBLE OF EVOLUTIONARY PLAYERS

In this section, each component of the ensemble is
introduced step by step (summarized in Figure 2). There are
many different types of evolutionary algorithms to evolve
game strategies. In this paper, we deal with four different
algorithms (a standard genetic algorithm (GA), evolutionary
strategy, a GA with fitness sharing, and deterministic
crowding GA). We compare two different approaches in the
member selection of ensembles (the combination of all
candidates and selective ensemble). In case of the selective
approach, there are a large number of possible ensembles and
an efficient heuristic is required to minimize computational
cost to find good one. Finally, three representative fusion
methods are defined in the game domain (voting, averaging,
and weighted averaging).

A. Evolutionary Algorithms

o Standard Genetic Algorithm (SGA): Each strategy is
represented with a real-value vector. Selection is done with
fitness-proportionate selection (roulette wheel selection).
Mutation and crossover are used to generate offspring.
Fitness can be calculated statically based on the results of
games against well-known heuristics or dynamically
against each other.

e Evolutionary Strategy (ES): This method is successful in
checkers, Othello, and chess domain [7][8][17]. Each
strategy is represented with a real-value vector and

additional self-adaptive parameters associated to the vector.

It uses only mutation and each parent generates one
offspring. Among the pool of parents and offspring, the best
half is chosen as the next generation’s new parents. The
updating rule for the weight and self-adaptive parameter is
shown in [7]. Because it is based on tournament selection, it
can maintain the diversity of population [17].

e Genetic Algorithm with Fitness Sharing (FSGA): This
approach is the same with the SGA except that it readjusts
the fitness based on the similarity of individuals [23]. The
original fitness of the individual is f'and it is readjusted to f;.
N is the population size and o is a sharing radius. d (i) is

the distance with the ith strategy.

d(i) .
L si={" ZE’;S" }
1)>0

fs =
Y sh(i) 0
i=0

e Deterministic Crowding Genetic Algorithm (DCGA)
(Figure 3): It is similar to evolutionary strategies but
parents compete against their children [24]. Two parents
generate two offspring with genetic operators (crossover
and mutation). From a pair of similar parents and child, the
one with higher fitness is chosen for the next generation’s
new parents.

B. Member Selection

The members of an ensemble are chosen from the
population of the last generation and it is not trivial to choose
the members for an ensemble because of its huge ensemble
search space. If the population size is N, there are N candidates
for the member of the ensemble. A straightforward approach
is to combine all candidates available. It generates one
ensemble of N members. A subset of N members would lead to
2" possible ensembles. If the size of the ensemble is fixed as M,
the number of possible ensembles is nC;. Clustering
algorithms are used in [10][12][25]. From each cluster, the
best player is chosen as a representative one and the final
ensemble is formed with the representatives.

In this paper, two approaches are adopted and compared.
The first one is combining all individuals in the population of
the last generation. The next one is enumerative search of the
ensemble candidates with fixed size. In case of ensemble size
= 3, the total number of ensembles is yC;. The best one among
all candidates is chosen as a final ensemble. Although there is
no additional computational cost to form an ensemble for the
first approach, it is known that the combination of all may not
be better than one of the subsets of them. Meanwhile, the
second approach requires a lot of computational cost to
enumerate all ensembles and evaluate them.

/I P : The population of game strategies

// p;: ith individual of P

// fitness(p,) : Return the fitness of p;

/I d(p;,p;): Return the distance between p;and p;

// shuffling() : Randomly rearrange the order of individuals
// survive(p;): p; survives to the next generation

FOR (gen = 0; gen < MAX GEN; gent++) {
Shuffling();
FOR (I=0;i<POP SIZE;I+=2) {
€1,C2=Crossover(p;, pi+1);

ci=mutation(c;); c,=mutation(c,);

IF ((d(pic)t d(pir1,2))< (dpic2)t d(piri,e) {
IF (fitness(p,) > fitness(c;)) survive (p,);
ELSE survive (c);

IF (fitness(p,+1) > fitness(c,)) survive (pi+1);
ELSE survive (c,);

}

Else {

IF (fitness(p,) > fitness(c,)) survive (p,);
ELSE survive (c,);

IF (fitness(p,+1) > fitness(c;)) survive (pi+1);
ELSE survive (c;);

I
Figure 3. A pseudo code for DCGA

C. Exhaustive Ensemble Searching with Multi-Stage
Evaluations for Time Saving

In this paper, a new multi-stage evaluation method is
proposed to reduce computational cost in enumerative
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search of an ensemble (Figure 4). The bottleneck of the
exhaustive search is the evaluation of an ensemble by
playing a number of games. The accuracy of the evaluation
is related to the number of games played by the ensemble. If
G is the games played, the total computational cost for the
enumerative search is 5C, X G. In the new evaluation
method, each ensemble is evaluated from low accuracy to
high accuracy step by step. If it is identified that the
ensemble is not better than the best one in low accuracy
evaluation, it passes the high accuracy evaluation and goes
to the next ensemble.

/I T : The total number of possible ensembles
// : Individuals are sorted based on their performance
//": Enumeration is based on the sorted order
// evaluate (i,G) : Return a scoring point from G games
/I B : The best ensemble found
/I By : The scoring point of B
FOR (i=0;i<T;i++) {
FOR (g=MIN_G; g <MAX G; gx=STEP_SIZE) {
S=evaluate(i,g);

IF(E < L) break; // normalized comparison
g MAX G
ELSE IF(g==MAX Q) { B=i;B=S}
1
Figure 4. A pseudo code of enumerative search based on the
multi-stage evaluation (Scoring point = the number of win +
the number of drawx0.5)

D. Fusion Methods

In this paper, three representative fusion methods are
defined in the domain of game. The ensemble is defined as
E={m,m,,...,my}, where it is composed of M members. Let’s
assume that there are L legal moves by the ensemble player at
current board configuration. In a majority voting method, each
member of the ensemble votes for one of L legal moves. The
one with the highest vote is decided as the next move of an
ensemble. In an averaging method, the evaluation value for

each legal move is averaged over all members of the ensemble.

In a weighted averaging method, their contribution to the
averaging is weighted based on a prior knowledge on each
member’s performance.

IV. EXPERIMENTAL RESULTS ON OTHELLO GAME

TABLE 1 summarizes the parameters used in the
experiments. The population sizes of the SGA and FSGA are
double the ones of ES and DCGA. In SGA and FSGA, only
parents are evaluated but in ES and DCGA, the parents and
offspring are evaluated together. For a fair comparison, the
population size is adjusted. In FSGA and DCGA, Euclidean
distance of WPC is used as a distance measure. In FSGA, the
sharing radius is decided as the half of the average distances
among all individuals. The final results are average of 10 runs.
The size of the ensemble is fixed to 3.

Othello is used as a game to test the ensemble approaches.
Because the game is deterministic, 10% randomness is
applied in the move selection [15]. In evolution stage, the
scoring point (# of wins + # of drawx0.5) against standard
heuristic [26] is used as a fitness function. In G games, the
choice of color is even (half of the game is played with black
and the remaining is played with white).

TABLE 1. PARAMETERS OF THE EXPERIMENTS
(a) Parameters dependent on evolutionary algorithm

SGA | ES | FSGA | DCGA
Population Size 20 10 20 10
Crossover Rate 0.8 - 0.8 0.8
Mutation Rate 0.1 1.0 0.1 0.1
(b) Common parameters
Evaluations per one Generation 20
G in Evolution 100
Randomness (&) in Move Selection 0.1
Maximum Generation 1000
# of Runs 10
MIN_G,MAX G, STEP_SIZE in the Ensemble 100,10000,10
Search
Size of an Ensemble 3

*G: The number of games played in the evaluation

Computational cost is one of the important issues in this
research. Weight piece counter (WPC) is chosen as a
representation because it is very fast to calculate evaluation. It
is possible to use multi-layer neural networks or spatial neural
networks as a representation but it is much slower than one of
WPC. For one run, the number of games played is
20x100x1000=2x10°. To minimize the computational cost
for the exhaustive ensemble searching, the best 10 individuals
from the last generation is chosen. The possible number of

. 10! . .
ensembles is 10C3:? =120. For accurate evaluation, in

ensemble searching, 10000 games are played for each
candidate. If there is no time saving heuristic, the games
played for the exhaustive search is 120x10000=1.2x10°.

Figure 5 shows the average and maximum fitness of the
four evolutionary algorithms. ES and DCGA are better than
GA and DCGA. GA converges in the early stage of evolution.
FSGA is a bit worse than the GA until 800 generations but it is
nearly the same at 1000 generations. ES converges at 400
generations but DCGA steadily increases its fitness. Explicit
mechanism to increase diversity causes slow convergence of
evolution.

TABLE 2 summarizes the max, average and min of the
individuals in the last generation. It shows that ES is the best
one and the second is DCGA. SGA and FSGA are worse than
the two methods. There is difference between SGA and FSGA.
In ES, every individual obtains high score and there is small
difference between max and min. However, in DCGA, there is
a big difference between max and min.
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maintain 4~5 unique individuals and there are identical
individuals in the population. FSGA is a bit better than SGA in
terms of uniqueness. In ES, the real-value in WPC can
increase continuously and the average distance is too high. In
SGA, FSGA, and DCGA, the real-value ranges from 0 to 1.0.
DCGA maintains higher average distance than SGA and
FSGA.

TABLE 3. UNIQUENESS AND AVERAGE DISTANCE

77
115 |
153

HAGELD83b8RRe8548RE
i N B B T S S SR BT T = N <
(b) Maximum fitness
Figure 5. Progress of the evolution (Y-axis is a fitness)

TABLE 2. THE SCORING POINT OF THE INDIVIDUALS

IN THE LAST GENERATION

(10000 games against heuristic, &=0.1)

ANALYSIS
Uniqueness Average Distance
SGA 4.7+1.8 0.9+0.5
ES 10.0+0.0 1192169+2558915
FSGA 5.2+1.9 0.9+0.7
DCGA 10.0+0.0 3.7£1.9

TABLE 4. THE PERFORMANCE OF THE BEST
ENSEMBLE FOUND AGAINST STANDARD

HEURISTICS

(10000 games, & =0.1)

(a) Performance of the ensemble of all

MAX AVG MIN
SGA 4225+481 4125%387 42491427
ES 5551+327 53431366 5055+393
FSGA 42481429 4107%£570 4077+592
DCGA 54341347 5181£376 4590+689

The best individual scores 6315. It comes from evolutionary
strategies (Figure 6). In a positional evaluation like WPC, the
corners are very important and the next square to the corners
are dangerous area. This WPC reflects this idea very well.
Because ES allows continuously growing its weight value,
there is big weight (90.87344).

-0.02166
0.334568
0292283
-0.05711
-0.91255
-1.65374
0.346161
-9.36959

-0.18856

34.9188
4671535
-0.31023
3.860042
-10.9312

0517852
4.939041
0.550587
0.099765

0.25989
16.20616

-0.35238
0.599046
-0.01158
-143215
0071583
-3.07895

90.87344
-182.335
0.086362
-0.91666
2.184365
-53.9194
-100.435
8.413686

-0.26256
0.007959
-308.841
0.026851
-521.709
-2023.94

-0.60127
0.284569
0.186365
-0.07039
-0.49365
1452537 012882
19.0072 -6.99013 -740195 -17.6748 -731492 -3.88584
-1.34717 -0.90809 0988112 -6.86644 1882877 -3.55869

Figure 6. WPC that scores the best (6315)

-2.54618
-0.11609
-0.44385
0052792
-0.56033

TABLE 3 summarizes the uniqueness and average distance of
the population of the last generation. For SGA and FSGA, the
best 10 individuals are chosen from 20. Uniqueness is defined
as the number of unique individuals. The average distance is
calculated from the sum of distances from 10x9 pairs. The ES
and DCGA show the highest uniqueness (10). SGA and FSGA

216

Best' Single Maj Qrity Averaging Weight.ed

Individual Voting Averaging

SGA 42251481 | 42661422 | 42861385 | 42791428

ES 5551327 | 5462%349 | 5401410 | 5406£405

FSGA | 4248%429 | 43271444 | 431312451 | 4338+474

DCGA | 5434%347 | 5366£351 | 5286+471 | 52771504
(b) Performance of the ensemble of three members

Best Single Majorit . Weighted

Individugal V(itingy Averaging Aver%iging

SGA 42251481 | 44011417 | 44211415 | 44151+420

ES 55511327 | 5627338 | 5621351 | 5606£356

FSGA | 4248%429 | 44661474 | 44761458 | 4460+452

DCGA | 5434£347 | 5538+%322 | 5544£297 | 5550+317

(c) Computational cost for exhaustive search (10 runs, 3
fusion methods)

# of Games # of games
(without time (with time Gain
saving) saving) (A/B)
A) (B)

SGA 3.6x107 4.73x10° 7.6
ES 3.6x107 3.43x10° 10.5

FSGA 3.6x107 4.76x10° 7.5
DCGA 3.6x107 3.30x10° 10.9

A. Ensemble against the Heuristics

The exhaustive searching for the ensemble is done with

the time saving algorithm.

It is compared with the

combination of all individuals. The criterion to select the best
ensemble is the performance against the standard heuristics. In
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the weighted averaging, the weight of the individuals is
decided based on the performance against the standard
heuristics (10000 games, £ =0.1).

In TABLE 4, the performance of an ensemble is
summarized with computational cost comparison. The
combination of all individuals is not always better than the
single best individual from the last generation. In SGA and
FSGA, the ensemble performs better than the single best one
but it is not true in ES and DCGA. The ensemble of 3
members outperforms the best single individual and the
combination of all individuals. It is not clear which fusion
method is the best. In the exhaustive ensemble search, total
number of games is 10 runs x 3 fusion methods x 1.2x10°
=3.6x10". The number of games is 7~10 times smaller than
the original one when the multi-stage evaluation approach is
used. In ES and DCGA, the cost gain is bigger than one of GA
and FSGA.

The best ensemble scores 6425. It is from evolutionary
strategies with the weighted averaging method. Figure 7
shows the weight piece counter matrix for three members in
the best ensemble. The rank of the three individuals is 1%, 2™
and 7" among 10 individuals in the last generation. The
average score of the members is 6220 and the performance
gain from the ensemble is 205 games.

Figure 8 shows a new WPC derived from the three WPC'’s.
If the entry in 1¥ WPC is x; and the weight for the WPC is w,
the new WPC is defined as follows.
X=X X W + Xy X W,y + X3 X Wy
If the weighted averaging requires three evaluations per move,
the new WPC results in the same output with one evaluation
per move. This is also available to the averaging fusion

method.
9087344 -026256 -0.60127 -254618 -0.18856 0517852 -035238 -0.02166
182335 0007959 0284569 -011609 349188 4939041 0599046 0334568
0.086362 -308.841 0.186365 -0.44385 4.671535 0.550587 -0.01158 0.292283
091666 0026851 -0.07039 0052792 -0.31023 0099765 -143215 -0.05711
2184365 -521.709 -0.49365 -0.56033 3860042 025989 0071583 -0.91255
-53.9194 -2023.94 1452537 012882 -10.9312 1620616 -3.07895 -1.65374
-100435 190072 -6.99013 -7.40195 -17.6748 -731492 -388584 0346161
8413686 -134717 -0.90809 0988112 -6.86644 1882877 -3.55869 -9.36959
(a) Individual score = 6315
1147926 -0.25153 -0.55609 -021261 -0.1886 0517915 -0.5832 -0.02162
165244 022415 0.072315 -011475 3116748 1048603 059952 0.590148
0.086061 -134.127 0.18663 -018699 4.664459 0550608 0.020289 0.290606
142674 002416 0.00516 0026828 -0.31377 0.09965¢ -146347 -0.05524
2183821 -629.879 -0.50517 -043393 3483493 0266898 0.071782 -0.91376
521856 -14767 1444749 0223989 -10.5789 1626362 -308034 3264987
12047 1418692 -646894 -130218 -12.9431 -136865 -626634 0.331853
3.036566 -1.36676 -1.36427 0969968 -6.02968 150647 -273418 -9.18163
(b) Individual score = 6131

8256643 -026157 -0.57237 -163131 -0.1886 0518737 021246 -0.02167
272135 060232 -0.01443 -0.10992 35.65144 2586812 0.59853 0619432
0.085876 -163.869 0.188045 -041777 4653471 0550572 0008109 0.288663
081888 0026788 -0.06804 0045281 -0.30821 0098399 -14419 -0.04668
2184586 -508.09 -0.47791 -056385 3.43172 0269811 0.07245 -0.91287
544103 -1303.54 1219795 -0.07662 -115493 1615825 -3.0785 -2.64743
988229 1593903 -632784  -6813 -150184 -9.85218 -10.2493 0350946
4692565 -131076 -0.79334 0985993 -7.04528 1946833 -3.69742 -9.23639

(¢) Individual score = 6214

Figure 7. The ensemble that scores the best (6425)
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B. Ensemble against the Best Single Individual

TABLE 5 summarizes the performance of ensembles
against the best single individual. The best ensemble is found
by an exhaustive search with the time saving heuristics. The
ensemble size is fixed as three in the search. If the scoring
point is larger than 5000, it means that the ensemble
outperform against the single best player. In the weighted
averaging, the weight is decided based on the performance
against standard heuristics (10000 games, & =0.1). The
combination of all individuals is worse than the single best one.
In the ensemble of three members, the ensemble outperforms
against the single best player with any fusion methods. Like
the previous results, it is not clear which fusion method is
superior. In ES and DCGA, the ensemble gains more score
than the one from GA and FSGA. The computational cost gain
from the time saving algorithm is approximately 8~18.

9596609 -0.25861 -0.5768 -147479 -0.18859 0518167 -0.24012 -0.02165
-206.624 -0.27153 011526 -01136 33.93023 2877463 059903 0.513425
0.086101 -203.159 0.187012 -0.35077 4663195 0550589 0.005448 0.290526
-1.05169 0.025946 -0.04479 004176 -0.31072 0099275 -1.44569 -0.05302
218426 -552.714 -049219 -0.51997 3.593685 0265496 0.071937 -0.91306
-535132 -1604.23 1.372472 0091674 -11.0213 1620908 -3.07926 -0.36854
-106.481 1640169 -6.59834  -9.0523 -15.2355 -10.2533 -6.78709 0.343053
540778 -1.34148 -1.01976 0981445 -6.65107 1780501 -3.33398 -9.26348

Figure 8. New WPC derived from the three members in the best
ensemble
TABLE 5. THE PERFORMANCE OF THE BEST
ENSEMBLE FOUND AGAINST THE BEST SINGLE
INDIVIDUAL
(10000 games, & =0.1)
(a) Performance of the ensemble of all

Majorit . Weighted

V(-:tingy Averaging Aver%lging

SGA 4988+330 | 4923+352 | 4917%359
ES 50871612 | 49141432 | 49181442
FSGA | 4984% 85 | 4966+122 | 4958%131
DCGA | 4921£173 | 4925£380 | 4941%350

(b) Performance of the ensemble of three members

Majorit . Weighted

V(-:tingy Averaging Aver%lging

SGA 51524269 | 5211%£306 | 5211307
ES 54831420 | 5462+£457 | 5437£393
FSGA | 5202%214 | 5195£190 | 5194%167
DCGA | 5430£282 | 5606417 | 55991407

(c) Computational cost for exhaustive search (10 runs, 3
fusion methods)

# of Games # of games
(without time (with time Gain
saving) saving) (A/B)
A) (B)
SGA 3.6x107 3.80x10° 9.5
ES 3.6x107 2.20x10° 16.3
FSGA 3.6x107 4.28x10° 8.4
DCGA 3.6x107 1.98x10° 18.1
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C. Discussion

Diversity is related to the success of the evolution. In the
uniqueness and average distance analysis show the reason of
success by the ES and DCGA. They maintain higher
uniqueness and diversity than SGA and FSGA. In the analysis
of the population of the last generation, ES and DCGA
outperform the SGA and FSGA.

Diversity and good base member is a key in the success of
the ensemble. ES and DCGA maintain high diversity and good
individuals. It leads to the good ensembles and they
outperform SGA and FSGA. Because SGA and FSGA have
individuals with less fitness and the diversity is low, there is
limitation to get comparable results with the ES and DCGA.

Computational cost issue is important in game evolution. It
is possible to get better performance with the introduction of
complex representation (Multi-layer neural networks, and
spatial neural networks) but they takes a lot of time. Also, the
ply-depth can be increased but it increases computational cost
significantly. In the ensemble searching, the time saving
algorithm is essential to get results in a reasonable time. The
factor is approximately 7~18. Although this time saving
sacrifices the accuracy of the enumerative search, it is
important to get good ensemble in a reasonable time.

V. CONCLUSIONS AND FUTURE WORKS

There is performance gain from forming an ensemble of
game strategies evolved. From the experiment on Othello
game, the ensemble from the population of the last generation
can outperform the best individual player. Selective
ensembles are better than the one of all individuals. The use of
evolutionary algorithm and the choice of the member is
directly related to the success of the ensemble.

The enumerative search of ensemble can be improved with
other techniques. Genetic algorithms are used to search for
ensemble of several classifiers for bioinformatics problem
[27]. In this method, there is no restriction on the size of the
ensemble. Greedy approach is one of the techniques to form
an ensemble and they can be applied to the game domain [28].
It starts from an empty ensemble and adds the member that
maximizes the performance increase. On the other hand, it is
possible to start from full ensemble and delete one member at
a time in a greedy manner.

The speed of the evolution is dependent on the time
required to do a game between two strategies. A bit-board
representation could be used to reduce the time for one game.
In the representation, each entry of the board is represented as
two bits and bitwise operators are used to update the board.
Another way to increase the speed of evaluation is to use
distributed computing. GPU (Graphical Processing Unit) in a
graphic card is ready to do highly parallel computing with less
expensive hardware. Multi-core machines can be used to
accelerate the speed of evolution.

The strategies from co-evolution can be benefit from the
ensemble approach. In this work, we only consider the
evolution against static heuristic player and the final solution

has less generalization ability. Co-evolution is promising to
increase winning ratio against unseen strategies. The same
enumerative ensemble searching can be used to the population
of the last generation of the co-evolution.
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