
Deep Q-Learning using Redundant Outputs

in Visual Doom

Hyunsoo Park, and Kyung-Joong Kim*

Department of Computer Science and Engineering

Sejong University

Seoul, South Korea

rex8312@gmail.com, kimkj@sejong.ac.kr

Abstract— Recently, there is a growing interest in applying

deep learning in game AI domain. Among them, deep

reinforcement learning is the most famous in game AI

communities. In this paper, we propose to use redundant outputs

in order to adapt training progress in deep reinforcement

learning. We compare our method with general ε-greedy in

ViZDoom platform. Since AI player should select an action only

based on visual input in the platform, it is suitable for deep

reinforcement learning research. Experimental results show that

our proposed method archives competitive performance to ε-

greedy without parameter tuning.

Keywords—deep reinforcement learning; reinforcement

learning; vizdoom; first-person perspective game;

I. INTRODUCTION

In recent years, the deep learning has become famous in
various domains. Especially, it shows better performance than
conventional methods in handling high dimensional data such
as visual inputs. Deep reinforcement learning (Deep Q-
Learning; DQL) is the one of representative works in the game
AI domain. Basically, it is a combination of deep learning with
Q-learning and can learn an AI game player handles raw pixel
or text inputs.

Fig. 1. ViZDoom platform (basic example)

Visual Doom (ViZDoom) is the one of AI competition
platforms opened recently [1], also OpenAI Gym [2] includes
it. It is based on the Doom, the famous classic first person
shooter game (Fig. 1). AI players on this platform can only
obtain visual input and some variables (eg. Health and armor).
The platform does not provide more detailed structured data
like map data for navigation or forward models for simulations.
It opens new challenge for traditional game AI methods.

The DQL is one of promising solutions to make an AI for
ViZDoom. The DQL is one of representative deep learning
works in game AI domain. Mnih et al. introduce DQL in 2013
[3]. They show DQN can learn how to play various Atari 2600
games. After success of DQL, there have been a lot of works
about deep learning in game AI. However, many DQL studies
focused on 2-D games unlike ViZDoom. Since ViZDoom
provides only first-person view, the player cannot see whole
environment (obtains limited information). Furthermore, view
angle change makes different visual inputs for the same object.

Exploration and exploitation dilemma is one of important
problems in reinforcement learning. It’s dilemma between
trying new situation in order to get information about
environment (exploration) or pursues rewards based on the
current knowledge (exploitation). If the player tries the
exploration too much or pursues rewards too much, it is
possible to reduce total rewards. Because of this reason, the
mechanism of how to deal with this dilemma is important.

In many DQL studies, they use ε-greedy algorithm to
handle this dilemma. Simply, the ε-greedy selects a random
action with ε probability (ε belongs to [0, 1]). Otherwise, it
selects the action with the highest rewards based on the current
knowledge. Generally, ε value is initially set as high value and
gradually reduced at each learning iteration. The ε-greedy is
easy to use and shows good performance. But it is not a kind of
adaptive learning process and there are some parameters
should be determined properly.

In this paper, we propose an algorithm to balance
exploration and exploitation. Generally, the number of output
nodes in neural network of DQL is the same to the actions that
a player can perform. The output of each node is interpreted as
an expected Q-value of each action. In our proposed method,
we add multiple pair of nodes into the output layer. For
instance, if there are two possible actions, then total number of
output nodes is 2×10=20. We use these redundant outputs to
measure uncertainty of each action’s Q-value in the current
state. Using this information, proposed method could estimate
the progress of learning and use it to balance exploration and
exploitation. Osband et al. also use redundant output to boost
training efficiency [4]. However, our proposed methods are
simpler than the previous work.

This work was supported by the National Research Foundation of Korea
(NRF) grant (2013 R1A2A2A01016589), Ministry of Culture, Sports and

Tourism (MCST) and Korea Creative Content Agency (KOCCA) in the

Culture Technology (CT) Research & Development Program 2016.

*: corresponding author

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 484

In order to compare performance of our proposed method
and ε-greedy, we use ViZDoom’s basic example environments.
In the experimental result, our proposed method gets similar
total rewards eventually without parameter tuning.

II. PROPOSED METHOD

Fig. 2. shows an architecture of neural networks in our
experiments. There are six layers including input and output
layers. In the input layer, we provide input data as gray scale
60×40 image at each game tick. Next, there are three
convolution layer with ReLU activation function. First
convolution layer has 32 filters (size: 8×8), second convolution
layer has 64 filters (size: 4×4), third convolution layer has 64
filters (3×3). Also, each convolution layer is with max pooling
layer (2×2). The next layer is a fully connected layer with
ReLU activation function (512 nodes). The final layer is an
output layer. In ε-greedy, the number of nodes is equal to the
number of actions. But, our proposed method needs 10 times
more output nodes than normal. We choose 10 empirically
considering diversity of outputs and computation time. Our
proposed method needs more computation time then ε-greedy,
but it’s not significant.

Fig. 2. Neural network architecture

Input

60 × 40
Grayscale

Conv2d

of filter:
32

Filter size:
8 × 8

Activation:
ReLU

MaxPooling:
2 × 2

Conv2d

of filter:
64

Filter size:
3 × 3

Activation:
ReLU

MaxPooling:
2 × 2

Fully
connected

of node
512

Activation:
ReLU

Output

7 × 10

Conv2d

of filter:
64

Filter size:
4 × 4

Activation:
ReLU

MaxPooling:
2 × 2

The ViZDoom’s basic example environment allows three
buttons (Left (L), Right (R) and Shoot (S)). We define 7
possible actions (press L, R, S, L+S, R+S, L+R and nothing). If
press two keys in same time, like move (L and R) and S, AI
perform two behavior at same time (fire pistol while moving),
except press L+R. In this case, AI do nothing. Therefore, the
number of output nodes is set as 7×10=70. It has 10 redundant
sets, and each set has 7 outputs.

For the balance of exploration and exploitation, this method
chooses one set randomly and selects an action with the highest
Q-value from the set. As a result, the AI chooses from random
actions (exploration) when there are disagreement on the
highest Q-value action among the redundant sets. If Q-value
across the sets are similar each other, it chooses the best action
(exploitation). We update neural net’s weights of the action
over sets at once. In a testing mode, our method selects an
action from the voting of all sets.

III. EXPERIMENTS

We use ViZDoom’s basic example for our experiments
(Fig. 1). When starts a new game, there is a small room and a
target on random position of opposite side of the room. The
goal of this environment is to hit the target as soon as possible.

AI player gets 100 points when hits the target, -6 points when
misses the target, and -1 point each time nothing happened.

Our proposed method and ε-greedy use the same neural
network architecture except the number of output nodes. We
use mean squared error as an objective function and RMSProp
as an optimizer (learning rate: 10-5). We use replay memory
size 10,000 and batch size 32, The e value of ε-greedy starts
with 1.0 and gradually reduces during 20,000 training
iterations to 0.1 after then it holds 0.1. We test model at each
5,000 iterations. In this time, we run 100 episodes with test
mode action selection method.

Fig. 3. Total rewards in training and testing

Fig. 3. shows experimental results. It shows total rewards
change in training and testing (average of five experiments).
According to experimental results, the proposed method gets
total rewards similar to ε-greedy’s one after enough training.
Usually, final trained models of both models perform optimal
behavior (move to proper position and shoot accurately).
Although it takes more iterations, there are only one parameter
(the size of redundancy in output nodes), but ε-greedy needs
more (eg. ε’s upper/lower bound, and update) parameters.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we propose using redundant output to explore
game environments in DQL. The most general method that can
handle exploration and exploitation dilemma in reinforcement
learning is the ε-greedy. Our proposed method can archive
similar results with enough training iterations. It can adapt
training progress with redundant output nodes.

REFERENCES

[1] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski,
“ViZDoom: A Doom-based AI Research Platform for Visual
Reinforcement Learning,” arXiv:1605.02097 [cs], May 2016.

[2] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J.
Tang, and W. Zaremba, “OpenAI Gym,” arXiv:1606.01540 [cs], Jun.
2016.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra, and M. Riedmiller, “Playing Atari with Deep Reinforcement
Learning,” arXiv:1312.5602 [cs], Dec. 2013.

[4] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep Exploration
via Bootstrapped DQN,” arXiv:1602.04621 [cs, stat], Feb. 2016.

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 485

