
Designing Robust Robotic Car Controllers based on

Artificial Neural Network
Jun-Ho Seo, Jung-Guk Park, Jung-Hyun Lee, and Kyung-Joong Kim

Department of Computer Engineering, Sejong Univ
98 Gunja-Dong, Gwangjin-Gu, Seoul, Republic of Korea

kimkj@sejong.ac.kr

ABSTRACT

 There are several factors to be considered in the design of

controllers for simulated car racing competition: Speed, safety and

adaptation. In this paper, we propose an experience-based design

method for safe driving which improves its driving skills from

failures. This imitates human’s learning mechanisms which

exploit a huge number of failures to get stable performance. In the

context of simulated car racing competition, the failures mean that

car has accidents or is stuck. Our system provides with methods to

design controllers for safe driving by analyzing, memorizing,

predicting failures from its experience. At first, our analysis shows

that the accidents occur frequently when the car enters a corner

with high speed. Based on this analysis, we decide to recognize

the corner before entering it and reduce speed for safe turn.

Secondly, our system remembers the position where the car fails

to drive successfully. In the next lap, the car reduces its speed at

the position by recalling memory. Although this is a useful

approach to minimize failures incrementally but there is no

guarantee that the failure will occur in the same place. Finally, we

use a computational intelligence method (neural network) to

predict the failures from sensory information. Experimental

results show that the combination of the three strategies can

improve the design of controllers for simulated car racing.

Keywords
Artificial Neural Network, Fault-Tolerant, Robotic Car

1. INTRODUCTION
“Learning from failures” is one of important skills for our

survival [1]. It is not possible to grasp difficult techniques at one

shot and we need to repeat them as many as possible resulting in

failures. From the experience of failures, we can learn to avoid the

failures and finally do the target behavior without errors. For

example, we need a lot of failures in learning to take a bicycle,

riding a car, playing the tennis, and playing the piano.

In the context of car racing competition, the failure means that

the car is stuck or has accidents (Figure 1). It gives damages to the

car and takes much time to escape from such situations. Even for

successful controllers, there are some failures. In the course of

competition, if the car makes a failure in the first lap, there is high

possibility of the same mistakes in the next lap. This is not true for

human because he can learn from the failures and try to avoid

them. This is natural mechanism for human to deal with complex

skills but our system has no idea on the failures.

There are several approaches to deal with the failures in

machine learning domains. The first one is to make systems robust

to the failures [3]. The fitness of controller is dependent on the

robustness to the failures. This requires much computational cost

to find good solutions and is available to only known faults. The

second approach is to model the normal status of the system and

realize the occurrence of failures from the continuous self

modeling [4]. This approach can deal with unknown faults but

requires much computational cost in the operation of systems.

Figure 1. The TORCS-based simulated car racing competition

We approach to develop mechanisms to handle the faults and

exploit them to improve the performance of the controller for

simulated car racing. Our basic driving program is not perfect and

could generate several failures in the warming-up stage newly

proposed in the 2010 competitions. Our idea is to use the

information to avoid the same mistakes in the next lap. Simple

method is to remember the position of failure and reduce the

speed in the place in the next lap. Also, it is possible to learn

generalized models to predict the situation where the failure

occurs. This is similar to the data-driven approach to drive the car

[5]. It has been known that the bumping to the wall occurs

frequently in the corner with high speed driving. Based on those

facts, we defined speed adaptation zone before the corner to

minimize the bumping. Figure 2 summarizes the proposed

approaches to deal with failures for the simulated car racing.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Copyright ⓒ 2010 ACM 978-1-4503-0180-0/10/08…$10.00.

Figure 2. The overview of the proposed method (The controller continuously stores the sensory information from the environments

(called as experience) and failures. Our system analyzes the failure history and extracts knowledge from them. For example, our

system reveals that the accidents frequently occur in the corners with high speed and we decide to reduce speed before the corner.

The next approach is to memorize the place where the accidents occur and recall this knowledge to reduce speed at the same

position in the next lap. Finally, we used artificial neural networks predict the possibility of accidents based on sensory information.

From the outputs of the three strategies, we finally change the behavior of controllers and adapt to the failures.

COBOSTAR, the winner of the CEC2009 competition proposed a

similar strategy to remember the car crashing point and reduce

speed 100m before this location [10]. Compared to the

COBOSTAR, we applied two other approaches to deal with the

car crashing appropriately and proposed to use adaptive speed

adaptation strategy instead of ad-hoc passive strategy. Also, we

adopted several new features of 2010 competition.

2. RELATED WORKS
Cardamone et al. developed a new sensor called look ahead

which returns the bended angle of track segments [5]. Using the

high-level information, they can generate useful sensory datasets

from successful controllers. They can predict the next action of

the car drivers using k-nearest neighbor and artificial neural

network from the sensory inputs. They reported that this approach

can generate successful controller although previous works failed

because of low-level sensory inputs.

Ebner et al. used genetic programming to evolve two symbolic

expressions which control the steering angle and

acceleration/deceleration of the car [6]. Genetic programming is

well-known techniques to evolve programs and provides with

interpretable equations. The evolved equations can give insight to

the designers who develop controllers for simulated car racing

because they’re represented with human understandable symbols.

Munoz et al. trained the neural controllers from the datasets

generated by two well-known controllers and human [7]. They

reported that it is very complicated to learn the human behavior

because neither the human makes the same action in the same

circumstances, nor performs all actions in the proper way and the

human makes a lot of mistakes that have to resolve. This is

interesting that human plays the game not perfectly while doing

several mistakes and changing his behaviors over time.

Perez et al. evolved fuzzy rules controlling the cars in order to

optimize lap times, damage taken and out of track time. They

optimized fuzzy rules and fuzzy sets for inputs and outputs of

controllers using genetic algorithm. They reported that the use of

fuzzy sets for input sensors are quite useful.

Onieva et al. is the winner of the 2009 simulated car racing

championship [9]. They are classified as “mainly programmed

category.” They adopted a complete modular architecture that

each module is in charge of managing one basic aspect of the

driving (Gear, desired speed, low-level gas & brake, steering, and

opponent modifier). A simple TSK fuzzy controller is in charge to

determine the target speed. In their work, many of the

features/parameters are hand-tuned.

Butz et al. developed COBOSTAR which won the CEC-2009

competitions. COBOSTAR adopts several strategies to deal with

failures [10]. For example, they tried to develop different

strategies for off-track situation. In the off-track, distance sensors

to the track borders are not available, steering becomes much

more error-prone and wheel slippage is much stronger.

They also added a crash-point strategy, remembering crash

points on the road. If a crash occurred in the first lap somewhere

and if furthermore this crash appeared not to be caused by an

opponent, then the relative point on the track with respect to the

start was remembered and 100 meters before this location the

strategy was converted into a passive strategy, leading to a much

slower driving style. While this strategy seemed to have big

potential, the definition of the passive strategy was very ad-hoc-

the car simply drove very slow around the crash area.

The idea proposed by COBOSTAR is quite similar to one of

our components called “memorizing failures.” However, we tried

to define the passive strategy adaptively considering the width of

tracks. If the track is wide, the car reduces the speed as small as

possible, but in case of narrow track, the car significantly reduces

its speed. Also, we have two other strategies to deal with crashes.

In the first strategy, we defined speed adaptation zone before

corners. In that area, the car adaptively changes the speed to the

target speed which is proportionate to the width of tracks. In the

second strategy, the car predicts the probability of car crash using

multi-layered neural network and exploit it to change its speed.

In this section, we summarized the papers published in IEEE

Symposium on Computational Intelligence in Games 2009. It is a

mixture of hand-tuned programs and completely learned programs

without expert knowledge. Interestingly, there are two papers

about imitating other player’s driving skills based on the behavior

of others. Unlike the two papers, in our work, we record the

behavior of our program to improve its ability to avoid car crashes.

3. PROPOSED METHODS
There are several changes in the rules of 2010 simulated car

racing competitions. 1) The range of the proximity sensors have

been increased from 100m to 200m. 2) The position of the range

finders can be customized by users. 3) New focus sensor provides

accurate sensing of the road ahead. 4) Noise is introduced to range

and proximity sensors. 5) Drivers now control the clutch. 6) A

new warm-up stage allows drivers to learn about track properties

before the qualifying. In this work, we adopted our controller to

the new rules.

(a) 19 Distance Sensors

(b) 3-dimensinal speed of the car

Figure 3. The basic sensors of simulated cars

Table 1 and Figure 3 show the basic sensors from TORCS

engine [13]. There are 19 sensors and designers can configure the

position of the sensors.

Table 2 summarizes the configuration of the 19 track sensors.

Sensor 0 and Sensor 18 are used to calculate the width of the track.

Sensor 1, 9, and 17 are located in the center of the car. The steer

weight was hand-tuned and used in a steering algorithm

(Algorithm 1: Steering). It improves the cornering behavior of the

car.

3.1 Basic Driving Module
this module, there are several components charging one aspect of

the driving. This is similar to the modular architecture proposed

by [9]. Figure 4 shows the architecture of the basic driving

module. Car state means the sensory input to the controller and

car control is a set of control signals to the car. The failure

handling module changes only the speed of the car by subsumes

the outputs of the acceleration and brake module.

Figure 4. An overview of the basic driving module

Table 1. Description of the available sensors

Name Range(unit) Description

angle [-π, + π] (rad)

Angle between the car direction

and the direction of the track

axis

Track
[0, 200]

(m)

Vector of 19 range finder

sensors: each sensor returns the

distance between the track edge

and the car within a range of 200

meters.

trackPos (-∞, +∞)

Distance between the car and the

track axis. The value is

normalized w.r.t to the track

width: it is 0 when car is on the

axis, -1 when the car is on the

right edge of the track and +1

when it is on the left edge of the

car. Values greater than 1 or

smaller than -1 mean that the car

is outside of the track.

speedX (-∞, ∞)(km/h)
Speed of the car along the

longitudinal axis of the car.

distFromStart [0, +∞)(m)
Distance of the car from the start

line along the track line.

Table 2. The configuration of 19 track sensors and their steer

weights

Sensor

Number
Angle

Steer

weight

Sensor

Number
Angle

Steer

weight

0 -90 - 10 5 -0.25

1 -1 - 11 10 -0.2

2 -45 1.3 12 15 -0.55

3 -30 0.8 13 20 -0.4

4 -25 0.9 14 25 -0.9

5 -20 0.4 15 30 -0.8

6 -15 0.55 16 45 -1.3

7 -10 0.2 17 1 -

8 -5 0.25 18 90 -

9 0(center) 0

3.1.1 Steering
The basic idea of steering is to go to the direction of track

sensors with the maximum distance. The sensor located in the

center of the car is used to classify whether the car is in the

straight or corner tracks. In Algorithm1 “Steer_weight[Index]”

values correspond with table2 Steer weight.

Algorithm 1: Steering

// k: 0.3 (usually 0.1~0.5)

// steerLock = PI/4

Procedure Get_Target_Steer(){

 Index = argmax(Track[2], Track[3], …, Track[16]);

 If(Track[9] > 70 meters) { // Car is in the straight track

 Target = 0.1ⅹ(angle – trackPos)/steerLock;

 }

 Else { // Car is in the corner track

 Target = Steer_weight [Index]-kⅹtrackPos; }

 Return Target; }

3.1.2 Acceleration & Brake
If the value of the track sensor in the center of the car is larger

than 150 meters, it is classified as a straight road. If not, it is a

corner area. We have changed the parameters of TCL & ABS used

in the source code provided by organizer as an example.

Algorithm 2: Acceleration and Brake

// β: 3

Procedure Get_Accel_Brake_Basic(){

T[1] = Track[1];

T[2] = Track[17];

If(T[1] > T[2]) { max = 1; min = 2;}

Else {max = 2; min = 1;}

If(Track[9]>150 meters) {

 Target = MAXSPEED; // Straight Track

}

Else {

Target = βⅹTrack[9] ⅹ|T[max]-Track[9]|/|T[min]-Track[9]|;

}

Return 2/(1+exp(speedX-Target))-1 }

3.2 Memorizing Failures
When the car is stuck, the current position of the car is

memorized in the list structure. distFromStart sensor was used to

indicate the failure position. If the position is labeled as x, speed

reducing area is between x-300 meters and x+20 meters. If the car

is in the area, the car has to adjust the speed to target

speed(15ⅹTrack_Width). In this case, the definition of stuck is as

follows. If the car’s angle is larger than 45 degree, we define the

situation as stuck and memorize the position.

Figure 5. An example of the stuck list for memorizing failures.

Algorithm 3: Memorizing Failures

Procedure MEMORIZE_FAILURE(){

If(angle > 45){ // Car is stuck

 If(ISADDEDSTUCK(distFromStart)==FALSE)

 INSERTSTUCK(distFromStart);

}

}

Procedure ISADDEDSTUCK(distFromStart){

 Iterator it = stucklist.begin;

 While(it!=stucklist.end){

 If(itfront < distFromStart && itend > distFromStart)

 Return TRUE;

 it=it next;

 }

 Return FALSE;

}

Procedure INSERTSTUCK(distFromStart){

 Stuckpoint sp;

 sp.front = distFromStart – 300;

 sp.end = distFromStart +20;

 Insert sp to stucklist;

}

// If the car is near the memorized position again, reduce speed

Procedure Get_Accel_Brake_S1(){

 If(ISADDEDSTUCK(distFromStart)==TRUE){

 If(speedX>15ⅹTrack_Width) Return -1; // Reduce Speed

}}

3.3 Speed Adaptation Zone (SAZ)
From our initial analysis, we realized that the car accidents

frequently occur before corners with high speed entering. Based

on this analysis, we decide to set speed adaptation zone before the

corner to adjust the speed. This makes the car reduce the speed

before the corner. If the speed is lower than target speed in the

zone, the car increases its speed to the goal. The target speed is

proportionate to the width of the track.

Figure 6. Speed adaptation zone before the corner (the area

between two vertical arrows)

Algorithm 4: Acceleration and Brake with SAZ

Procedure Get_Accel_Brake_S2 (){

T[1] = Track[1];

T[2] = Track[17];

If(T[1] > T[2]) { max = 1; min = 2;}

Else {max = 2; min = 1;}

If(Track[9]>150 meters) {

 Target = MAXSPEED; // Straight Track

}

Else if (Track[9]<150 && Track[9]>70){ // car is in the SAZ

Target = 20ⅹTrack_Width;

}

Return 2/(1+exp(speedX-Target))-1

}

3.4 Train Multi-Layer Neural Networks to

Predict Failures
In our early work, we tried to learn neural networks to predict

whether the car is stuck or not. In fact, this was not working well

and we changed the goal of neural networks to predict the degree

of danger of the future tracks. If there is sharp corners, the neural

networks has to return the value near 1. If the track is straight line,

it has to return the value near 0. This information can be used to

measure the level of danger and is closely related to the

probability of actual failures. To learn this neural network, we

collected data from several tracks by using the basic driving

modules. Initially, we used all 19 track sensors as inputs for

neural networks but it worked poorly. Instead of using all sensors,

we selected the most informative eight sensors manually (speedX,

Track[1], Track[17], Track[7]~Track[11]). It significantly

improved the performance of the neural networks. The dataset

includes the value of the eight sensors and the label (the corner is

sharp or not).

Algorithm 5: Acceleration and Brake with MLP

// β: 3

Procedure Get_Accel_Brake_S3 (){

T[1] = Track[1];

T[2] = Track[17];

Prob = MLP(speedX, Track[1], Track[17], Track[7]~Track[11]);

If(T[1] > T[2]) { max = 1; min = 2;}

Else {max = 2; min = 1;}

If(Track[9]>150 meters) {

 Target = MAXSPEED; // Straight Track

}

Else if (Track[9]<150 && Track[9]>70){ // car is in the SAZ

Target = (β-Prob)ⅹTrack[9] ⅹ| T[max]-Track[9] |

/| T[min]-Track[9] |;

}

Return 2/(1+exp(speedX-Target))-1

}

Figure 7. The architecture of neural network and the use of

MLP to predict the degree of danger (sigmoid function is used)

3.5 The Integration of the Modules
Because we use multiple strategies to handle failures, we need an

integrated algorithm to determine the final acceleration/brake

value. If there is no dangerous factor, the output from the basic

module is returned. If there are several (more than one) outputs,

the one with small value is used. For example, the car is in the

speed adaptation zone and also near the failure position

memorized. In this case, the target speed is determined as one

with low value. The car has to reduce the speed to the lowest

target speed if the car satisfies multiple failure conditions.

Algorithm 6: Integrated Algorithm

S1=MAX_SPEED;

S2=MAX_SPEED;

S3=MAX_SPEED;

If(Car is near the Failure Position Memorized){

 S1 = Get_Accel_Brake_S1(); // Memorized Position

}

If (Car is in SAZ){

 S2 = Get_Accel_Brake_S2(); // SAZ

 S3 = Get_Accel_Brake_S3(); // MLP

}

If(Car is not near the Failure Position && Car is not in SAZ){

 S = Get_Accel_Brake_Basic();

 Return S;

}

Else { Return Min(S1, S2, S3); }

4. EXPERIMENTAL RESULTS
For neural network training, we used backpropagation algorithm

[11]. The training samples were collected from six tracks (Street1,

Ruddskogen, Wheel1, Wheel2, E-track3, and Cgtrack2). We

collected the data by running the car with the basic driving

module for two or three laps for each track. It was sampled per

0.02 seconds. The inputs to the neural networks were normalized

between 0 and 1. To set the parameters of the backpropagation

algorithm, we tested several learning rate parameters (Figure 10).

Based on this test, we set the rate as 0.1. The training accuracy of

the neural network is 95% with full datasets. In the SAZ, we

defined the area between 70 meters and 150 meters before corner.

This was determined from exhaustive tests of several

combinations of the two values (start and end position of the area)

(Figure 8).

Table 3. The number of samples collected from the tracks

Track Name # of Samples

Street1 13521

Ruddskogen 9433

Wheel1 5983

Wheel2 7454

E-Track3 13188

Cgtrack2 8833

Total 58412

(a) Lap Time

(b) Damage

Figure 8. The exhaustive test of the combination of start and

end position of speed adaptation zone. (Long distance means

the start position and the short distance means the end

position) (Long distance must be larger than the short

distance) (The arrow indicates where minimizes the time and

damages (between 70 meters and 150 meters).

We evaluated the lap time and the damage for several

combination of the strategies used. We used three different tracks

(Street1, CGTrack2, and Aalborg) (Figure 9). We repeated the

experiments for five times(each time runs 5laps). It showed that

the combination of the all strategies (B+S1+S2+S3) shows

minimum lap time with zero damage. S2 is quite useful to

minimize the damage of driving but slow down the lap time of the

car. The introduction of S3 improves the lap time by increaing the

prediction ability of the danger level of corners.

B : Basic driving module

S1 : Memorizing failures

S2 : Speed adaptation zone

S3 : Predicting the degree of danger using MLP

Street1

CGTRACK2

Aalborg

Figure 9. Tracks used to evaluate the strategies used

Table 4. The summary of experimental results

Map repeat

Basic B+S1 B+S1+S2 B+S1+S2+S3

lap

time
damage

lap

time
damage

lap

time
damage

lap

time
damage

Street1 1 480.54 2600 464.1 765 477.9 0 461.79 0

2 480.54 2600 464.1 765 477.9 0 461.79 0

3 480.54 2600 464.1 765 477.9 0 461.79 0

4 480.54 2600 464.1 765 477.9 0 461.79 0

5 480.54 2600 464.1 765 477.9 0 461.79 0

CGTrack2 1 310.75 16 310.75 16 338.36 0 320.91 0

2 310.75 16 310.75 16 338.36 0 320.91 0

3 326.38 20 310.75 16 338.36 0 320.91 0

4 310.75 16 310.75 16 338.36 0 320.91 0

5 310.75 16 310.75 16 338.36 0 320.91 0

Aalborg 1 446.11 2582 446.11 2582 471.51 0 451.65 0

2 446.11 2582 446.11 2582 471.51 0 451.65 0

3 459.34 3275 446.11 2582 471.51 0 451.65 0

4 446.11 2582 446.11 2582 471.51 0 451.65 0

5 446.11 2582 446.11 2582 471.51 0 451.65 0

Figure 10. The accuracy of MLP by changing the learning rate of BP (0.1, 0.5 and 0.9) for three tracks.

5. CONCLUSION AND FUTURE WORKS
In this paper, we proposed a method to handle with the failure

in the simulated car racing. Our controller has basic driving

module and several strategies to deal with failures: 1)

Memorizing the position where the car is stuck 2) Reduce speed

in the speed adaptation zone before corner 3) Predict the level of

danger of corners using multi-layer neural networks. It shows

that the combination of basic driving module and the three

strategies performs well by minimizing damages and lap times.

It is interesting to makes maps of the track while driving cars

like robotics algorithm called SLAM (Simultaneously

Localization and Mapping) [12]. There are several parameters in

our algorithm, we need to optimize them using machine learning

approaches. Currently there are several parameters hand-tuned.

6. ACKNOWLEDGMENTS
This research was supported by Basic Science Research

Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Education, Science and

Technology (2010-0012876)

7. REFERENCES
[1] A. Carmeli, “Social capital, psychological safety and

learning behaviors from failure in organizations,” Long

Range Planning, vol. 40, pp. 30-44, 2007.

[2] http://cig.dei.polimi.it/?page_id=134

[3] K.-J. Kim, A. Wang, and H. Lipson, “Automated synthesis

of resilient and tamper-evident analog circuits without a

single point of failure,” Genetic Programming and

Evolvable Machines, vol. 11, no. 1, pp. 35-59, 2010.

[4] J. Bongard, V. Zykov, and H. Lipson, “Resilient machines

through continuous self-modeling,” Science, vol. 314, pp.

1118-1121, 2006.

[5] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Learning

drivers for TORCS through imitation using supervised

methods,” IEEE Symposium on Computational Intelligence

in Games, pp. 148-155, 2009.

[6] M. Ebner, and T. Tiede, “Evolving driving controllers

using genetic programming,” IEEE Symposium on

Computational Intelligence in Games, pp. 279-286, 2009.

[7] J. Munoz, G. Gutierrez, and A. Sanchis, “Controller for

TORCS created by imitation,” IEEE Symposium on

Computational Intelligence in Games, pp. 271-278, 2009.

[8] D. Perez, G. Recio, Y. Saez and P. Isasi, “Evolving a fuzzy

controller for a car racing competition,” IEEE Symposium

on Computational Intelligence in Games, pp. 263-270,

2009.

[9] E. Onieva, D. A. Pelta, J. Alonso, V. Milanes, and J. Perez,

“A modular parametric architecture for the TORCS racing

engine,” IEEE Symposium on Computational Intelligence

in Games, pp. 256-262, 2009.

[10] M. V. Butz, and T. D. Lonneker, “Optimized sensory-

motor couplings plus strategy extensions for the TORCS

car racing challenge,” IEEE Symposium on Computational

Intelligence in Games, pp. 317-324, 2009.

[11] B. D. Ripley, Pattern Recognition and Neural Networks,

1996.

[12] H. Durrant-Whyte, and T. Bailey, “Simultaneous

localization and mapping (SLAM): Part I the essential

algorithms,” Robotics and Automation Magazine, vol. 13,

pp. 99-110, 2006.

[13] TORCS software manual

http://sourceforge.net/projects/cig/files/Championship%20

2010%20Manual/1.0/manual.pdf/download

