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Abstract To model complex systems for agent behaviors,

genetic algorithms have been used to evolve neural networks

which are based on cellular automata. These neural networks

are popular tools in the artificial life community. This hybrid

architecture aims at achieving synergy between the cellu-

lar automata and the powerful generalization capabilities of

the neural networks. Evolutionary algorithms provide useful

ways to learn about the structure of these neural networks, but

the use of direct evolution in more difficult and complicated

problems often fails to achieve satisfactory solutions. A more

promising solution is to employ incremental evolution that

reuses the solutions of easy tasks and applies these solutions

to more difficult ones. Moreover, because the human brain

can be divided into many behaviors with specific functional-

ities and because human beings can integrate these behaviors

for high-level tasks, a biologically-inspired behavior selec-

tion mechanism is useful when combining these incremen-

tally evolving basic behaviors. In this paper, an architecture

based on cellular automata, neural networks, evolutionary

algorithms, incremental evolution and a behavior selection

mechanism is proposed to generate high-level behaviors for

mobile robots. Experimental results with several simulations

show the possibilities of the proposed architecture.
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1 Introduction

The study of evolving cellular automata with emergent prop-

erties is one of the most interesting research areas in the

artificial life community [1]. Cellular automata are said to

be emergent because they are based on basic cell interac-

tion instead of on the regulation of global behavior. If we

know the rules for specific global behaviors, we can gener-

ate very complex patterns easily. In the field of artificial life,

life is regarded as a series of patterns that emerge from the

local interaction of cells. However, in many cases, there are a

large number of these candidate rules for specific behaviors.

It is impossible to enumerate all of these exhaustively. One

solution to this problem is genetic learning of the cellular

automata rules.

Crutchfield has evolved cellular automata for basic com-

putational functions such as density classification and syn-

chronization [2]. His work shows the possibility of using

cellular automata for computations in scientific applications,

but it is questionable that these results can be confidently

used in engineering applications. If the cellular automata are

able to represent a general computational model (like a neural

network), the power of the computation can be increased and

there might be some practical applications. De Garis’s work

is an example of how to represent neural networks in cellu-

lar automata [3]. He uses a special type of hardware called

CAM-Brain to update states very quickly and generates a

brain-like system with millions of different behaviors. His

research group developed ways to use the machine for multi-

ple timers, pattern detectors, and motion detectors, but these

were tested on very simple tasks and did not show significant

practicality [4].

To solve the engineering problems of designing agent be-

haviors in hardware and software, a systematic integration

with several competitive techniques is needed. An extension
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of the basic hybrid model of cellular automata and neural

networks can lead to a computational architecture for high-

level tasks. If the given search space is extremely large, evo-

lutionary algorithms often fail to find satisfactory solutions

in a reasonable time. In real-world problems, the compu-

tational cost of fitness evaluation in evolution is very high.

This can lead to heavy losses of time and computational re-

sources. Evolving only one kind of behavior for the perfor-

mance of a complex task is inefficient and sometimes even

impossible.

An incremental approach to evolution is more promis-

ing than a direct one. This system has more opportunities

to become adaptable because it evolves through many lev-

els of problems. In our proposed architecture, human beings

decompose high-level tasks into multiple small tasks and

each behavior is learned incrementally. In many cases, the

sequencing of these basic behaviors cannot be defined ex-

plicitly. This sequencing requires a flexible behavior selec-

tion mechanism with which humans can deal. In the proposed

architecture, a behavior selection network [5] that continu-

ously changes the activation level of behaviors through the

selection procedure is adopted for flexibility. Figure 1 shows

the proposed method composed of cellular automata, neural

networks, incremental evolution and behavior selection. In

this paper, the proposed architecture was tested in relation to

robot control.

This paper is organized as follows. In Section 2, related

works are briefly described. Section 3 describes the basic

components of the proposed architecture. In Section 4, results

that were gathered in experiments with a mobile robot are

presented.

2 Related works

Computational structures for agent behaviors are divided

into four categories: reactive control, deliberative control,

behavior-based control and hybrid control [6]. Mali reviewed

the foundations, limitations, and achievements of a num-

ber of autonomous agent architectures including reactive

control [7]. In the deliberative control category, construct-

ing action plans for an agent operating in an environment

containing uncertain and dynamic events is a difficult task,

and requires a plan representation that contains both the rich

Fig. 1 An overview of the proposed method (k: the number of sensors, r: the number of goals, and m: the number of behaviors) (CA: Cellular

automata, NN: Neural networks)
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vocabulary of loops, conditionals, sensory requests and con-

currency necessary to represent flexible agent control pro-

grams [8]. In the behavior-based control category, high-level

behavior emerges from the interaction of primitive behav-

iors that are reactive to sensory inputs. Primitive behaviors

with different goals may produce conflicts, and the formu-

lation of effective mechanisms for coordination of these be-

haviors’ activities is a major control issue. Numerous be-

havior selection mechanisms have been proposed over the

last decade [9]. Because both of these (reactive and plan-

based) approaches have their specific pros and cons, the

hybrid agent deliberative-reactive architecture has been de-

veloped with the positive properties of each of the earlier

methods.

In an imitation of the cognitive architecture of the human

brain, a new type of agent architecture was proposed and a

robot soccer team underlying this framework was established

[10]. To model complex systems, software agents need to

combine cognitive abilities and reactive abilities. Guessoum

proposed an operational hybrid agent model which mixes

well-known paradigms (objects, actors, production rules and

ATN) and real-time performances [11]. There are some works

related to these kinds of hybrid agent architectures which use

the combination of reactive control and deliberative planning

[12–14].

The evolutionary approach is the attempt to develop agent

behaviors through a self-organized process based on artifi-

cial evolution [15]. Lee proposed decomposing the overall

task to fit in with the behavior-based control architecture,

and then evolving the separate behaviors and arbitrators with

an evolutionary approach [16]. To develop the basic reac-

tive behaviors of the robot, the fuzzy classifier system was

adopted for evolutionary learning [17]. Floreano addressed

the issue of incremental evolution in two different experi-

ments from the perspectives of changing environments and

robot morphologies [18].

3 Basic components of the proposed architecture

3.1 Neural networks based on cellular automata

Cellular Automata (CA) are populations of interacting cells.

These cells are each computers (automatons) and can rep-

resent many kinds of complex behaviors by building appro-

priate rules [19]. Each cell has a state value and this value

changes at each step. Change of state is based on the pre-

defined rules and is also based on the current state of the

cell and the conditions of the neighborhood cells. CA can

model ecological systems or the behaviors of insects, and

can be also used for image processing and the construction

of neural networks.

A CA-based neural network structure composed of a

blank, a neuron, an axon and a dendrite is grown inside a 2-D

or 3-D CA-space by state, neighborhoods and rules encoded

by the chromosome. If the cell state is blank, it represents an

empty space and cannot transmit any signals. The neuron cell

collects signals from the surrounding axon cells. The axon

cell sends signals received from the neurons to the neigh-

borhood cells. The dendrite cell collects signals from the

neighborhood cells and passes them to the connected neuron

in the end.

CA-based neural networks use evolutionary algorithms

to optimize neural structures—one chromosome is mapped

to one neural network. Therefore, with genetic algorithms

working on this chromosome, it is possible to evolve and

adapt the structure of the neural network for a specific task.

Figure 2 shows the evolution process of a CA-based neural

network.

Each chromosome leads to exactly one neural network.

Figure 3 shows this chromosome representation. The model

uses a distributing chromosome to encode its structure. This

chromosome is initially distributed throughout the CA-space,

so that every cell in the CA-space contains one chromosome

Generate initial population

Develop NNs based on CA from chromosome

Apply them to a problem

Evaluate fitness of each NN

Select good NNs in population

Manipulate them with genetic operators

Generate new population

Satisfied NN found ?
Yes

No

Stop

Fig. 2 Evolution process of a

CA-based neural network
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Fig. 3 Information encoded in the choromosome

instruction, i.e, one growth instruction, so that the chromo-

some belongs to the network as a whole. To represent the

whole structure of a neural network, a chromosome has the

same number of segments with the cells in the CA-space and

each segment has information from each cell. A segment can

change a blank cell to a neuron cell (NS bit), and decides the

direction in which to send the received signals to the neigh-

borhood cells (N, S, E, W, T and B bits). These signals can

be only set to the direction in which the bit corresponds to 1.

Each cell has the same form (logical representation) but has

different functions which are defined by the characteristics

of the cell components (the dendrite, the axon, the neuron

and the empty cell.)

Each cell is represented as 7 bits (NS, B, T, S, N, W, E). If

NS bit is 1, the cell is neuron. B (Bottom), T (Top), S (South),

N (North), W (West), and E (East) represent the direction of

growth signals. There are three different kinds of growth

signals and they are excitatory axon, inhibitory axon, and

dendrite growth signals. By the type of transmitted growth

signals, the type of cell is determined. Only one bit among B,

T, S, N, W, and E can be 1 and others are 0. The neighborhood

cell in the direction (bit is 1) will get excitatory axon growth

signal and the cell in the opposite direction will get inhibitory

axon growth signal. Cells in other directions will get dendrite

growth signals. If W bit is 1, a cell in the west direction is

excitatory axon, a cell in the east direction is inhibitory axon

and others are dendrite.

The growth phase organizes a neural structure and makes

the signal trails among the neurons. First, a chromosome is

randomly created and the states of all cells are initialized as

blank. At this point, some of the cells are specified as neurons

with some probability. A neuron cell sends axon and dendrite

growth signals in the direction decided by the chromosome.

An axon growth signal is sent in two directions (one is an

excitatory axon signal and the other is an inhibitory axon

signal), and a dendrite growth signal is sent in the remain-

ing directions. Next, the blank cell receives a growth signal

which changes to an axon or dendrite cell, according to the

type of growth signal. This sends the signals received from

the other cells in the direction that was determined by the

chromosome. Finally, by repeating this process, the neural

network is constructed. This means that the state of every

cell changes no longer. Figure 4 shows the growing process

in the 2-D CA-space.

The signaling phase transmits the signal from the input

to output cells continuously. Signals are transmitted with the

structure which was determined at the growth phase. First,

the input cells produce the signal. This signal is sent to the

faced axon cells which distribute it. Then, the neighborhood

dendrite cells of other neurons collect and send the signal to

the connected neurons. These neurons send the signal to the

axon cells. Finally, the dendrite cells of the output neuron

forward the signal to the output neurons. The output value

can be obtained from the output neurons. The position of the

input and output cells in the CA-space is decided in advance.

Figure 5 shows the process of signaling after the neuron, axon

and dendrite cells have been made.

3.2 The evolutionary algorithm

In general, a simple genetic algorithm generates a population

of individuals and evolves them by using genetic operators

such as selection, mutation, and crossover techniques [20].

We have used this genetic algorithm to search the optimal

neural network. At first, half of the individuals that have bet-

ter fitness value are selected to produce the new population.

The genetic algorithm generates a new population from the

fittest individuals. In the growth phase, the structure of the

neural network is determined by the chromosome. During

the signaling phase, fitness is evaluated by the output of the

neural network. Two individuals in the new population are

randomly selected and parts of them are exchanged by one-

point crossover. Mutation is used in the segment of the chro-

mosome.

However, when the problem is more difficult and the

search space is very large, there is a need for modification of

the basic evolutionary algorithm. The incremental approach

is useful for two reasons: (1) learned behaviors have adaptive

capabilities in a changing environment because they evolve

from a simple environment to a complex one; and (2) when a

solution cannot be found with direct evolution, incremental

evolution can be an alternative.

If we use the movement of a robot as an example, the envi-

ronments get more sophisticated when we compare straight

movements to left and right turning movements. After the

CA-based neural network module learns how to go straight,

the successful chromosomes are copied to the next popula-

tion. Then the robot evolves in the new environment to be

able to go straight and also turn right. By repeating this pro-

cess, the robot eventually evolves to the point of being able

to go straight and also turn left and right. Efficient evolution

is expected because of the reduced search space in each level

of the incremental evolution.

Springer



Appl Intell (2006) 25:253–268 257

Fig. 4 The growth phase

Fig. 5 The signaling phase

Incremental evolution is defined as follows. Evaluation

tasks {t1, t2, t3, . . . , tn} are derived by transforming a goal

task in incremental evolution, where n is the number of tasks

and tn is the goal task. In this set, ti is an easier task than ti+1

for 0 < i ≤ n. Thus, the population evolves for task ti and

task ti+1, and it also evolves for goal task, tn , at the end [22].

It is expected to produce complex and general behaviors. In

this process, the task becomes more difficult and the new

population can be created from the most successful individ-

uals using Cauchy distribution function [21] when the final

candidate for the task is found. Figure 6 shows a procedure

of incremental evolution for CA-based neural network.

3.3 The behavior selection mechanism

The behavior network is composed of nodes, environmen-

tal sensors, goals, and links. Each node has a set of pre-

conditions (Fig. 7). These pre-conditions are logical condi-

tions about the environment that are required to be true for the

node to be executable. The “add” list consists of conditions

about the environment that the node is likely to consider true.

The “delete” list consists of conditions that are likely to be

considered false. The final two components of the node are

the activation level and the code that gets run after the node is

executed. There are two types of links: internal links, which

are used to connect nodes to other nodes, and external links,

which are used to connect nodes to environmental sensors

and goals.

The role of each element of the behavior network is

as follows. Pre-conditions, post-conditions (“add” lists and

“delete” lists) and executable codes regulate the properties of
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Fig. 6 Incremental evolution

process of neural networks

based on CA

PRECONDITIONS

ADD LIST

DELETE LIST

ACTIVATION

EXECUTABLE

CODE

PREDECESSOR LINKS

SUCCESSOR LINKS

CONFLICTOR LINKS

OUTPUT

PREDECESSOR LINKS

SUCCESSOR LINKS

CONFLICTOR LINKS

INPUT

GOAL LINKS

ENVIRONMENT

Fig. 7 Node structure in a behavior network

the behavior. To be executable, each behavior must fulfill all

of the pre-conditions. For example, the “drinking water from

a lake” behavior is meaningful when the lake is near. Such

pre-conditions prevent the robot from executing the behav-

ior in inappropriate situations. Because behaviors compete

with each other to get the control of the robot, each behavior

must estimate the effects of the execution of other kinds of

behaviors. Environmental situations which exist after execu-

tion are defined as post-conditions and are used as a basis for

establishing relationships between the behaviors. Executable

codes define the specific control mechanisms of each behav-

ior. The activation value indicates the level of applicability

of the behavior for the current situation.

A node is executable if all its pre-conditions are true and

its activation is greater than the global threshold (θ ). If there

are executable behaviors, the behavior with the highest acti-

vation is chosen. If there is no executable behavior, the global

threshold is reduced by 10% and this process is repeated until

an executable behavior is found. Several global parameters

are used to tune the performance of the behavior selection

mechanism to a particular environment. The mean activation

value for each cycle (π ) is used for normalization. The ini-

tial value of the global threshold (θ ) is reduced by a given

amount (e.g., 10%) for each cycle if no node is executable.

A constant (φ) determines the weight of the environmental

sensor inputs, as well as the weight of the successor links,

and a constant (δ) determines the weights of the protected

goal inputs and the conflictor links. The different inputs to a

node are multiplied by the following weights (Fig. 8):� environmental sensors by φ� goals by γ� protected goals by δ� successor links by φ/γ� predecessor links by (γ /γ = 1)� conflictor links δ/γ
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SState Behavior

If (state=true) & (states ∈precondition of behavior) 

Then activation (behavior) += φ × activation (state)

Goal Behavior

If (goal=true) & (goal ∈ add list)
Then activation (behavior) += γ× activation (goal)

Behavior1 Behavior2 Behavior1 Behavior2

If predecessor (behavior1, behavior2) = true

Then activation (behavior2) += activation (behavior1)

predecessor successor

If successor link (behavior1, behavior2) = true
Then activation (behavior1) += (γ/φ) × activation (behavior2)

Fig. 8 Spreading activation

The weight can be adjusted based on the performance of

the behavior network. Because the weight φ is multiplied

to the value of environmental sensors, it can adjust the im-

portance of the environmental conditions. Adjusting γ can

control the effect of goals. Based on the ratio of φ/γ , the

relevance of internal links are determined. If φ is increased,

the behavior network is biased to the environmental sensors.

At the design stage, each behavior is represented as one

node and a list of the nodes are defined using domain knowl-

edge. Environmental sensors have abstract level states that

can be observed in environments, and goals also have ab-

stract level states that are related to the internal condition.

Connections among behaviors are defined based on the in-

formation from the “add” list, the “delete” list, and the pre-

condition. There are three types of internal connections—

predecessor links, successor links, and conflictor links. As

shown in Table 1, if an environmental sensor is in the pre-

condition of nodes, there is a connection between the state

and the node. If the execution of behavior is useful to achieve

goals, there is a connection between the node and the goals.

If the execution of behavior is not useful to a specific goal,

there is a conflict connection between them.

The goal of the behavior network specifies the internal sta-

tus of the robot. For humans and animals, body temperature,

blood pressure, desire (motivation), or emotion can be exam-

ples of internal status. Because each behavior has no specific

goal and is reactive to the environment, the long-term goal

of the robot needs to be defined in the behavior network. In

real robots, the battery level, speed of the wheel, emotional

status (if it is modeled), or high-level definition of tasks can

be described as goals of the network. In the model, there is

no hierarchy of goals and they are all regarded as being on

the same level. Many sub-goals are defined in the network

and they can be conflicting.

The environmental sensor has a binary value (0 or 1) and

the goals can have either binary or real values. The basic

philosophy of behavior networks is competition among be-

haviors to take control of the agent. The activation level is

also crucial to be executable. Each behavior propagates ac-

tivation to other behaviors because its pre-condition is false

and the state can be true by the execution of other behaviors

(the state is in the “add” list of the behaviors). Each behav-

ior can inhibit the execution of other behaviors by reducing

activation levels. The procedure used to select a node and

executed at each step is as follows and described in Figs. 8

and 9:

Table 1 Description of internal and external links

Internal links

Predecessor link If (proposition X is false) and (proposition X
is a precondition of node A) and (proposition

X is in the add list of node B), then there is an

active predecessor link from A to B.

Successor link If (proposition X is false) and (proposition X
is in the add list of node A) and (proposition

X is a precondition of node B) and (the node

A is executable), then there is an active

successor link from A to B.

Conflictor link If (proposition X is true) and (proposition X
is a precondition of node A) and (proposition

X is in the delete list of node B), then there is

an active conflictor link from A to B.

External links

From sensors of

the environment

If (proposition X about the environment is

true) and (proposition X is a precondition of

node A), then there is an active link from

the sensor of the proposition X to node A.

From goals If (goal Y has an activation greater than zero)

and (goal Y is in the add list of node A),

then there is an active link from the goal Y
to node A.

From protected

goals

If (goal Y has an activation greater than zero)

and (goal Y is in the delete list of node A),

then there is an active link from the goal Y to

node A.
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/* Select one action among candidates */ 
WHILE (1) { 
    initialization();                             // clear candidate list 
    spreading activation();                   // updates activation level 
                                         // 1st step: From environment sensors to behaviors 
                                         // 2nd step: From goals to behaviors 
                                         // 3rd step: Among behaviors  
    normalization();                              // normalize activation level of behaviors 
    FOR all behaviors { 
      IF (all preconditions are true  
            && activation (behavior) > threshold) { 
                candidate (behavior);         // register to candidate list 
      } 
    } 
    /* select one candidate behavior with the highest activation */ 
    IF (candidate () = NULL) {           // there is no candidate behavior in the list 
        threshold = 0.9 * threshold;     // decrease threshold 
    } 
    ELSE{
        select(); 
        break; 
    } 
}

Fig. 9 Pseudo code for the behavior selection mechanism

1. Calculate the excitation coming in from the environmental

sensors and goals.

2. Propagate the activation level along the predecessor, suc-

cessor, and conflictor links.

3. Normalize the node activations so that the average acti-

vation level becomes equal to the constant π .

4. Check to see if there are any executable nodes and if so,

choose and execute the one with the highest activation

level.

5. If there is no executable node, reduce the global threshold

(θ ) and return to step 1.

4 Experimental results

The proposed architecture can be applied to many practical

problems such as pattern recognition, mobile robots, and vir-

tual avatars. There are many intelligent models that address

the problem of controlling mobile robots, because this is not

an easy task. We have adopted the Khepera mobile robot be-

cause it has been frequently used [23]. This kind of robot has 8

light sensors and distance sensors with two wheels. Eight in-

frared proximity sensors were placed around the robot. These

sensors embedded an infrared emitter and a receiver, which

allowed us to make two measurements. The normal ambient

light measurement was made using only the receiver part of

the device, without emitting light. A new measurement was

made every 20 ms. During these 20 ms, the sensors were read

sequentially every 2.5 ms. Generally, the value ranges from

50 to 500 and the smaller the value, the brighter the location.

The distance sensors range from 0 to 1024 and the higher

the value, the closer the obstacle. In a previous work, Cho

developed a robot controller for avoiding obstacles which

used CA-based neural networks [24].

4.1 Evolving basic behaviors

In this paper, we list four basic behaviors which are defined

as follows:� Recharging Battery: If a robot arrives at a battery recharge

area, the battery is recharged. This behavior enables the

robot to operate for as long as possible.� Following Light: The robot goes to a stronger light. This

behavior can be used to make the robot go to the battery

recharge area, because the light source is located in that

area.� Avoiding Obstacles: If there are obstacles around the robot,

it avoids them without bumping against them.� Going Straight: If there is nothing around the robot, it goes

straight ahead. This behavior allows it to move continu-

ously without stopping.

These basic behaviors evolve incrementally. In our ex-

periments, we attempted to incrementally evolve a mobile

robot to avoid bumping against obstacles. Because the robot

behavior is composed of going straight and turning left and

right, the robot can be incrementally evolved to achieve those

behaviors step by step (Fig. 10). Fitness is evaluated based

on the velocity of the robot and the number of movements.

Fitness = 50 ×
(

1

S

S∑
i=0

Vi

)
S: The number of movements until stopping: Vi : The value

determined by the velocity in the ith step.
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Fig. 10 Experimental environments for incremental evolution

The parameters of the evolution are summarized in Table

2. After sorting the individuals by their fitness values, half

of them survive. The length of the chromosome is the multi-

plication of the number of the cells and 7 bits for each cell.

The 1-point crossover is used and this crossover point is ran-

domly selected from the number between 0 and the length of

the chromosome. Mutation occurs as follows. For each cell,

if the normalized random number is smaller than the prede-

fined mutation rate, 6 bits of segments (all segments except 1

bit for the determination of the neuron cell) are replaced with

the binary representation of the number randomly generated

between 0 and 63. For the cell, if the normalized random

number is smaller than the neuronal density (the proportion

of neurons in the cells), the 1 bit for the determination of the

neuron cell is set as 1.

Table 2 Parameters of evolution

The size of cellular automata space 5 × 5 × 5

Population size 100

The proportion of neurons in cellular automata space 5%

Crossover rate 0.3

Mutation rate 0.05

Threshold values of neuron −16, 15

Figure 11 shows the trajectories of successful robots in

each environment. The environments move gradually from

(a) to (f) and the behavior is incrementally improved step by

step.

Figure 12 shows the simulation environment for the pro-

posed architecture. The black fan-shaped area represents the

battery recharge area—the robot can recharge batteries only

in this area. The light source is also located here and this

is what guides the robot to the black area. In the beginning

stage, the battery level of the robot is predetermined. When

a robot executes one behavior, the battery level is decreased

by one. When the battery level reaches zero, the robot stops.

4.2 Structure of behavior network

Our environment can be represented by 5 different states.

These states are defined as follows:� “In the battery recharging area”: Check if the robot is in

the battery recharging area.� “Obstacles are near”: Check if the maximum value of the

distance sensors is larger than 700.� “Near battery recharge area”: Check if the distance from

the robot to the light source is less than 800.� “In shade area”: Check if the minimum value of the light

sensors is larger than 400.� “Nothing around the robot”: Check if the maximum value

of the distance sensors is less than 700.

Because the robot’s battery decreases whenever the robot

moves, the robot needs to maintain a high battery level to

operate for longer time periods. We set two goals: “battery

is not zero” and “battery is not below half”:� “Battery is not zero”:

c = m − n

m

Fig. 11 Trajectories of successful robots in each environment with incremental evolution
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Fig. 12 Simulation environment (simple environment)

where c is the value of “battery is not zero,” m is the max-

imum level of the battery, and n is the current level of the

battery.� “Battery is not below half”: Check if the battery level is

below the halfway level.

The five states are binary-values and the two goals are

continuous values. The behavior network model is composed

of four nodes, five states, two goals and their connections.

Figure 13 shows the behavior network, where each circle

represents the basic behavior and each rectangle represents

the sensor or goal. Arcs represent the relationship among the

components of the behavior selection mechanism.

Each node has pre-conditions and “add” lists. The node

must satisfy all the pre-conditions in order to be executed.

Table 3 describes the pre-conditions and “add” lists of the

nodes, and Table 4 describes the relationships between ba-

sic behaviors. Each node has one or two pre-conditions. The

relationships among the nodes are decided as one of the suc-

cessor links or the predecessor links. We empirically set the

values of π , θ , γ , φ, and δ in the behavior network as follows:

π = 4.5, θ = 3.0, γ = 0.8, φ = 1.2, and δ = 1.0.

4.3 Analysis of results

The initial battery level was set at 1500: this means that the

robot could only move 1500 times without having to recharge

the battery again. In other words, the maximum number of

slaoGsedoNtnemnorivnE

Battery is not zero

Battery is not below the half

In battery recharge area

In shade area

Obstacles are near

Near battery recharge area

Nothing around the robot

Recharging
battery

Following
light

Avoiding
Obstacles

Going
straight

Fig. 13 The structure of the behavior network. Solid lines denote goal-behavior connections or predecessor connections, and dashed lines denote

environment-behavior connections or successor connections.
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Table 3 Pre-conditions and

“add lists of nodes
Preconditions

Recharging Battery In battery recharge area

Following Light In shade area, Near battery recharge area

Avoiding Obstacle Obstacles are near

Going Straight Nothing around the robot

Add lists

Recharging Battery Battery is not zero, Battery is not below the half

Following Light In battery recharge area

Avoiding Obstacle Nothing around the robot

Going Straight Obstacles are near, In battery recharge area,

Near battery recharge area

Table 4 Relationships between

the nodes
Predecessor link Successor link

Recharging Battery → Following Light Following Light→ Recharging Battery

Recharging Battery → Going Straight Going Straight → Following Light

Following Light → Going Straight Going Straight → Recharging Battery

Going Straight → Avoiding Obstacles Going Straight → Avoiding Obstacles

Avoiding Obstacles → Going Straight Avoiding Obstacles → Going Straight

execution of basic behaviors is 1500. To operate for a longer

time period, the robot had to go to the battery recharging

area. In the experimental environment, there were obsta-

cles to hinder the robot’s navigation and attempts at battery

recharging.

In the experiment, the robot moved a total of 9329 steps.

This required many instances of autonomous battery recharg-

ing. Figure 14 shows the robot’s trajectory in simple and

chaotic environments which were composed of irregular par-

ticle obstacles. In the simple environment, the robot seemed

to navigate without needing to recharge its battery until the

level became too low. When the battery level did get too low,

the robot’s navigation was guided by the light source in the

battery recharging area. (This procedure is not defined explic-

itly in the behavior network but the model can work only with

an implicit definition of the goals and relationships among

the behaviors. This can make designing high-level behaviors

easier.)

In the chaotic environment, the robot behaved in the same

manner as in the simple environment. It navigated until the

battery level became too low, and then it chose to follow the

light source for battery recharging. This behavior generation

procedure can be easily illustrated as in Fig. 15. To achieve

its goals, the robot combined two or more behaviors and

generated new behavioral patterns. For example, to reach the

battery recharging area, the robot selected the “avoiding ob-

stacles” and “following light” behaviors in turn. This pattern

was not designed but it emerged. By selecting two behaviors

in turn, the robot was able to go to the battery recharging area

without bumping against obstacles.

The same experiments are repeated by changing the initial

starting points. Figure 16 shows four experimental results

Fig. 14 The robot’s trajectory

in simple and chaotic

environments. By recharging its

battery autonomously several

times, the robot can navigate the

area as long as possible even

though obstacles hinder the

robot from approaching the

battery recharging area
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Fig. 15 Action selection of the robot (1 = Recharging Battery, 2 =
Following Light, 3 = Avoiding Obstacles, and 4 = Going Straight) (A:

Low battery level, B: Turning point to approach the battery recharg-

ing area, C: Inside the battery recharging area, and D: Navigation after

recharging the battery). Between areas B and C, the robot selects the

“avoiding obstacles” and “following light” behaviors in turn to achieve

higher-level behaviors such as “going to the battery recharging area

without bumping against obstacles.” At the C point, the robot selects

the battery recharging behavior autonomously

Fig. 16 Trajectories of the

robot from different starting

points show the robustness of

the proposed method. (Triangles

indicate the starting points.)

which were obtained by using different starting positions.

In the simulation environment, the robot’s position is rep-

resented as a vector of two real-values which range from 0

to 1000. From any starting points, the behavior patterns are

similar.

Figure 17(a) shows that the robot selects the “following

light” behavior before approaching the battery recharging

area. Figure 17(b) shows that the robot selects the “avoid-

ing obstacles” behavior before reaching the battery recharg-

ing area. Our experimental environment is similar to that in

Floreano’s work [25] except that their enviornment presented

no obstacles which blocked the way to the battery recharging

area. In the work, only the simple “following light behavior”

was evolved. We have introduced some obstacles to make
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Sensors Nodes Goals

Battery is not zero

Battery is not below the half

Near battery recharge area

Nothing around the robot

Recharging
battery

Following
light

Avoiding

obstacles

Going
straight

(a) 

Battery is not zero

Battery is not below the half

Obstacles are near

Near battery recharge area

Recharging
battery

Following
light

Avoiding

obstacles

Going

straight
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(b) 

Fig. 17 Internal status of the

behavior network model. (Only

activated links and sensors are

marked.) (a) When the battery

level = 500, the “following

light” behavior is selected. (b)

When the battery level = 487,

the “avoiding obstacles”

behavior is selected though the

battery level is low because

there are obstacles

the problem more diffiult than it was in Floreano’s previous

work.

To show the usefulness of the behavior selection mecha-

nism, we have attempted to use IF-THEN rules for combining

the basic behaviors [26]. The rules designed are as follows:

IF (“Battery Recharging” area)

Execute “Battery Recharge” behavior

ELSE
IF (Battery level <0.66×(Maximum level of battery)) AND

(Minimum value of light sensors ≤ 450)

IF (Maximum value of distance sensors ≤ 200)

Execute “Following Light” behavior

ELSE Execute “Avoiding Obstacles” behavior

ELSE IF (Maximum value of distance sensors≤250)

Execute “Going Straight” behavior

ELSE Execute “Avoiding Obstacles” behavior

The rule-based integration shows a weakness when the

robot has to adapt to changing environments. Figure 18(a)

and (b) show the experimental results in the previous envi-

ronment and (c) and (d) show the results in the environment

that includes some obstacles. This shows that the rule-based

integration is not adaptive to situations that change slightly.
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Fig. 18 Trajectory comparison

of (a) and (c) rule-based

integration and (b) and (d) the

proposed architecture in the

original environment and the

modified one, respectively

Following
Light

Avoiding
Obstacles

Going
Straight

Recharging
Battery

No_obstacle

Near_Obstacle

In_BR_Area

Near_Obstacle

Near_Obstacle

No_Obstacle

Light_Sensed

Light_Sensed

Near_Obstacle

Light_Sensed

In_BR_AreaFig. 19 Finite state machine for

action selection
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Fig. 20 Experimental results on

Khepera II robot

Figure 19 shows an action selection model designed using

a finite state machine. According to Pirjanian’s survey of the

action selection mechanism, FSA (Finite State Automata) is a

state-based arbitration method [9]. In this model, it is difficult

to coordinate the robot because it selects only the “following

light” behavior in the “light-sensed” situation and it selects

the “recharge battery” behavior in the battery recharging area

until there is an obstacle. Generating high-level behaviors

using the interchange of many behaviors is difficult in that

model, because it considers only one state transition among

candidates and the complex interchange of behaviors is dif-

ficult to describe. In simulation, the model fails to achieve

the goal.

Figure 20 shows the results of our experiments on the

Khepera robot. After navigating the environment with less

bumping, the robot went to the battery recharging area auto-

matically. Though the simulation results are slightly differ-

ent, the goal of the robot was achieved. Our previous work

[24] focused on evolving basic behaviors (avoiding obsta-

cles) using neural networks based on CA but it didn’t consider

the integration of behaviors and incremental evolution. Also,

the experimental environment used in [24] was simpler than

that used in this paper.

5 Conclusions

Even though we have not given many practical applications

in this paper, the construction of neural networks based on

cellular automata can be easily implemented into VLSI hard-

ware to evolve quickly. In this paper, we have proposed an ar-

chitecture composed of cellular automata, a neural network,

incremental evolution, and a behavior selection mechanism.

We applied this architecture to the problem of mobile robot

control. In simulations with different environments, the robot

was able to recharge its battery autonomously even though

there were obstacles. A comparison with the rule-based inte-

gration of other behaviors shows the advantages of the pro-

posed model.

Future works are as follows. It is necessary to apply the

proposed architecture to a real robot. The automatic construc-

tion of the behavior network is crucial to achieve scalability

of the proposed architecture. The number of the behaviors

for the experiments must also be increased.
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