
Opponent Modeling based on Action Table

for MCTS-based Fighting Game AI

Man-Je Kim, and Kyung-Joong Kim

Department of Computer Science and Engineering

Sejong University, Seoul, South Korea

jaykim0104@gmail.com, kimkj@sejong.ac.kr

Abstract—Recently, there has been much interest in real-

time game AI but it has suffered from short response time with

uncountable game complexity. If a forward model is available,

the Monte-Carlo Tree Search (MCTS) can also be used for the

real-time video games. For example, MCTS has dominated the

winning entries in the Fighting game AI competitions. However,

because of the response time limitation, their MCTS simulates

only five randomly selected actions on the opponent side.

Although it works, it’s likely to produce outcomes ignoring

opponent’s playing patterns. In this paper, we propose to

incorporate the opponent action prediction based on action

table into the MCTS. The AI updates the table during game

matches against the opponent. Experimental results show that

the approach can help to improve performance against the top

three AIs from 2016 IEEE CIG Fighting game AI competitions.

Keywords—Fighting Game; MCTS; Opponent Prediction

I. INTRODUCTION

In the fighting game AI competition (Fig. 1), there have
been a lot of different approaches to build an entry. For
example, rule-based system, and Monte Carlo Tree Search
(MCTS) [1][2][3], reinforcement learning [4], and visual-
based AI. It’s based on full-round robin style matches
against all other entries. Each game includes three one-
minute rounds and it is crucial to attack your opponent
effectively within the fixed time because this game does not
limit Health Point (HP). There are three characters (LUD,
Garnet, and Zen) with about 40 actions on the ground and
air. The game’s limitation of response time is 16.6ms
(1/60sec).

Although the MCTS solution was successful to the
fighting game AI competition, there is still enough room to
improve performance because it assumes opponent’s
random behaviors when it simulates the tree. For example,
AIs using MCTS in the IEEE CIG 2016 Fighting Game AI
Competition were all in the top rankings of AI competition
last year. Nevertheless, existing MCTS based AIs had
limitations. It is because they cannot simulate all behaviors
due to insufficient time. In fighting game, each character has
around 40 actions but they randomly sampled some actions.
For example, only five random actions were simulated in the
game tree [1][2]. This simple heuristic would have affected
the performance of the AI, and so, we propose to improve it

by predicting the opponent player’s actions and expanding
the tree based on the prediction instead of the random choice.

Fig.1 Screenshot of fighting game

II. MCTS WITH OPPONENT PREDICTION

From the observation of successful AI players in the
competition, we have found that AIs are repeating certain
behaviors rather than showing diverse behavioral patterns
given situations. A research says that it is better to use the
information of previous instances to guide the search of the
tree than to search the random tree [5] and the expert
knowledge in MCTS [6] Also, there is study that has shown
that opponent modeling is useful in tree search for games [7].
In this work, an action table is introduced to represent the
opponent’s playing patterns.

The patterns of the existing AI players’ behaviors
usually depend on the distance to the opponent. For example,
if the distance is large, the projectile is fired. Thus, we
divided the game states into three groups for efficient action

prediction of these repetitive behaviors (x<50, 50≤x<85,

and 85≤x<100 (x=Distance)). If the distance between my AI

and the opponent AI is higher than 100, it works as the same
way with the existing basic MCTS. Also, the action table is
separated when the opponent is in the air and ground. In
total, the action table stores five actions for 6 conditions (3
distance ranges and 2 states(air/ground)) for each opponent.

In the Fighting game, an API can get the opponent's
action. We used that API to record the number of
opponents’ actions per round. Action Table (AT) uses the
collected data to select the top five behaviors executed
frequently for each Distance Partition (DP). The reason for
choosing only 5 actions is that most of the AI's actions are
focused on small number of actions. This means that the top
five behaviors are the most meaningful behaviors in each
DP. For example, Fig. 2 shows an example of action table
data that about 70% of the actions were from top five
actions.

Fig 2. The ratio of execution between top five actions and other actions
(against 2015 top three AIs).

 Step 1) Default action table generation: Since, At the
start in the first round, there is no information about the
opponent AI. In order to solve the cold start problem,
we ran 100 games between a random AI and each of the
top three AIs of the 2015 AI Competition. The default
AT was constructed based on the behaviors of the top
three AIs from 2015. Because 2015 winning AIs were
built with rule-based hard coding considering the
distance, it is assumed that their action patterns can be a
good starting point. Table 1 show that the frequent
actions on the ground are different with the distance to
the opponent. However, they’re identical in the air.

TABLE 1. DEFAULT ACTION TABLE

 x<50 50≤x<85 85≤x<100

G
ro

u
n

d

Kick Kick Kick

Crouch-Kick Crouch-Kick
Crouch-Strong-

Kick

Projectile Projectile Projectile

Forward Jump-Fist Strong-Projectile Forward-Jump-Fist

Sliding-Kick Sliding Kick Crouch-Kick

A
ir

Jump-Kick Jump-Kick Jump-Kick

Jump-Lowkick Jump-Lowkick Jump-Lowkick

Jump-Projectile Jump-Projectile Jump-Projectile

Jump-HighKick Jump-HighKick Jump-HighKick

Jump-Strong-Kick Jump-Strong-Kick Jump-Strong-Kick

 Step 2) Playing games with AT: In the game, the AI
uses the action table to run the simulation of the MCTS.
Instead of the five random actions, the five actions on
the table were selected in the simulation.

 Step 3) Update action table after each round: The table
is updated based on the action frequency of opponent.
After each round, it selects the most frequently executed
actions of opponent for the replacement. If the frequent
action is not in the current action table, it’s replaced with
the lowest ranked action in the table. If the frequent

action is already in the table, the action ranks one step up.
It changes only maximum two actions in the table to
minimize forgetting effect. Similar to the opponent
action table update, the AI player’s action table is also
updated based on the action frequency in the round.

For example, Fig. 3 shows the change of action table for
the Thunder01 (winner of 2016 competition). Initially, the
action table has five actions: “Kick”, “Crouch-Kick”,
“Projectile”, “Strong-Projectile”, and “Sliding Kick” (see
Table 1). After the first round, the most frequent actions of
the opponent was “Kick” and “Forward-Jump-Fist.”
Because the “Kick” is already in the table and is 1

st
 ranked,

there is no change. On the other hand, the Forward-Jump-
Fist is not in the default table, it replaces the lowest ranked
action i.e. “Sliding Kick”. After the 2

nd
 round, the most

frequent opponent actions were “Crouch-Uppercut” and
“Strong-Projectile.” Because the strong-projectile was
already in the table, the rank of the action was one step up
(e.g. 4

th
  3

rd
). The “Crouch-Uppercut” replaces with the

Forward-Jump-Fist. Finally, “Sliding-Kick” and “Crouch-
Uppercut” was chosen as the most frequent actions after 3

rd

round.

 Fig 3. When matched with Thunder01 (winner of 2016's competition), the

AT changes over rounds (DP is 50≤x<85).

III. EXPERIMENTAL RESULTS

Basic MCTS AI means the sample controller released
from the Fighting Game Platform v2.0 by organizers. We
compared our method with the top three AI (Thunder01,
Ranezi, and Basic MCTS AI) from 2016 competitions. The
AI developed by proposed method played 200 games (600
rounds) against each opponent. The performance was
evaluated by the gap of the HP. .

Fig 4. The sum of HP gap between 2016 Top 3 AI and newly developed
MCTS based AI

The newly developed AI showed 40% win rate against
the winner Thunder01 (2016's Competition 1st) and it
showed good results against the rest of AIs (2016's
competition 2nd and 3rd). Especially, it showed high
performance with 86% wins against the basic MCTS (Fig. 4
and 5). For the 2nd ranked opponent, the win rate was 76%.

 Fig.5. Boxplot of HP gap between 2016 Top 3 AI and newly developed
MCTS based AI.

IV. CONCLUSION

In this study, we propose to maintain action table of the
opponent during the game play and run the MCTS based on
the table. Although it’s not stronger than the 2016 winner, it
shows that the inclusion of the table can improve the
performance of the basic MCTS and comparable to the 2

nd

and 3
rd

 ranked winners in 2016 competitions. It
demonstrates the benefit of the opponent prediction
approach for MCTS.

ACKNOWLEDGMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Science, ICT &
Future Planning(2017R1A2B4002164).

REFERENCES

[1] M. Ishihara, T. Miyazaki, C.Y. Chu, T. Harada and R. Thawonmas,
“Applying and improving Monte-Carlo Tree Search in a fighting
game AI,” ACM Int. Conf. Advances in Computer Entertainment
Technology, 2016.

[2] S. Yoshida, M. Ishihara, T. Miyazaki, Y. Nakagawa, T. Harada and
R. Thawonmas, “Application of Monte-Carlo Tree Search in a
fighting game AI,” IEEE Global Conf. Consumer Electronics, 2016.

[3] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” Computational
Intelligence and AI in Games, IEEE Transactions on, vol. 4, no. 1, pp.
1–43, 2012.

[4] H. Park and K. J. Kim, “Learning to Play Fighting Game using
Massive Play Data,” IEEE Conf. Computational Intelligence and
Games, 2014.

[5] J. Denzinger and K. Randall, “Enhancing tree-based (stochastic)
search by learning from previous experience,” Proc. IJCAI-03 WS on
Stochastic Search Algorithms, Acapulco, pp. 37-42, 2003.

[6] C. Holmgard, A. Liapis, J. Togelius, and G. N. Yannakakis, “Monte-
Carlo Tree Search for Persona Based Player Modeling,” in Eleventh
Artificial Intelligence and Interactive Digital Entertainment
Conference, 2015.

[7] H. J. van den Herik, H. H. L. M. Donkers, and P. H. M. Spronck,
“Opponent modelling and commercial games,” in Proceedings of
IEEE 2005 Symposium on Computational Intelligence and Games
CIG’05, G. Kendall and S. Lucas, Eds., 2005, pp. 15–25.

