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Abstract—What’s the most important sources of information 

to guess the internal strategy of your opponents? The best way is 

to play games against them and infer their strategy from the 

experience. For novice players, they should play a lot of games to 

identify other’s strategy successfully. However, experienced 

players usually play a small number of games to model other’s 

strategy. The secret is that they intelligently design their plays to 

maximize the chance of discovering the most uncertain parts. 

Similarly, in this paper, we propose to use an incremental active 

learning for modeling opponents. It refines the other’s models 

incrementally by cycling “estimation (inference)” and 

“exploration (playing games)” steps. Experimental results with 

Iterative Prisoner’s Dilemma games show that the proposed 

method can reveal other’s strategy successfully.  

Keywords—iterative prisoner’s dilemma; estimation-

exploration algorithm; theory of mind; game theory 

I. INTRODUCTION 

For some games, opponent modeling is one of the most 
important parts of playing. For example, in the game of poker, 
there is a bluffer who pretends to have a good hand with bad 
cards. Players should recognize the opponent’s style (bluffer or 
not) as early as possible to make reasonable decision. In real-
time strategy games, experienced players use their resource to 
identify other players’ strategy in the early stage of games from 
scouting. Recently, there has been interest in mimicking 
human’s scouting in the real-time strategy games [1].  

The modeling of an opponent can be formulated as a kind 
of “reverse engineering” problem. The opponent has a 
“hidden” model to make decisions and the player can observe 
only outcomes (plays) of the model. To infer the “hidden” 
model, the player can interact with the opponent by playing 
games but the number of interaction should be limited. For 
example, you are not allowed to play a huge number of games 
against your opponent to recognize his strategy. It is necessary 
to play intelligently extracting the most useful sequence of 
plays from the opponent in a limited number of interactions.  

Kim et al. propose to use “reverse engineering” algorithm 
to infer the internal control mechanism of robotic agents [2]. 
Initially, the Observer robot records the behaviors (trajectory) 
of the Actor robot from a random starting position. With the 
first trajectory, the “estimation” algorithm searches for multiple 
candidate models on the Actor’s internal model. Although 

there are good initial guess on the target, there is a chance to 
improve the quality of models by using additional information 
(trajectories) of the Actor. In “exploration” stage, the Observer 
calculates the disagreement of the predictions of the multiple 
candidates on all conditions (starting points). The algorithm 
attempts to manipulate the Actor at the point where the 
predictions disagree with the maximum. In this way, the 
Observer adds a new trajectory into his memory and runs again 
the “estimation” algorithm to improve the quality of models 
incrementally.  

In this work, we formulate the opponent modeling in games 
as a kind of “reverse engineering” problems and apply the 
estimation-exploration algorithm (EEA) to reveal the internal 
“hidden” model with limited number of interactions. Unlike the 
robotic scenarios, in the games, it is more difficult to 
manipulate the others to show some desirable behaviors (a 
sequence of actions). The opponents can play with some noise 
(random change of his/her behavior) to hide their strategy. 
Furthermore, the some experienced players can control the 
games to minimize the exposure of his strategy in the early 
stage of the games.  

Iterative prisoner’s dilemma (IPD) games have been widely 
used to model real-world conflicts with a simplified decisions 
(defect or cooperate) [3]. In the game, two players select one of 
the two choices and get payoff from their decisions. In short 
term, you can get high score by defecting others but your 
opponent should react with “defect” minimizing your gain. 
Also, there are a lot of different strategies which make difficult 
to design a golden rule that maximizes gain against most of the 
opponents. In this work, we propose to use the EEA 
(incremental active learning) to reveal the strategy of IPD 
games. It shows that the EEA can model the opponent in the 
existence of the noisy actions.  

II. APPLYING ESTIMATION-EXPLORATION ALGORITHM TO 

IPD GAMES 

A. Proposed Method 

In IPD, it is assumed that the player’s memory length is 

2N. Each memory unit (length = 2) stores a pair of decisions 

of two players. They are one of (C, C), (C, D), (D, C) and (D, 

D) (C: cooperate, D: defect). In other words, the player 

exploits his memory on the decision of two players in the past 
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N games to determine the next action. The player’s strategy 

can be represented as a decision table returns the decision (‘C’ 

or ‘D’) to the current memory configuration (length = 2N). 

The decision table has 2
2N

 rows (all possible memory 

configuration) and 2N+1 columns. The last column in the 

table stores the action of the player with the specific memory 

configuration in the row.  

  
Fig. 1. Overview of proposed method 

The decision table of the opponent is defined as DTtarget. 

Initially, the player has no game logs with the opponent. At 

first, the player selects a sequence of his actions randomly and 

plays games with the opponent. The action logs are used in the 

genetic algorithm (GA) to calculate fitness values (the 

similarity between the action logs and the predictions by the 

candidate decision table). Each individual in the population 

represents a decision table (the number of parameters is 2
2N

). 

Each parameter specifies the action (‘C’ or ‘D’) of the 

opponent to the corresponding memory configuration. 

Because we run the GA multiple times (with different random 

seed), it outputs multiple decision tables DT1, DT2, …, DTP 

(the best one from each GA run).  

In the “exploration stage,” the algorithm calculates the 

disagreement of the estimation of the multiple decision tables. 

For each row, it calculates the agreement of the last column 

(the action of opponent) among the candidates. It selects the 

most disagreed (necessary to be probed (or tested) in the next 

games) memory configuration. In the next game, the player 

intentionally plays with the actions specified in the most 

disagreed configuration. After the games, the player stores the 

new log into the game logs, the GA runs again multiple times 

with the logs (old logs and the new one). The algorithm 

repeats the cycle (estimation-exploration).  

Although the decision tables are a good representation for 

the IPD strategy, the number of parameters is exponentially 

increasing with the memory length. Also, it requires huge 

memory space to store them. In addition to the decision table 

models, we also train a multi-layer neural network which 

emulates the decision tables with the game logs.  

B. Experimental Results 

Table 1 summarizes the parameters used in the experiments. 
In the experiments, we use the EEA (with the active sampling 
mechanism), ERA (Estimation-Random Algorithm, it is similar 
to the EEA but the sampling is done randomly). In real games, 
the opponent could play in different actions with his decision 

table to hide his strategy. To simulate this behavior, we add 
10% random flipping of actions.  

 Opponent A : Cooperate when the opponent cooperates and 
vice versa (also known as “Tit-for-tat”) 

 Opponent B: Opponent A except that it defects after two 
cooperation.  

 Opponent C: Opponent A with 10% random actions  

TABLE I.  PARAMETERS USED IN EXPERIMENTS 

Parameters Value 

The number of models in the estimation stage (P) 3 

The number of games played for each game log 32 

Memory length 4 

Population size of the GA  20 

Maximum number of generations in the GA 50 

 

Fig. 2 shows that the increase of accuracy over the EEA 
cycles. It shows that the EEA works well with the small 
number of interactions to infer the other’s models. In case of 
10% random actions, the EEA outperforms the ERA.  

 
(a)   Opponent A 

 
(b)   Opponent B 

 
(c)   Opponent C 

Fig. 2. Experimental results (x-axis: # of samples used in the estimation 
stage, y-axis: mean accuracy of predictions of 10 experiments) 

III. CONCLUSIONS 

In this paper, we propose to use the incremental active 
learning to infer the strategy of IPD games. It shows that the 
EEA can predict the opponent’s actions with only a small 
number of interactions. Introducing random actions to the 
opponent significantly reduces the accuracy but the EEA are 
more robust than the passive sampling algorithm.  
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