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ABSTRACT  

    There are several factors to be considered in the design of 

controllers for simulated car racing competition: Speed, safety and 

adaptation. In this paper, we propose an experience-based design 

method for safe driving which improves its driving skills from 

failures. This imitates human’s learning mechanisms which 

exploit a huge number of failures to get stable performance. In the 

context of simulated car racing competition, the failures mean that 

car has accidents or is stuck. Our system provides with methods to 

design controllers for safe driving by analyzing, memorizing, 

predicting failures from its experience. At first, our analysis shows 

that the accidents occur frequently when the car enters a corner 

with high speed. Based on this analysis, we decide to recognize 

the corner before entering it and reduce speed for safe turn. 

Secondly, our system remembers the position where the car fails 

to drive successfully. In the next lap, the car reduces its speed at 

the position by recalling memory. Although this is a useful 

approach to minimize failures incrementally but there is no 

guarantee that the failure will occur in the same place. Finally, we 

use a computational intelligence method (neural network) to 

predict the failures from sensory information. Experimental 

results show that the combination of the three strategies can 

improve the design of controllers for simulated car racing.  
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1. INTRODUCTION 
“Learning from failures” is one of important skills for our 

survival [1]. It is not possible to grasp difficult techniques at one 

shot and we need to repeat them as many as possible resulting in 

failures. From the experience of failures, we can learn to avoid the 

failures and finally do the target behavior without errors. For 

example, we need a lot of failures in learning to take a bicycle, 

riding a car, playing the tennis, and playing the piano.  

In the context of car racing competition, the failure means that 

the car is stuck or has accidents (Figure 1). It gives damages to the 

car and takes much time to escape from such situations. Even for 

successful controllers, there are some failures. In the course of 

competition, if the car makes a failure in the first lap, there is high 

possibility of the same mistakes in the next lap. This is not true for 

human because he can learn from the failures and try to avoid 

them. This is natural mechanism for human to deal with complex 

skills but our system has no idea on the failures.  

There are several approaches to deal with the failures in 

machine learning domains. The first one is to make systems robust 

to the failures [3]. The fitness of controller is dependent on the 

robustness to the failures. This requires much computational cost 

to find good solutions and is available to only known faults. The 

second approach is to model the normal status of the system and 

realize the occurrence of failures from the continuous self 

modeling [4].  This approach can deal with unknown faults but 

requires much computational cost in the operation of systems. 

 

Figure 1. The TORCS-based simulated car racing competition 

We approach to develop mechanisms to handle the faults and 

exploit them to improve the performance of the controller for 

simulated car racing. Our basic driving program is not perfect and 

could generate several failures in the warming-up stage newly 

proposed in the 2010 competitions. Our idea is to use the 

information to avoid the same mistakes in the next lap. Simple 

method is to remember the position of failure and reduce the 

speed in the place in the next lap. Also, it is possible to learn 

generalized models to predict the situation where the failure 

occurs. This is similar to the data-driven approach to drive the car 

[5]. It has been known that the bumping to the wall occurs 

frequently in the corner with high speed driving. Based on those 

facts, we defined speed adaptation zone before the corner to 

minimize the bumping. Figure 2 summarizes the proposed 

approaches to deal with failures for the simulated car racing.  
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Figure 2. The overview of the proposed method (The controller continuously stores the sensory information from the environments 

(called as experience) and failures. Our system analyzes the failure history and extracts knowledge from them. For example, our 

system reveals that the accidents frequently occur in the corners with high speed and we decide to reduce speed before the corner. 

The next approach is to memorize the place where the accidents occur and recall this knowledge to reduce speed at the same 

position in the next lap. Finally, we used artificial neural networks predict the possibility of accidents based on sensory information. 

From the outputs of the three strategies, we finally change the behavior of controllers and adapt to the failures. 

 

COBOSTAR, the winner of the CEC2009 competition proposed a 

similar strategy to remember the car crashing point and reduce 

speed 100m before this location [10]. Compared to the 

COBOSTAR, we applied two other approaches to deal with the 

car crashing appropriately and proposed to use adaptive speed 

adaptation strategy instead of ad-hoc passive strategy. Also, we 

adopted several new features of 2010 competition.  

2. RELATED WORKS 
Cardamone et al. developed a new sensor called look ahead 

which returns the bended angle of track segments [5]. Using the 

high-level information, they can generate useful sensory datasets 

from successful controllers. They can predict the next action of 

the car drivers using k-nearest neighbor and artificial neural 

network from the sensory inputs. They reported that this approach 

can generate successful controller although previous works failed 

because of low-level sensory inputs.  

Ebner et al. used genetic programming to evolve two symbolic 

expressions which control the steering angle and 

acceleration/deceleration of the car [6]. Genetic programming is 

well-known techniques to evolve programs and provides with 

interpretable equations. The evolved equations can give insight to 

the designers who develop controllers for simulated car racing 

because they’re represented with human understandable symbols.  

Munoz et al. trained the neural controllers from the datasets 

generated by two well-known controllers and human [7]. They 

reported that it is very complicated to learn the human behavior 

because neither the human makes the same action in the same 

circumstances, nor performs all actions in the proper way and the 

human makes a lot of mistakes that have to resolve. This is 

interesting that human plays the game not perfectly while doing 

several mistakes and changing his behaviors over time.  

Perez et al. evolved fuzzy rules controlling the cars in order to 

optimize lap times, damage taken and out of track time. They 

optimized fuzzy rules and fuzzy sets for inputs and outputs of 

controllers using genetic algorithm. They reported that the use of 

fuzzy sets for input sensors are quite useful.  

Onieva et al. is the winner of the 2009 simulated car racing 

championship [9]. They are classified as “mainly programmed 

category.” They adopted a complete modular architecture that 

each module is in charge of managing one basic aspect of the 

driving (Gear, desired speed, low-level gas & brake, steering, and 

opponent modifier). A simple TSK fuzzy controller is in charge to 

determine the target speed. In their work, many of the 

features/parameters are hand-tuned.  

Butz et al. developed COBOSTAR which won the CEC-2009 

competitions. COBOSTAR adopts several strategies to deal with 

failures [10]. For example, they tried to develop different 

strategies for off-track situation. In the off-track, distance sensors 

to the track borders are not available, steering becomes much 

more error-prone and wheel slippage is much stronger.  

They also added a crash-point strategy, remembering crash 

points on the road. If a crash occurred in the first lap somewhere 

and if furthermore this crash appeared not to be caused by an 

opponent, then the relative point on the track with respect to the 

start was remembered and 100 meters before this location the 

strategy was converted into a passive strategy, leading to a much 

slower driving style. While this strategy seemed to have big 

potential, the definition of the passive strategy was very ad-hoc-

the car simply drove very slow around the crash area.  

The idea proposed by COBOSTAR is quite similar to one of 

our components called “memorizing failures.” However, we tried 

to define the passive strategy adaptively considering the width of 

tracks. If the track is wide, the car reduces the speed as small as 

possible, but in case of narrow track, the car significantly reduces 

its speed. Also, we have two other strategies to deal with crashes. 

In the first strategy, we defined speed adaptation zone before 



corners. In that area, the car adaptively changes the speed to the 

target speed which is proportionate to the width of tracks. In the 

second strategy, the car predicts the probability of car crash using 

multi-layered neural network and exploit it to change its speed.  

In this section, we summarized the papers published in IEEE 

Symposium on Computational Intelligence in Games 2009. It is a 

mixture of hand-tuned programs and completely learned programs 

without expert knowledge. Interestingly, there are two papers 

about imitating other player’s driving skills based on the behavior 

of others. Unlike the two papers, in our work, we record the 

behavior of our program to improve its ability to avoid car crashes. 

3. PROPOSED METHODS 
There are several changes in the rules of 2010 simulated car 

racing competitions. 1) The range of the proximity sensors have 

been increased from 100m to 200m. 2) The position of the range 

finders can be customized by users. 3) New focus sensor provides 

accurate sensing of the road ahead. 4) Noise is introduced to range 

and proximity sensors. 5) Drivers now control the clutch. 6) A 

new warm-up stage allows drivers to learn about track properties 

before the qualifying. In this work, we adopted our controller to 

the new rules.  

 
(a) 19 Distance Sensors 

 

 
(b) 3-dimensinal speed of the car 

Figure 3. The basic sensors of simulated cars 

Table 1 and Figure 3 show the basic sensors from TORCS 

engine [13]. There are 19 sensors and designers can configure the 

position of the sensors.  

Table 2 summarizes the configuration of the 19 track sensors. 

Sensor 0 and Sensor 18 are used to calculate the width of the track. 

Sensor 1, 9, and 17 are located in the center of the car. The steer 

weight was hand-tuned and used in a steering algorithm 

(Algorithm 1: Steering). It improves the cornering behavior of the 

car.  

3.1 Basic Driving Module 
this module, there are several components charging one aspect of 

the driving. This is similar to the modular architecture proposed 

by [9]. Figure 4 shows the architecture of the basic driving 

module. Car state means the sensory input to the controller and 

car control is a set of control signals to the car. The failure 

handling module changes only the speed of the car by subsumes 

the outputs of the acceleration and brake module. 

 

Figure 4. An overview of the basic driving module 

 

Table 1. Description of the available sensors 

Name Range(unit) Description 

angle [-π, + π] (rad) 

Angle between the car direction 

and the direction of the track 

axis 

Track 
[0, 200] 

(m) 

Vector of 19 range finder 

sensors: each sensor returns the 

distance between the track edge 

and the car within a range of 200 

meters. 

trackPos (-∞, +∞) 

Distance between the car and the 

track axis. The value is 

normalized w.r.t to the track 

width: it is 0 when car is on the 

axis, -1 when the car is on the 

right edge of the track and +1 

when it is on the left edge of the 

car. Values greater than 1 or 

smaller than -1 mean that the car 

is outside of the track. 

speedX (-∞, ∞)(km/h) 
Speed of the car along the 

longitudinal axis of the car. 

distFromStart [0, +∞)(m) 
Distance of the car from the start 

line along the track line. 

 

Table 2. The configuration of 19 track sensors and their steer 

weights 

Sensor 

Number 
Angle 

Steer 

weight 

Sensor 

Number 
Angle 

Steer 

weight 

0 -90 - 10 5 -0.25 

1 -1 - 11 10 -0.2 

2 -45 1.3 12 15 -0.55 



3 -30 0.8 13 20 -0.4 

4 -25 0.9 14 25 -0.9 

5 -20 0.4 15 30 -0.8 

6 -15 0.55 16 45 -1.3 

7 -10 0.2 17 1 - 

8 -5 0.25 18 90 - 

9 0(center) 0    

 

3.1.1 Steering 
The basic idea of steering is to go to the direction of track 

sensors with the maximum distance. The sensor located in the 

center of the car is used to classify whether the car is in the 

straight or corner tracks. In Algorithm1 “Steer_weight[Index]” 

values correspond with table2 Steer weight. 

Algorithm 1: Steering 

// k: 0.3 (usually 0.1~0.5) 

// steerLock = PI/4  

Procedure Get_Target_Steer(){ 

   Index = argmax(Track[2], Track[3], …, Track[16]);  

   If(Track[9] > 70 meters) {  // Car is in the straight track  

     Target = 0.1ⅹ(angle – trackPos)/steerLock; 

   } 

   Else { // Car is in the corner track  

     Target = Steer_weight [Index]-kⅹtrackPos;  }  

   Return Target; } 

3.1.2 Acceleration & Brake 
If the value of the track sensor in the center of the car is larger 

than 150 meters, it is classified as a straight road. If not, it is a 

corner area. We have changed the parameters of TCL & ABS used 

in the source code provided by organizer as an example.  

Algorithm 2: Acceleration and Brake 

// β: 3 

Procedure Get_Accel_Brake_Basic(){ 

T[1] = Track[1];     

T[2] = Track[17];  

If(T[1] > T[2]) { max = 1; min = 2;}  

Else {max = 2; min = 1;}  

 

If(Track[9]>150 meters) { 

   Target = MAXSPEED; // Straight Track  

} 

Else { 

Target = βⅹTrack[9] ⅹ|T[max]-Track[9]|/|T[min]-Track[9]|;  

} 

Return 2/(1+exp(speedX-Target))-1 } 

3.2 Memorizing Failures 
When the car is stuck, the current position of the car is 

memorized in the list structure. distFromStart sensor was used to 

indicate the failure position. If the position is labeled as x, speed 

reducing area is between x-300 meters and x+20 meters. If the car 

is in the area, the car has to adjust the speed to target 

speed(15ⅹTrack_Width). In this case, the definition of stuck is as 

follows. If the car’s angle is larger than 45 degree, we define the 

situation as stuck and memorize the position. 

 
Figure 5. An example of the stuck list for memorizing failures.  

Algorithm 3: Memorizing Failures 

Procedure MEMORIZE_FAILURE(){ 

If(angle > 45){  // Car is stuck 

       If(ISADDEDSTUCK(distFromStart)==FALSE) 

         INSERTSTUCK(distFromStart);  

} 

} 

Procedure ISADDEDSTUCK(distFromStart){ 

     Iterator it = stucklist.begin;  

     While(it!=stucklist.end){ 

         If(itfront < distFromStart && itend > distFromStart) 

             Return TRUE;  

         it=it next;  

     } 

     Return FALSE;  

} 

Procedure INSERTSTUCK(distFromStart){ 

    Stuckpoint sp;  

    sp.front = distFromStart – 300;  

    sp.end = distFromStart +20;  

    Insert sp to stucklist;  

} 

// If the car is near the memorized position again, reduce speed 

Procedure Get_Accel_Brake_S1(){ 

    If(ISADDEDSTUCK(distFromStart)==TRUE){ 

        If(speedX>15ⅹTrack_Width) Return -1; // Reduce Speed 

}} 



3.3 Speed Adaptation Zone (SAZ) 
From our initial analysis, we realized that the car accidents 

frequently occur before corners with high speed entering. Based 

on this analysis, we decide to set speed adaptation zone before the 

corner to adjust the speed. This makes the car reduce the speed 

before the corner. If the speed is lower than target speed in the 

zone, the car increases its speed to the goal. The target speed is 

proportionate to the width of the track. 

 

Figure 6. Speed adaptation zone before the corner (the area 

between two vertical arrows) 

 

Algorithm 4: Acceleration and Brake with SAZ 

Procedure Get_Accel_Brake_S2 (){ 

T[1] = Track[1];     

T[2] = Track[17];  

If(T[1] > T[2]) { max = 1; min = 2;}  

Else {max = 2; min = 1;}  

 

If(Track[9]>150 meters) { 

   Target = MAXSPEED; // Straight Track  

} 

Else if (Track[9]<150 && Track[9]>70){ // car is in the SAZ 

Target = 20ⅹTrack_Width;  

} 

Return 2/(1+exp(speedX-Target))-1  

} 

 

3.4 Train Multi-Layer Neural Networks to 

Predict Failures 
In our early work, we tried to learn neural networks to predict 

whether the car is stuck or not. In fact, this was not working well 

and we changed the goal of neural networks to predict the degree 

of danger of the future tracks. If there is sharp corners, the neural 

networks has to return the value near 1. If the track is straight line, 

it has to return the value near 0. This information can be used to 

measure the level of danger and is closely related to the 

probability of actual failures. To learn this neural network, we 

collected data from several tracks by using the basic driving 

modules. Initially, we used all 19 track sensors as inputs for 

neural networks but it worked poorly. Instead of using all sensors, 

we selected the most informative eight sensors manually (speedX, 

Track[1], Track[17], Track[7]~Track[11]). It significantly 

improved the performance of the neural networks. The dataset 

includes the value of the eight sensors and the label (the corner is 

sharp or not). 

Algorithm 5: Acceleration and Brake with MLP 

// β: 3 

Procedure Get_Accel_Brake_S3 (){ 

T[1] = Track[1];     

T[2] = Track[17];  

Prob = MLP(speedX, Track[1], Track[17], Track[7]~Track[11]);  

If(T[1] > T[2]) { max = 1; min = 2;}  

Else {max = 2; min = 1;}  

 

If(Track[9]>150 meters) { 

   Target = MAXSPEED; // Straight Track  

} 

Else if (Track[9]<150 && Track[9]>70){ // car is in the SAZ 

Target = (β-Prob)ⅹTrack[9] ⅹ| T[max]-Track[9] | 

/| T[min]-Track[9] |;  

} 

Return 2/(1+exp(speedX-Target))-1  

} 

 

 

 

Figure 7. The architecture of neural network and the use of 

MLP to predict the degree of danger (sigmoid function is used) 



3.5 The Integration of the Modules 
Because we use multiple strategies to handle failures, we need an 

integrated algorithm to determine the final acceleration/brake 

value. If there is no dangerous factor, the output from the basic 

module is returned. If there are several (more than one) outputs, 

the one with small value is used. For example, the car is in the 

speed adaptation zone and also near the failure position 

memorized. In this case, the target speed is determined as one 

with low value. The car has to reduce the speed to the lowest 

target speed if the car satisfies multiple failure conditions.  

Algorithm 6: Integrated Algorithm 

S1=MAX_SPEED; 

S2=MAX_SPEED; 

S3=MAX_SPEED;  

If(Car is near the Failure Position Memorized){ 

      S1 = Get_Accel_Brake_S1(); // Memorized Position  

} 

If (Car is in SAZ){ 

      S2 = Get_Accel_Brake_S2(); // SAZ 

      S3 = Get_Accel_Brake_S3(); // MLP  

} 

If(Car is not near the Failure Position && Car is not in SAZ){ 

     S = Get_Accel_Brake_Basic();  

     Return S;  

} 

Else {  Return Min(S1, S2, S3); } 

4. EXPERIMENTAL RESULTS 
For neural network training, we used backpropagation algorithm 

[11]. The training samples were collected from six tracks (Street1, 

Ruddskogen, Wheel1, Wheel2, E-track3, and Cgtrack2). We 

collected the data by running the car with the basic driving 

module for two or three laps for each track. It was sampled per 

0.02 seconds. The inputs to the neural networks were normalized 

between 0 and 1. To set the parameters of the backpropagation 

algorithm, we tested several learning rate parameters (Figure 10). 

Based on this test, we set the rate as 0.1. The training accuracy of 

the neural network is 95% with full datasets. In the SAZ, we 

defined the area between 70 meters and 150 meters before corner. 

This was determined from exhaustive tests of several 

combinations of the two values (start and end position of the area) 

(Figure 8).  

Table 3. The number of samples collected from the tracks 

Track Name # of Samples 

Street1 13521 

Ruddskogen 9433 

Wheel1 5983 

Wheel2 7454 

E-Track3 13188 

Cgtrack2 8833 

Total 58412 

 

(a) Lap Time 

 

(b) Damage 

Figure 8. The exhaustive test of the combination of start and 

end position of speed adaptation zone. (Long distance means 

the start position and the short distance means the end 

position) (Long distance must be larger than the short 

distance) (The arrow indicates where minimizes the time and 

damages (between 70 meters and 150 meters).  

 

We evaluated the lap time and the damage for several 

combination of the strategies used. We used three different tracks 

(Street1, CGTrack2, and Aalborg) (Figure 9). We repeated the 

experiments for five times(each time runs 5laps). It showed that 

the combination of the all strategies (B+S1+S2+S3) shows 

minimum lap time with zero damage. S2 is quite useful to 

minimize the damage of driving but slow down the lap time of the 

car. The introduction of S3 improves the lap time by increaing the 

prediction ability of the danger level of corners. 

B : Basic driving module 

S1 : Memorizing failures 

S2 : Speed adaptation zone  

S3 : Predicting the degree of danger using MLP  



 

Street1 

 

CGTRACK2 

 

Aalborg 

Figure 9. Tracks used to evaluate the strategies used 

 

Table 4. The summary of experimental results 

Map repeat 

Basic B+S1 B+S1+S2 B+S1+S2+S3 

lap 

time 
damage 

lap 

time 
damage 

lap 

time 
damage 

lap 

time 
damage 

Street1 1 480.54 2600 464.1 765 477.9 0 461.79 0 

 
2 480.54 2600 464.1 765 477.9 0 461.79 0 

 
3 480.54 2600 464.1 765 477.9 0 461.79 0 

 
4 480.54 2600 464.1 765 477.9 0 461.79 0 

 
5 480.54 2600 464.1 765 477.9 0 461.79 0 

CGTrack2 1 310.75 16 310.75 16 338.36 0 320.91 0 

 
2 310.75 16 310.75 16 338.36 0 320.91 0 

 
3 326.38 20 310.75 16 338.36 0 320.91 0 

 
4 310.75 16 310.75 16 338.36 0 320.91 0 

 
5 310.75 16 310.75 16 338.36 0 320.91 0 

Aalborg 1 446.11 2582 446.11 2582 471.51 0 451.65 0 

 
2 446.11 2582 446.11 2582 471.51 0 451.65 0 

 
3 459.34 3275 446.11 2582 471.51 0 451.65 0 

 
4 446.11 2582 446.11 2582 471.51 0 451.65 0 

 
5 446.11 2582 446.11 2582 471.51 0 451.65 0 

 

 
Figure 10. The accuracy of MLP by changing the learning rate of BP (0.1, 0.5 and 0.9) for three tracks. 



5. CONCLUSION AND FUTURE WORKS 
In this paper, we proposed a method to handle with the failure 

in the simulated car racing. Our controller has basic driving 

module and several strategies to deal with failures: 1) 

Memorizing the position where the car is stuck 2) Reduce speed 

in the speed adaptation zone before corner 3) Predict the level of 

danger of corners using multi-layer neural networks. It shows 

that the combination of basic driving module and the three 

strategies performs well by minimizing damages and lap times.  

It is interesting to makes maps of the track while driving cars 

like robotics algorithm called SLAM (Simultaneously 

Localization and Mapping) [12]. There are several parameters in 

our algorithm, we need to optimize them using machine learning 

approaches. Currently there are several parameters hand-tuned. 
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