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Abstract— Recently, there is a growing interest in applying 

deep learning in game AI domain. Among them, deep 

reinforcement learning is the most famous in game AI 

communities. In this paper, we propose to use redundant outputs 

in order to adapt training progress in deep reinforcement 

learning. We compare our method with general ε-greedy in 

ViZDoom platform. Since AI player should select an action only 

based on visual input in the platform, it is suitable for deep 

reinforcement learning research. Experimental results show that 

our proposed method archives competitive performance to ε-

greedy without parameter tuning. 
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I. INTRODUCTION 

In recent years, the deep learning has become famous in 
various domains. Especially, it shows better performance than 
conventional methods in handling high dimensional data such 
as visual inputs. Deep reinforcement learning (Deep Q-
Learning; DQL) is the one of representative works in the game 
AI domain. Basically, it is a combination of deep learning with 
Q-learning and can learn an AI game player handles raw pixel 
or text inputs.  

Fig. 1. ViZDoom platform (basic example) 

 

Visual Doom (ViZDoom) is the one of AI competition 
platforms opened recently [1], also OpenAI Gym [2] includes 
it. It is based on the Doom, the famous classic first person 
shooter game (Fig. 1). AI players on this platform can only 
obtain visual input and some variables (eg. Health and armor). 
The platform does not  provide more detailed structured data 
like map data for navigation or forward models for simulations. 
It opens new challenge for traditional game AI methods. 

The DQL is one of promising solutions to make an AI for 
ViZDoom. The DQL is one of representative deep learning 
works in game AI domain. Mnih et al. introduce DQL in 2013 
[3]. They show DQN can learn how to play various Atari 2600 
games. After success of DQL, there have been a lot of works 
about deep learning in game AI. However, many DQL studies 
focused on 2-D games unlike ViZDoom. Since ViZDoom 
provides only first-person view, the player cannot see whole 
environment (obtains limited information). Furthermore, view 
angle change makes different visual inputs for the same object.  

Exploration and exploitation dilemma is one of important 
problems in reinforcement learning. It’s dilemma between 
trying new situation in order to get information about 
environment (exploration) or pursues rewards based on the 
current knowledge (exploitation). If the player tries the 
exploration too much or pursues rewards too much, it is 
possible to reduce total rewards. Because of this reason, the 
mechanism of how to deal with this dilemma is important. 

In many DQL studies, they use ε-greedy algorithm to 
handle this dilemma. Simply, the ε-greedy selects a random 
action with ε probability (ε belongs to [0, 1]). Otherwise, it 
selects the action with the highest rewards based on the current 
knowledge. Generally, ε value is initially set as high value and 
gradually reduced at each learning iteration. The ε-greedy is 
easy to use and shows good performance. But it is not a kind of 
adaptive learning process and there are some parameters 
should be determined properly. 

In this paper, we propose an algorithm to balance 
exploration and exploitation. Generally, the number of output 
nodes in neural network of DQL is the same to the actions that 
a player can perform. The output of each node is interpreted as 
an expected Q-value of each action. In our proposed method, 
we add multiple pair of nodes into the output layer. For 
instance, if there are two possible actions, then total number of 
output nodes is 2×10=20. We use these redundant outputs to 
measure uncertainty of each action’s Q-value in the current 
state. Using this information, proposed method could estimate 
the progress of learning and use it to balance exploration and 
exploitation. Osband et al. also use redundant output to boost 
training efficiency [4]. However, our proposed methods are 
simpler than the previous work. 
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In order to compare performance of our proposed method 
and ε-greedy, we use ViZDoom’s basic example environments. 
In the experimental result, our proposed method gets similar 
total rewards eventually without parameter tuning. 

II. PROPOSED METHOD 

Fig. 2. shows an architecture of neural networks in our 
experiments. There are six layers including input and output 
layers. In the input layer, we provide input data as gray scale 
60×40 image at each game tick. Next, there are three 
convolution layer with ReLU activation function. First 
convolution layer has 32 filters (size: 8×8), second convolution 
layer has 64 filters (size: 4×4), third convolution layer has 64 
filters (3×3). Also, each convolution layer is with max pooling 
layer (2×2). The next layer is a fully connected layer with 
ReLU activation function (512 nodes). The final layer is an 
output layer. In ε-greedy, the number of nodes is equal to the 
number of actions. But, our proposed method needs 10 times 
more output nodes than normal. We choose 10 empirically 
considering diversity of outputs and computation time. Our 
proposed method needs more computation time then ε-greedy, 
but it’s not significant. 

Fig. 2. Neural network architecture 
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The ViZDoom’s basic example environment allows three 
buttons (Left (L), Right (R) and Shoot (S)). We define 7 
possible actions (press L, R, S, L+S, R+S, L+R and nothing). If 
press two keys in same time, like move (L and R) and S, AI 
perform two behavior at same time (fire pistol while moving), 
except press L+R. In this case, AI do nothing. Therefore, the 
number of output nodes is set as 7×10=70. It has 10 redundant 
sets, and each set has 7 outputs. 

For the balance of exploration and exploitation, this method 
chooses one set randomly and selects an action with the highest 
Q-value from the set. As a result, the AI chooses from random 
actions (exploration) when there are disagreement on the 
highest Q-value action among the redundant sets. If Q-value 
across the sets are similar each other, it chooses the best action 
(exploitation). We update neural net’s weights of the action 
over sets at once. In a testing mode, our method selects an 
action from the voting of all sets. 

III. EXPERIMENTS 

We use ViZDoom’s basic example for our experiments 
(Fig. 1). When starts a new game, there is a small room and a 
target on random position of opposite side of the room. The 
goal of this environment is to hit the target as soon as possible. 

AI player gets 100 points when hits the target, -6 points when 
misses the target, and -1 point each time nothing happened. 

Our proposed method and ε-greedy use the same neural 
network architecture except the number of output nodes. We 
use mean squared error as an objective function and RMSProp 
as an optimizer (learning rate: 10-5). We use replay memory 
size 10,000 and batch size 32, The e value of ε-greedy starts 
with 1.0 and gradually reduces during 20,000 training 
iterations to 0.1 after then it holds 0.1. We test model at each 
5,000 iterations. In this time, we run 100 episodes with test 
mode action selection method.  

Fig. 3. Total rewards in training and testing 

 

Fig. 3. shows experimental results. It shows total rewards 
change in training and testing (average of five experiments). 
According to experimental results, the proposed method gets 
total rewards similar to ε-greedy’s one after enough training. 
Usually, final trained models of both models perform optimal 
behavior (move to proper position and shoot accurately). 
Although it takes more iterations, there are only one parameter 
(the size of redundancy in output nodes), but ε-greedy needs 
more (eg. ε’s upper/lower bound, and update) parameters. 

IV. CONCLUSION AND FUTURE WORKS 

In this paper, we propose using redundant output to explore 
game environments in DQL. The most general method that can 
handle exploration and exploitation dilemma in reinforcement 
learning is the ε-greedy. Our proposed method can archive 
similar results with enough training iterations. It can adapt 
training progress with redundant output nodes. 
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