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Abstract—Recently, there has been much interest in real-

time game AI but it has suffered from short response time with 

uncountable game complexity. If a forward model is available, 

the Monte-Carlo Tree Search (MCTS) can also be used for the 

real-time video games. For example, MCTS has dominated the 

winning entries in the Fighting game AI competitions. However, 

because of the response time limitation, their MCTS simulates 

only five randomly selected actions on the opponent side. 

Although it works, it’s likely to produce outcomes ignoring 

opponent’s playing patterns. In this paper, we propose to 

incorporate the opponent action prediction based on action 

table into the MCTS. The AI updates the table during game 

matches against the opponent. Experimental results show that 

the approach can help to improve performance against the top 

three AIs from 2016 IEEE CIG Fighting game AI competitions.  
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I.  INTRODUCTION  

In the fighting game AI competition (Fig. 1), there have 
been a lot of different approaches to build an entry. For 
example, rule-based system, and Monte Carlo Tree Search 
(MCTS) [1][2][3], reinforcement learning [4], and visual-
based AI. It’s based on full-round robin style matches 
against all other entries. Each game includes three one-
minute rounds and it is crucial to attack your opponent 
effectively within the fixed time because this game does not 
limit Health Point (HP). There are three characters (LUD, 
Garnet, and Zen) with about 40 actions on the ground and 
air. The game’s limitation of response time is 16.6ms 
(1/60sec).  

Although the MCTS solution was successful to the 
fighting game AI competition, there is still enough room to 
improve performance because it assumes opponent’s 
random behaviors when it simulates the tree. For example, 
AIs using MCTS in the IEEE CIG 2016 Fighting Game AI 
Competition were all in the top rankings of AI competition 
last year. Nevertheless, existing MCTS based AIs had 
limitations. It is because they cannot simulate all behaviors 
due to insufficient time. In fighting game, each character has 
around 40 actions but they randomly sampled some actions. 
For example, only five random actions were simulated in the 
game tree [1][2]. This simple heuristic would have affected 
the performance of the AI, and so, we propose to improve it 

by predicting the opponent player’s actions and expanding 
the tree based on the prediction instead of the random choice.  

 

Fig.1 Screenshot of fighting game 

II. MCTS WITH OPPONENT PREDICTION 

From the observation of successful AI players in the 
competition, we have found that AIs are repeating certain 
behaviors rather than showing diverse behavioral patterns 
given situations. A research says that it is better to use the 
information of previous instances to guide the search of the 
tree than to search the random tree [5] and the expert 
knowledge in MCTS [6] Also, there is study that has shown 
that opponent modeling is useful in tree search for games [7]. 
In this work, an action table is introduced to represent the 
opponent’s playing patterns. 

The patterns of the existing AI players’ behaviors 
usually depend on the distance to the opponent. For example, 
if the distance is large, the projectile is fired. Thus, we 
divided the game states into three groups for efficient action 

prediction of these repetitive behaviors (x<50, 50≤x<85, 

and 85≤x<100 (x=Distance)). If the distance between my AI 

and the opponent AI is higher than 100, it works as the same 
way with the existing basic MCTS. Also, the action table is 
separated when the opponent is in the air and ground. In 
total, the action table stores five actions for 6 conditions (3 
distance ranges and 2 states(air/ground)) for each opponent.   

 



In the Fighting game, an API can get the opponent's 
action. We used that API to record the number of 
opponents’ actions per round. Action Table (AT) uses the 
collected data to select the top five behaviors executed 
frequently for each Distance Partition (DP). The reason for 
choosing only 5 actions is that most of the AI's actions are 
focused on small number of actions. This means that the top 
five behaviors are the most meaningful behaviors in each 
DP. For example, Fig. 2 shows an example of action table 
data that about 70% of the actions were from top five 
actions.  

 

Fig 2. The ratio of execution between top five actions and other actions 
(against 2015 top three AIs).  

 Step 1) Default action table generation: Since, At the 
start in the first round, there is no information about the 
opponent AI. In order to solve  the cold start problem, 
we ran 100 games between a random AI and each of the 
top three AIs of the 2015 AI Competition. The default 
AT was constructed based on the behaviors of the top 
three AIs from 2015. Because 2015 winning AIs were 
built with rule-based hard coding considering the 
distance, it is assumed that their action patterns can be a 
good starting point. Table 1 show that the frequent 
actions on the ground are different with the distance to 
the opponent. However, they’re identical in the air.  

TABLE 1. DEFAULT ACTION TABLE 

 x<50 50≤x<85 85≤x<100 

G
ro

u
n

d
 

Kick Kick Kick 

Crouch-Kick Crouch-Kick 
Crouch-Strong-

Kick 

Projectile Projectile Projectile 

Forward Jump-Fist Strong-Projectile Forward-Jump-Fist 

Sliding-Kick Sliding Kick Crouch-Kick 

 

A
ir

 

Jump-Kick Jump-Kick Jump-Kick 

Jump-Lowkick Jump-Lowkick Jump-Lowkick 

Jump-Projectile Jump-Projectile Jump-Projectile 

Jump-HighKick Jump-HighKick Jump-HighKick 

Jump-Strong-Kick Jump-Strong-Kick Jump-Strong-Kick 

 

 Step 2) Playing games with AT: In the game, the AI 
uses the action table to run the simulation of the MCTS. 
Instead of the five random actions, the five actions on 
the table were selected in the simulation.  

 Step 3) Update action table after each round: The table 
is updated based on the action frequency of opponent. 
After each round, it selects the most frequently executed 
actions of opponent for the replacement. If the frequent 
action is not in the current action table, it’s replaced with 
the lowest ranked action in the table. If the frequent 

action is already in the table, the action ranks one step up. 
It changes only maximum two actions in the table to 
minimize forgetting effect. Similar to the opponent 
action table update, the AI player’s action table is also 
updated based on the action frequency in the round.  

For example, Fig. 3 shows the change of action table for 
the Thunder01 (winner of 2016 competition). Initially, the 
action table has five actions: “Kick”, “Crouch-Kick”, 
“Projectile”, “Strong-Projectile”, and “Sliding Kick” (see 
Table 1). After the first round, the most frequent actions of 
the opponent was “Kick” and “Forward-Jump-Fist.” 
Because the “Kick” is already in the table and is 1

st
 ranked, 

there is no change. On the other hand, the Forward-Jump-
Fist is not in the default table, it replaces the lowest ranked 
action i.e. “Sliding Kick”. After the 2

nd
 round, the most 

frequent opponent actions were “Crouch-Uppercut” and 
“Strong-Projectile.” Because the strong-projectile was 
already in the table, the rank of the action was one step up 
(e.g. 4

th
  3

rd
). The “Crouch-Uppercut” replaces with the 

Forward-Jump-Fist. Finally, “Sliding-Kick” and “Crouch-
Uppercut” was chosen as the most frequent actions after 3

rd
 

round.  

 Fig 3. When matched with Thunder01 (winner of 2016's competition), the 

AT changes over rounds (DP is 50≤x<85).  

III. EXPERIMENTAL RESULTS 

Basic MCTS AI means the sample controller released 
from the Fighting Game Platform v2.0 by organizers. We 
compared our method with the top three AI (Thunder01, 
Ranezi, and Basic MCTS AI) from 2016 competitions. The 
AI developed by proposed method played 200 games (600 
rounds) against each opponent. The performance was 
evaluated by the gap of the HP. .  

 
Fig 4. The sum of HP gap between 2016 Top 3 AI  and newly developed 
MCTS based  AI 

The newly developed AI showed 40% win rate against 
the winner Thunder01 (2016's Competition 1st) and it 
showed good results against the rest of AIs (2016's 
competition 2nd and 3rd). Especially, it showed high 
performance with 86% wins against the basic MCTS (Fig. 4 
and 5). For the 2nd ranked opponent,  the win rate was 76%.  

 

 

 



 Fig.5. Boxplot of HP gap between 2016 Top 3 AI  and newly developed 
MCTS based  AI. 

IV. CONCLUSION  

In this study, we propose to maintain action table of the 
opponent during the game play and run the MCTS based on 
the table. Although it’s not stronger than the 2016 winner, it 
shows that the inclusion of the table can improve the 
performance of the basic MCTS and comparable to the 2

nd
 

and 3
rd

 ranked winners in 2016 competitions. It 
demonstrates the benefit of the opponent prediction 
approach for MCTS.  

ACKNOWLEDGMENT 

This research was supported by Basic Science Research 
Program through the National Research Foundation of 
Korea(NRF) funded by the Ministry of Science, ICT & 
Future Planning(2017R1A2B4002164). 

REFERENCES 

[1] M. Ishihara, T. Miyazaki, C.Y. Chu, T. Harada and R. Thawonmas, 
“Applying and improving Monte-Carlo Tree Search in a fighting 
game AI,” ACM Int. Conf. Advances in Computer Entertainment 
Technology, 2016. 

[2] S. Yoshida, M. Ishihara, T. Miyazaki, Y. Nakagawa, T. Harada and  
R. Thawonmas, “Application of Monte-Carlo Tree Search in a 
fighting game AI,” IEEE Global Conf. Consumer Electronics, 2016. 

[3] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, 
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, 
“A survey of monte carlo tree search methods,” Computational 
Intelligence and AI in Games, IEEE Transactions on, vol. 4, no. 1, pp. 
1–43, 2012. 

[4] H. Park and K. J. Kim, “Learning to Play Fighting Game using 
Massive Play Data,” IEEE Conf. Computational Intelligence and 
Games, 2014.  

[5] J. Denzinger and K. Randall, “Enhancing tree-based (stochastic) 
search by learning from previous experience,” Proc. IJCAI-03 WS on 
Stochastic Search Algorithms, Acapulco, pp. 37-42, 2003. 

[6] C. Holmgard, A. Liapis, J. Togelius, and G. N. Yannakakis, “Monte-
Carlo Tree Search for Persona Based Player Modeling,” in Eleventh 
Artificial Intelligence and Interactive Digital Entertainment 
Conference, 2015. 

[7] H. J. van den Herik, H. H. L. M. Donkers, and P. H. M. Spronck, 
“Opponent modelling and commercial games,” in Proceedings of 
IEEE 2005 Symposium on Computational Intelligence and Games 
CIG’05, G. Kendall and S. Lucas, Eds., 2005, pp. 15–25. 

 


