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ABSTRACT 
The psychology term Theory of Mind (ToM) refers to the ability 
of an agent to recognize that an observed actor acts according to 
intentions and plans. In humans and some primates, ToM is 
fundamental to effective cooperation and competition, and is a key 
component of high-level cognition. In this paper, we explore the 
use of evolutionary robotics methods to create a robotic ToM. We 
use a co-evolutionary setup to evolve controllers that 
retrospectively explain an observed actor’s behavior, and new 
actions that elicit new and more revealing behaviors. Evolved 
controllers can then be used to predict, manipulate and exploit the 
observed actor’s behavior for cooperation or competition. 
Experimental results are shown in a physically-realistic simulation 
environment, and demonstrate an significant performance 
improvement compared to a direct estimation baseline.  

Categories and Subject Descriptors 
I.2.0 [Artificial Intelligence – General]: Cognitive Simulation  

General Terms 
Algorithms, Performance, Design, Reliability, Experimentation, 
and Verification 

Keywords 

Robotics, Evolutionary Computation, Estimation-Exploration 
Algorithm, Theory of Mind, Neural Network, Simulation 

1. INTRODUCTION 
The psychological term “Theory of Mind” (ToM) refers to the 
cognitive capacity that makes us understand others’ internal states 
(intentions, goals and beliefs) and predict their future behaviors 
[1]. More precisely, it refers to the ability of one agent to have an 
explicit model of the mind of another agent. Such a model allows 
an agent to anticipate the other agent’s behavior in both 
collaboration and competition. In competition, knowledge of 
another agent’s mind is key to anticipating its actions, thereby 
allowing for development of strategies that counter offensives and 
exploit weaknesses. In collaboration, knowledge of another 
agent’s mind is key to planning coordinated strategies, as well as 
compensating for potential weaknesses and taking advantage of 
mutual opportunities, while reducing communication. Theory of 
mind can be extended to multiple agent scenarios and group-level 

estimation, as well as to higher orders (such as, “I know what you 
know I know…”). Efficient algorithms for ToM could lead to 
better machine-machine interaction as well as machine-human 
interactions in cooperative and adversary situations. 

  Theory of mind is often cited as the key to higher level cognition 
tasks. From the observation of an actor’s behavior, body language, 
facial expression, and speech, we can infer the person’s internal 
states (emotions, thought, decision making, and plans). The 
mental states can be seen as part of one’s self model. This 
function is supported by widely distributed areas in the human 
brain [2][3] and has been observed in chimpanzees [4].  

   ToM has gained great interest for human-computer interaction 
applications. Scassellati built functions for humanoid robots that 
enable finding faces and eyes and distinguishing animate from 
inanimate stimuli [5]. Buchsbaum et al. developed an 
anthropomorphic animated mouse character that uses his own 
behavior repositories to interpret other’s behavior [6]. Hegel et al. 
studied human’s theory of mind for different shapes of robots [7].  

   The current state of the art consists of modeling simple discrete 
mental states of an observed actor (for example, true/false or other 
finite number of states). Evolutionary robotics methods, however, 
are uniquely suitable for creating (synthesizing) complete 
controller models from scratch. However, instead of seeking 
controllers that exhibit some new behavior, we are interested in 
evolving a controller that reproduces existing behavior observed 
in an actor. If the controller is evolved correctly, we can use that 
controller to predict responses in future situations, thereby having 
an open-ended mechanism for forming a ToM 
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Figure 1. Robotic “Theory of Mind” (ToM) 
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In this paper, we consider ToM in a robot-robot interaction setting. 
In this setup, each robot has its own controller and tries to 
construct a model of another robot’s controller purely from 
observation, using only information of the other’s movements. 
Each robot’s controller is hidden from the other robot. This 
reconstruction process can be seen as reverse engineering of a 
black box. Figure 1 shows a conceptual diagram of robotic theory 
of mind with a recursive property. The motivation of this setup 
twofold: First, in many robotic environments access to an 
observed robot’s controller is limited either by design, due to 
unanticipated failure, or due to legacy constraints. In adversarial 
situations, inferring a controller from observation may provide 
strategic value. Second, developing controller inference 
algorithms in robots may help in interaction with non-robotic 
actors such as humans, and may even shed light on fundamental 
questions in human-human ToM.  

We used an incremental evolutionary algorithm is used to reverse 
engineer an accurate controller model from observations. While a 
variety of other machine learning techniques could be used, 
evolutionary algorithms have proven to be an effective method to 
train controllers for complex tasks, such as matching observed 
signals. To accelerate the learning, we used an active-learning 
processes where the observer robot actively collects training 
trajectories based on the disagreement between multiple candidate 
models, as per the Estimation-Exploration Algorithm (EEA) often 
used for reverse engineering problems [8][9].  

     The proposed method was tested in a simulated robot 
environment using on two physics engines. The first is PhysX and 

the second is EnKi for E-Puck robots from K-Team. The 
experimental results suggest that our approach can discover 
successful controller models for simulated robots, opening the 
door to future hardware implementations. 

2. RELATED STUDIES 
2.1 Theory of Mind 
    The first paper on ToM was published in 1978 by Premack and 
Woodruff asking “Does the chimpanzee have a theory of mind?” 
[1]. Subsequently there have been many articles on the ToM of 
human and non-human primates.     

    After over 30 years of research since the initial question, it is 
generally agreed that chimpanzees have a theory of mind but do 
not understand each other as humans do [4]. Herrmann et al. 
compared ToM ability among humans, chimpanzees, and 
orangutans with gaze following and intention understanding tasks 
[10]. Childhood autism is also related to the lack of theory of 
mind [11]. Baron-Cohen compared normal, autistic, and Down’s 
syndrome subjects using a belief question to test theory of mind. 
The results for Down’s syndrome and normal subjects were 
similar but 80% of autistic children failed the test.  

Based on [12], theories for “theory of mind” are classified into 
four categories: Modular, simulation, theory-theory and executive 
function theories. In the modular view, the ToM is functionally 
dissociable from other cognitive functions and it is assumed that 
there are one or more neural structures specifically dedicated to 
this function. In the simulation perspective, there is no general 
theory guiding the ToM but the human brain mentally simulates 
another person’s situation by placing itself into the other person’s 
place. According to the theory-theory school, a child has a theory 
about how other minds operate and it evolves over time. Some 
theorists argue that a distinct ToM does not exist and executive 
functions are sufficient for the skills. We believe that developing 
and testing ToM models in robotics may help shed light on some 
of these complex and opaque questions. 

2.2 ToM in Simulated Environments 
There is a significant body of work on the use of ToM in 
simulated environments; however, the actor’s self models 
representations in past research have been intentionally simple, 
typically allowing only a few discrete states.     

     Peters developed synthetic vision, memory, and theory of mind 
module for embodied conversational agents [17]. In his work, an 
agent has three states of ToM: “Have they seen me?”, “Have they 
seen me looking?”, and “interest level.” Kaliouby et al. developed 
a “mind-reading machine” that recognizes six humans’ discrete 
mental states from video input of the person’s facial expression 
[18]. Buchsbaum et al. developed synthetic mouse characters that 
recognize other mouse’s behavior based on their own repositories 
[6]. Bosse et al. proposed a two-level BDI (Belief, Desire and 
Intention) model for ToM [19]. The first level was used to model 
self’s BDI and the other was for reasoning about other agents. 
Pynadath et al. developed a social simulation tool, PsychSim 
whose agents have beliefs about other agents [20]. Takano et al. 
[21] and Zanlungo [22] applied ToM to complex agent-based 
simulations and discussed about the effect of the level of ToM. 
Kondo et al. used the ToM in “carrying a stick task” for the 
cooperation of two computer programs [23]. Bringsjord et al. 

Table 1. Verifying theories of “Theory of Mind” with 
neuroscience knowledge 

References Modular Simulation Theory-
Theory 

Gallese et al.[13]   Support Opposition 
Blakemore et al. [14]  Support  
Ramnani et al. [15]  Opposition  

Siegal et al. [3] Support   
Saxe et al. [16] Support    

Table 2. ToM applications in simulated environments 

References Other’s 
Self  Modeling Methods Tasks 

Peters [17] - Symbolic Memory Conversation 

Kaliouby et al. 
[18] 

Six 
Discrete 
States 

Bayesian Networks 

Mind Reading 
Dataset for 

Individuals with 
Autism 

Buchsbaum et 
al. [6] - 

Action Recognition 
based on 

Simulation Theory 
- 

Bosse et al. 
[19]   BDI model BDI (Belief-Desire-

Intention) Modeling 

Employer’s 
Task Avoidance 

Scenario 

Pynadath et al. 
[20] 

Three 
Discrete 
States 

Nested Belief 
Modeling on Agent-
based Simulation 

School 
Violence 
Scenario 

Takano et al. 
[21]  - Predicting Other’s 

Velocity Vector 
Collision-
Avoiding 

Zanlungo [22]  - Predicting Other’s 
Velocity Vector 

Collision-
Avoiding 

Kondo et al. 
[23] 

Eight 
Discrete 
Actions 

Predicting Other’s 
Discrete Action by a 

Neural Network 
Carrying a Stick 

Bringsjord et al. 
[24] 

Two 
Discrete 
States 

Logical Inference 
based on a ToM 

Statement 

False-Belief 
Test  
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created a virtual character with a reasoning engine and they 
demonstrated that the character can pass the false-belief task by 
inserting “If someone sees something, they know it and if they 
don’t see it, they don’t” statement [24]. 

3. MODELING AN ACTOR 
    We performed our experiments using simple wheeled robots. 
Each robot has two sensors and wheels and detects light levels 
around the robot and uses them to control wheel velocities. An 
innate neural network processes the sensor inputs and generates 
outputs (wheel speed and/or steering angle), as shown in Fig 2. 

    We consider two types of robots: Actor robots and Observer 
robots. The goal of the observer robot is to learn a neural network 
(NN) model that is equivalent to the “innate” NN of actor. The 
process comprises four steps.  

• Step 1: Actor learning 
o The first robot (the actor) learns to move towards 

light source by evolving an “innate” NN. This is 
not necessarily an efficient motion; it can be any 
arbitrary complex behavior. 

• Step 2: Observer learning 
o A second robot (the observer) observes the actor’s 

trajectory and uses the path to reverse engineer 
actor’s innate NN. Additional paths help the 
observer refine or refute models of the actor’s NN.  

• Step 3: Actor manipulation for learning 
o The observer determines where to place the light to 

better expose actor’s NN in order to best refine or 
refute models of the actor’s NN.  

o If predictions are inaccurate, go to Step 2  

• Step 4: Actor exploitation 
o The observer determines where to place the light 

source to elicit desired behavior from the actor (e.g. 
making the actor reach a specific target location).  

3.1 Actor Learning 
For the first step, we used an evolutionary algorithm to learn a 
model of the “innate” NN of observed actors. Initially, P neural 
networks were generated randomly. Weights (including bias 
weights) were generated from a uniform distribution over [-0.2, 
0.2]. Each weight had a corresponding self-adaptive parameter 
initialized as 0.05. The mutation operator was 

)1,0()(')()('  ))1,0(exp()()(' jiiijii NjjwjwNjj στσσ +==

where Nw is the number of weights. .2/1 WN=τ  )( jiσ and 

)( jwi  are a self adaptive parameter and value of jth weight of ith 
neural network. Nj (0,1) is a standard Gaussian random variable 

re-sampled for every j. Each neural network generated one 
offspring using mutation yielding 2×P neural networks (parents + 
offspring). The fitness of each NN was evaluated based on the 
distance to the light source. We allow only the fittest P NN to 
survive to the next generation.   

3.2 Observer Learning 
    The observer learning (step 2) was also done by using the same 
evolutionary strategy as the actor learning. The merit (fitness) of 
each neural network was evaluated based on the similarity 
between the actor’s trajectory and the one generated by the 
candidate network from the same initial condition. We used 
derivatives of the trajectories to measure similarity, where, Δx and 
Δy at each time step are compared.   Figure 3 shows the details of 
the distance measuring.  

   
Figure 3. Distance measuring between two trajectories from 
the original and a candidate neural network 

3.3 Actor Manipulation for Learning 
    In this step, the observer robot can manipulate the actor robot to 
obtain new trajectories for accelerated learning. In this case, the 
observer can change the position of the light source to elicit a 
different trajectory from the actor robot. Figure 4 shows the 
overall learning algorithm using manipulation. The disagreement 
between predicted trajectories is measured based on Euclidean 
distances of the (x,y) position vectors. The initial population of the 
Estimation Step is copied from the last Exploration Step. Each 
iteration adds one trajectory to the estimation bank (see Figure 4).  

 
Figure 4. Estimation-Exploration Algorithm for Other’s Self 

Modeling 
    The EEA returns the five best neural networks of the actor’s 
self model. We can then choose the best one from the five NNs to 
predict the other’s behavior. Alternatively, the ensemble of the 
five candidates can be used to provide more robust predictions as 
well as confidence estimates. 

 
Figure 2. A virtual robot and neural controller 
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3.4 Actor Exploitation  
    Once the actor’s self model is discovered, there could be 
several strategies to exploit that knowledge. For example, a robot 
could change the position of the light source to elicit a desired 
behavior. The goal of this experiment is to find a light position 
that will force the actor robot to go into a “trap” location. In the 
absence of any knowledge about the actor’s controller, it is 
possible to make a straightforward guess that the actor will move 
towards the light source in a straight line. We call this strategy the 
“Straight Line Estimation” and it serves as our baseline 
comparison. With a “ToM” it is possible to make an educated 
guess that may be superior to the straight line estimation. The two 
approaches were compared for 100 different trap positions by 
changing the angle between the trap and the robot exhaustively. 
For each trial, the distance between the virtual robot and the 
possible light source position was kept constant.  

 

(a) 

 

(b) 

Figure 5. Two different strategies to estimate the behavior of 
the actor robot. (a) Straight Line Estimation assumes that the 
robot goes to light source following a straight line. (b) Theory 
of Mind places the trap based on estimates of the trajectory 

using the best available actor’s model prediction 

4. EXPERIMENTAL RESULTS 
  We performed two experiments: One where the actor was unable 
to sense the trap, and the second where the actor was able to sense 
the trap and was trained to avoid it, thereby making the 
manipulation by the observer more challenging.  
  

PhysX 

 

PhysX with 
Trap 

Sensors 
 

EnKi 

 
Figure 6. Architecture of neural networks 

  The first experiment was carried out in a PhysX simulator. The 
robot had two light sensors and three wheels. A neural controller 

outputs the speed and steering angle of a front wheel. In the 
second experiment the robot had additional sensors that detect a 
trap. Each neuron in the controller had a bias parameter and arctan 
function was used as a transfer function.  
   The parameters of experiments were as follows. In the actor 
learning, the population size was 20 and the maximum generation 
was 50. In the observer learning, the population size was 20 and 
the maximum generation was 30000 (PhysX) and 1000 (EnKi). 
The speed of PhysX simulation was accelerated using a simple 
heuristic equation which calculates the change of robot’s angle. 
Δα=100×|speed|×(steering angle)×(Δtime)2. 

    Figure 7 shows the trajectories of the actor robot for different 
starting positions. It is interesting that the trajectory is not straight 
line, indicating that the theory of mind modeling is necessary to 
predict the behavior of the robot correctly. Figure 8 shows the 
total error change of the observer learning. Low total error means 
the behavior of the other’s self model is close to the original 
actor’s neural network. It shows that the total error gradually goes 
down for all environments. 

   
(a) PhysX (b) PhysX with trap 

sensors (c) EnKi 

Figure 7. Behavior of neural controllers from actor learning 
(Black Circle = Initial position, Black cross = Light and Green 

cross = Trap)  

 
Figure 8. The progress of observer learning (averaged over 5 
runs). The total error means the sum of trajectory distance 
between actor and other’s self model for all possible light 
positions. Because each environment has different number of 
possible light positions and length of trajectory, they’re 
normalized to show in one chart. 
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 Figure 9. Progress of EEA learning for PhysX (Y-axis 
represents different starting positions and X-axis represents 
the number of training trajectories used. Initially, the 
trajectories of other’s self model were quite different with the 
actor’s one but it gradually became similar to the original one. 
When the number of trajectories was eleven, they showed 
quite similar behavior)  

Table 3. Statistical results of experimentations. The results 
show the mean of total error and the standard errors. The 

bold means the best one among the three methods. Although 
the ensemble approach performs very well in PhysX 

environment, they fail to do so in the EnKi environment.  

 Straight Line 
Estimation 

ToM 
(Single 
neural 

network) 

ToM 
(Ensemble of 5 

neural 
networks) 

PhysX 5.93 ± 0.54 3.87 ± 0.69 1.10 ± 0.28 

PhysX with 
Trap Sensors 18.21 ± 2.60 18.29 ± 2.72 11.97 ± 2.24 

EnKi 10.75 ± 1.26 0.89 ± 0.30 29.08 ± 5.75 

    Figure 9 shows the progress of other’s self learning. The goal of 
this is to find a neural network that shows the most similar 
behavior to the original NN of actor. Initially, the trajectories of 
the candidates are nearly random and quite different with the 
original. This also shows the trajectories from multiple starting 
positions. At stage 1, their trajectories are close to the real one but 
there is still high error near the light source. At stage 2, their error 
has been reduced, and they are now closer to the original than 
previous stages. At stage 11, the candidates show the most similar 

behavior to the original one. This shows that our incremental 
evolutionary learning is working for this kind of problem.  

Comparing the behavior and architecture between the actor’s and 
the other’s self model, we see that they have different weights but 
show very similar behaviors. There is a possibility that they are 
equivalent numerically. During the behavioral phase, they show 
very similar decisions (steering angle and speed) for most of 
sensory inputs (Figure 12).  

 
Figure 10. Comparison of actor’s NN and reconstructed NN in 

the PhysX environment. Map shows the output of neural 
networks for all combination of sensory values.  

 

 
Figure 11. The results of exploitation 
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Figure 12. Comparison of actor’s NN and reconstructed NN in 
the PhysX environment. Although they have different weight 
values, they’re approximating a very similar function. 
Investigation on the scaling factors and topological symmetry 
could be interesting to understand their similarity. In behavioral 
part, the figure shows the output of neural networks for all 
combination of sensory values. Each output (speed and steering 
angle) is depicted as an arrow. They showed very similar output 
patterns. The narrow diagonal white line shows transition points 
of robot’s decision. 

    Figure 11 shows the exploitation results using the neural 
networks found. If the prediction of other’s self models is close to 
the real trajectory, it is possible to correctly estimate the position 
of light to lure the robot into the trap. When the prediction works 
well, the robot was forced to go into the trap. The error was 
measured as the distance to the trap when the actor moves the 
light source using its ToM. Our approach is compared with 
straight line estimation (SLE), which assumes the robot goes to 
the light source straightly. The error caused by ToM is much 
smaller than one by SLE. Table 3 shows statistical results for the 
three environments. The error of ToM is substantially lower than 
the SLE for all cases. 

5. CONCLUSIONS & FUTURE WORK 
    In this paper, we have proposed computational approaches for 
theory of mind in simulated robots. We used both active and 
incremental learning using evolutionary computation. The 
experimental results show that our approach can reconstruct 
actor’s neural network successfully in various configurations.  

    Our next step is to test our approach with real physical robots 
(e.g., E-Puck robots). This includes a number of challenges: 1) 
The accuracy of simulator 2) Tracking of robot’s movement 3) 
Uncertainty in real world and 4) Finding movable light source.  
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