
Opponent Modeling with Incremental Active

Learning: A Case Study of Iterative Prisoner’s

Dilemma

Hyunsoo Park

Dept. of Computer Science and Engineering

Sejong University

Seoul, South Korea

hspark@sju.ac.kr

Kyung-Joong Kim*

Dept. of Computer Science and Engineering

Sejong University

Seoul, South Korea

kimkj@sejong.ac.kr

Abstract—What’s the most important sources of information

to guess the internal strategy of your opponents? The best way is

to play games against them and infer their strategy from the

experience. For novice players, they should play a lot of games to

identify other’s strategy successfully. However, experienced

players usually play a small number of games to model other’s

strategy. The secret is that they intelligently design their plays to

maximize the chance of discovering the most uncertain parts.

Similarly, in this paper, we propose to use an incremental active

learning for modeling opponents. It refines the other’s models

incrementally by cycling “estimation (inference)” and

“exploration (playing games)” steps. Experimental results with

Iterative Prisoner’s Dilemma games show that the proposed

method can reveal other’s strategy successfully.

Keywords—iterative prisoner’s dilemma; estimation-

exploration algorithm; theory of mind; game theory

I. INTRODUCTION

For some games, opponent modeling is one of the most
important parts of playing. For example, in the game of poker,
there is a bluffer who pretends to have a good hand with bad
cards. Players should recognize the opponent’s style (bluffer or
not) as early as possible to make reasonable decision. In real-
time strategy games, experienced players use their resource to
identify other players’ strategy in the early stage of games from
scouting. Recently, there has been interest in mimicking
human’s scouting in the real-time strategy games [1].

The modeling of an opponent can be formulated as a kind
of “reverse engineering” problem. The opponent has a
“hidden” model to make decisions and the player can observe
only outcomes (plays) of the model. To infer the “hidden”
model, the player can interact with the opponent by playing
games but the number of interaction should be limited. For
example, you are not allowed to play a huge number of games
against your opponent to recognize his strategy. It is necessary
to play intelligently extracting the most useful sequence of
plays from the opponent in a limited number of interactions.

Kim et al. propose to use “reverse engineering” algorithm
to infer the internal control mechanism of robotic agents [2].
Initially, the Observer robot records the behaviors (trajectory)
of the Actor robot from a random starting position. With the
first trajectory, the “estimation” algorithm searches for multiple
candidate models on the Actor’s internal model. Although

there are good initial guess on the target, there is a chance to
improve the quality of models by using additional information
(trajectories) of the Actor. In “exploration” stage, the Observer
calculates the disagreement of the predictions of the multiple
candidates on all conditions (starting points). The algorithm
attempts to manipulate the Actor at the point where the
predictions disagree with the maximum. In this way, the
Observer adds a new trajectory into his memory and runs again
the “estimation” algorithm to improve the quality of models
incrementally.

In this work, we formulate the opponent modeling in games
as a kind of “reverse engineering” problems and apply the
estimation-exploration algorithm (EEA) to reveal the internal
“hidden” model with limited number of interactions. Unlike the
robotic scenarios, in the games, it is more difficult to
manipulate the others to show some desirable behaviors (a
sequence of actions). The opponents can play with some noise
(random change of his/her behavior) to hide their strategy.
Furthermore, the some experienced players can control the
games to minimize the exposure of his strategy in the early
stage of the games.

Iterative prisoner’s dilemma (IPD) games have been widely
used to model real-world conflicts with a simplified decisions
(defect or cooperate) [3]. In the game, two players select one of
the two choices and get payoff from their decisions. In short
term, you can get high score by defecting others but your
opponent should react with “defect” minimizing your gain.
Also, there are a lot of different strategies which make difficult
to design a golden rule that maximizes gain against most of the
opponents. In this work, we propose to use the EEA
(incremental active learning) to reveal the strategy of IPD
games. It shows that the EEA can model the opponent in the
existence of the noisy actions.

II. APPLYING ESTIMATION-EXPLORATION ALGORITHM TO

IPD GAMES

A. Proposed Method

In IPD, it is assumed that the player’s memory length is

2N. Each memory unit (length = 2) stores a pair of decisions

of two players. They are one of (C, C), (C, D), (D, C) and (D,

D) (C: cooperate, D: defect). In other words, the player

exploits his memory on the decision of two players in the past

This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIP) (2010-06589, 2010-

0018950).

*Corresponding author

978-1-4673-5311-3/13/$31.00 ©2013 IEEE

N games to determine the next action. The player’s strategy

can be represented as a decision table returns the decision (‘C’

or ‘D’) to the current memory configuration (length = 2N).

The decision table has 2
2N

 rows (all possible memory

configuration) and 2N+1 columns. The last column in the

table stores the action of the player with the specific memory

configuration in the row.

Fig. 1. Overview of proposed method

The decision table of the opponent is defined as DTtarget.

Initially, the player has no game logs with the opponent. At

first, the player selects a sequence of his actions randomly and

plays games with the opponent. The action logs are used in the

genetic algorithm (GA) to calculate fitness values (the

similarity between the action logs and the predictions by the

candidate decision table). Each individual in the population

represents a decision table (the number of parameters is 2
2N

).

Each parameter specifies the action (‘C’ or ‘D’) of the

opponent to the corresponding memory configuration.

Because we run the GA multiple times (with different random

seed), it outputs multiple decision tables DT1, DT2, …, DTP

(the best one from each GA run).

In the “exploration stage,” the algorithm calculates the

disagreement of the estimation of the multiple decision tables.

For each row, it calculates the agreement of the last column

(the action of opponent) among the candidates. It selects the

most disagreed (necessary to be probed (or tested) in the next

games) memory configuration. In the next game, the player

intentionally plays with the actions specified in the most

disagreed configuration. After the games, the player stores the

new log into the game logs, the GA runs again multiple times

with the logs (old logs and the new one). The algorithm

repeats the cycle (estimation-exploration).

Although the decision tables are a good representation for

the IPD strategy, the number of parameters is exponentially

increasing with the memory length. Also, it requires huge

memory space to store them. In addition to the decision table

models, we also train a multi-layer neural network which

emulates the decision tables with the game logs.

B. Experimental Results

Table 1 summarizes the parameters used in the experiments.
In the experiments, we use the EEA (with the active sampling
mechanism), ERA (Estimation-Random Algorithm, it is similar
to the EEA but the sampling is done randomly). In real games,
the opponent could play in different actions with his decision

table to hide his strategy. To simulate this behavior, we add
10% random flipping of actions.

 Opponent A : Cooperate when the opponent cooperates and
vice versa (also known as “Tit-for-tat”)

 Opponent B: Opponent A except that it defects after two
cooperation.

 Opponent C: Opponent A with 10% random actions

TABLE I. PARAMETERS USED IN EXPERIMENTS

Parameters Value

The number of models in the estimation stage (P) 3

The number of games played for each game log 32

Memory length 4

Population size of the GA 20

Maximum number of generations in the GA 50

Fig. 2 shows that the increase of accuracy over the EEA
cycles. It shows that the EEA works well with the small
number of interactions to infer the other’s models. In case of
10% random actions, the EEA outperforms the ERA.

(a) Opponent A

(b) Opponent B

(c) Opponent C

Fig. 2. Experimental results (x-axis: # of samples used in the estimation
stage, y-axis: mean accuracy of predictions of 10 experiments)

III. CONCLUSIONS

In this paper, we propose to use the incremental active
learning to infer the strategy of IPD games. It shows that the
EEA can predict the opponent’s actions with only a small
number of interactions. Introducing random actions to the
opponent significantly reduces the accuracy but the EEA are
more robust than the passive sampling algorithm.

REFERENCES

[1] H.-S. Park, H.-C. Cho, K.-Y. Lee, and K.-J. Kim, “Prediction of early
stage opponent strategy for StarCraft AI using scouting and machine
learning,” Workshop at SIGGRAPH ASIA (Computer Gaming Track),
pp. 7-12, 2012.

[2] K.-J. Kim, K.-Y. Eo, Y.-R. Jung, S.-O. Kim, and S.-B. Cho,
“Evolutionary conditions for the emergence of robotic theory of mind
with multiple goals,” IEEE Workshop on Robotic Intelligence in
Informationally Structured Space (RiiSS), pp. 48-54, 2013

[3] R. M. Axelrod, The Evolution of Cooperation, NY, Basic Books, 2006.

