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Abstract

Recently, many researchers have designed neural network architectures with evolutionary algorithms but most of them have used only

the fittest solution of the last generation. To better exploit information, an ensemble of individuals is a more promising choice because

information that is derived from combining a set of classifiers might produce higher accuracy than merely using the information from the

best classifier among them. One of the major factors for optimum accuracy is the diversity of the classifier set. In this paper, we present a

method of generating diverse evolutionary neural networks through fitness sharing and then combining these networks by the behavior

knowledge space method. Fitness sharing that shares resources if the distance between the individuals is smaller than the sharing radius is

a representative speciation method, which produces diverse results than standard evolutionary algorithms that converge to only one

solution. Especially, the proposed method calculates the distance between the individuals using average output, Pearson correlation and

modified Kullback–Leibler entropy to enhance fitness sharing performance. In experiments with Australian credit card assessment,

breast cancer, and diabetes in the UCI database, the proposed method performed better than not only the non-speciation method but

also better than previously published methods.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Combining multiple classifiers performs better than a
single classifier but suffers from the difficulty of construc-
tion process (diversity of members, parameter tuning, and
combination methods). It is well known that combining
identical classifiers has no gain and diversity among
members is one of the biggest issues in forming successful
ensembles. Because of the complexity of ensembles, there
are a number of parameters and the way to determine them
is a critical problem. Finally, the selection of combination
methods can give much impact on the performance of the
ensemble classification. In this paper, speciation-based
evolutionary neural ensemble method is proposed to deal
with the forming ensemble automatically.

Recently, designing artificial neural networks (ANN’s)
with evolutionary algorithms has emerged as a preferred
alternative to the common practice of selecting the
apparent best network [42]. Because evolutionary algo-
rithms search from not only a single point but a large
population of points, many researchers have actively
exploited the combining of multiple ANN’s which have
evolved in the last generation. However, these ANN’s tend
to be too similar to each other because in each case, the
individual with the highest fitness has prevailed even after
certain generations. This phenomenon is known as genetic
drift [35]. Combining the outputs of several classifiers is
useful only if they are complementary. The combination of
similar classifiers produces no gain.
According to Goldberg, a niche is an organism’s job or

role in an environment and a species is a class of organisms
with common characteristics [12]. In a solution space, there
are stable sub-populations of strings (species) serving
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different sub-domains of a function (niche). A simple
genetic algorithm (after enough generations) will distribute
most individuals around the highest peak. The inducement
of niche and species formations can help identify peaks in
other regions of the space. Sharing is the most important
concept to induce niche formation in the genetic algorithm.
Individuals share available resources in an overpopulated
habitat.

A practical scheme detailed by Goldberg and Richard-
son uses the sharing metaphor to induce niche and species
formations [13]. One of the major problems with this
sharing is deciding which individuals should share
resources and the degree of sharing. A practical way to
deal with this problem might be to use a sharing radius and
sharing function. Until recently, fitness sharing has been
widely used among many extensions of genetic algorithms
for searching multiple optima. A sharing function and a
sharing radius of the algorithm involve a distance metric
that measures the difference between two individuals.

This paper presents a method of constructing multiple
neural networks. Our method uses genetic algorithms with
fitness sharing to generate a population of ANN’s that are
accurate and diverse. Yao and Liu have dealt with this
issue [24,44,45], but there is still room to devise more
appropriate distance measures for fitness sharing, espe-
cially in the evolutionary neural networks. The average
output, Pearson correlation and modified Kullback–Lei-
bler (KL) entropy methods using entropy theory measure
the difference between two ANN’s [2].

Fig. 1 shows the basic idea of the proposed method.
Speciation in genetic algorithms creates different species,
each embodying a sub-solution, which leads to the creation
of diverse solutions as well as the best one. This paper uses
the fitness sharing technique that is representative of
speciation methods for evolutionary neural networks. To
show the usefulness of the proposed method, it was
necessary to conduct extensive experiments with bench-
mark problems, such as UCI datasets.

The rest of this paper is organized as follows. Section 2
describes the relevant works on evolutionary artificial
neural networks. Section 3 applies speciation to the
evolution process, and presents the distance measures with
various combination methods. Section 4 describes the
experimental results and analysis.

2. Related works

Artificial neural networks have been widely used in many
applications, and most neural network applications use the
feed-forward model with the backpropagation algorithm
(BP). Variants of the BP are sometimes used, but most of
these algorithms retain the fixed neural network structure.
The algorithms train only the weights on the same network
structure. The problem of finding the optimal structure of a
neural network has yet to be solved.
Early research on the automatic design of neural

networks used various constructive and pruning algo-
rithms. A constructive algorithm adds new nodes and
connection information incrementally to the network
[11,19], whereas a pruning algorithm removes unnecessary
nodes and connection information gradually [33]. Unfor-
tunately, the two methods are subject to remain stuck in
local minima; it is difficult to find an optimal neural
network structure because they search only the restricted
solution space determined by the given environment. An
evolutionary algorithm (EA) is a promising way of
overcoming this shortcoming. An EA is a general-purpose
search method which is insensitive to the initial configura-
tions. Evolutionary artificial neural network development
aims at designing weights, topologies, and learning rules
automatically by using evolutionary algorithms over a
number of generations.
E-Net is a distributed evolutionary learning method that

evolves neural-network-based pattern recognition systems
with limited human interaction. It evolves network
topologies and trains weights to form accurate recognition
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systems using a computationally efficient process that
gradually extends primitive network topologies to form
increasingly discriminating structures [39]. Abbass has
proposed an evolutionary artificial neural network based
on the pareto-differential evolution algorithm for the
prediction of breast cancer [1]. Perez et al. have proposed
COVNET, a new cooperative evolutionary model for
evolving artificial neural networks. This model adopts the
idea of co-evolving sub-networks that must cooperate to
form a solution for a specific problem, instead of evolving
complete networks [29].

The efforts on the ensemble approach can be categorized
into two types: generating individual artificial neural
networks and combining individual predictions [46].
Boosting and bagging are popular methods for generating
individual networks. Yao et al. presented evolutionary
ensembles with negative correlation learning (EENCL) [22]
in which a fitness sharing scheme based on mutual
information was introduced. The mutual information
between two variables, output F i of network i and output
Fj of network j is given by

IðFi;FjÞ ¼ HðF iÞ þHðFjÞ HðF i;FjÞ, (1)

where HðFiÞ is the entropy of F i, HðF jÞ is the entropy of Fj

and HðF i;F jÞ is the joint differential entropy of F i and Fj .
Brown et al. provides a survey about the theoretical

analysis of successful ensemble methods and the way to
improve the diversity of ensembles [6]. Bryll et al. proposed
attribute bagging (AB), a technique for improving the
accuracy and stability of classifier ensembles induced using
random subsets of features [7]. Windeatt compared the
ability of several pair-wise diversity measures to predict
generalization error of multiple classifier system [40].
Table 1 is a summary of the combination methods of
multiple classifiers.

3. Evolution of speciated neural networks

Let A ¼ fe1; e2; . . . ; ekg be a set of classifiers and B ¼

fC1;C2; . . . ;Cmg be a set of class labels. Each classifier gets
a feature vector x 2 Rp

ðp is the dimension of feature
vector) as its input and assigns a class label. In many cases,
the classifier output is a m-dimensional vector:

½ei1ðxÞ; ei2ðxÞ; . . . ; eimðxÞ�
T, (2)

eiðxÞ ¼ arg maxteitðxÞ, (3)

ejðxÞ ¼ Ci means classifier ej assigns class Ci to the input x.
m is the number of output nodes. The set of output signals
of the output layer of the network is O ¼ fo1; o2; . . . ; omg

and oi; the one with the largest value is chosen. F ðeðxÞÞ ¼

Ci means the ensemble of classifiers e classifies x into class
Ci.
Suppose that we have a training set

D ¼ fðx1; d1Þ; . . . ; ðxn; dnÞg, (4)

where x 2 Rp, d is a scalar, and n is the size of the training
set. The assumption that the output d is a scalar has been
made merely to simplify the exposition of ideas without
loss of generality. This section considers estimating d by
forming an ensemble, whose output is a simple averaging
of outputs of a set of neural networks.
The error function Ei for the network ei in the proposed

method is defined by

Ei ¼
1

n

Xn

x¼1

EiðxÞ

¼
1

n

Xn

x¼1

jeiðxjÞ � djj, ð5Þ

where EiðxÞ is the value of the error function of network ei

at the presentation of the training pattern x. Fitness
function f i for network ei in the proposed method is
defined by

f i ¼ 1:0� Ei. (6)

The fitness f si is the rescaled one using fitness sharing
method. After finishing evolution, the representative net-
works from each cluster are combined.
Fig. 2 shows the overall procedure of evolving neural

networks. The method sets each ANN with random initial
weights for the fully connected links, and conducts partial
training with a BP algorithm in a limited number of epochs
to adjust the weights of given architecture of ANN. The
fitness of the ANN is calculated with a recognition rate for
the validation data. Fitness sharing using the distance
measures rescales its original fitness for diversity. Once the
fitness is calculated, the genetic algorithm selects the best
50% individuals upon which to apply genetic operators.
The genetic operators, crossover and mutation, are applied
to those selected individuals. After applying the genetic
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Table 1

Summary of the combination methods of multiple classifiers

Authors Combination methods Contributions

Min et al. [25] Multiple decision templates Localizing fusion models with clustering algorithm

Rahman et al. [32] Vertical/hybrid/horizontal combinations A survey of the classification combination methods

Alexandre et al. [3] Arithmetic and geometric means Comparative study of the performance of arithmetic and geometric mean

combinations

Kim et al. [16] Fuzzy integral A content mining system based on fuzzy integral of multiple classifiers

Atincay et al. [5] Dempster–Shafer theory A multiple classifier approach as an alternative solution to the closed-set

text-independent speaker identification
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operators, the new set of individuals forms a new
population. It finishes when the stop criterion is satisfied
(if the number of generation exceeds the maximum number
of generation or the fitness is 1.0). The final step is the full
training of the ANN’s in the last generation with the error
BP algorithm. Using clustering, representative individuals
are selected and combined with various methods such as
voting, weighted voting and etc. Fig. 3 shows the pseudo
code for the proposed method.

3.1. Representation

In evolutionary algorithms, it is very important to
determine the representation of an individual. There are
several methods to encode an ANN. These include binary,
tree, linked list, and matrix representation. We used a
matrix representation to encode the ANN since it is
straightforward to implement and easy to apply the genetic
operators [37]. When N is the total number of nodes in the
ANN (including the input, hidden, and output nodes), the
matrix is N �N whose entries consist of connection links
and the corresponding weights. In this model, each ANN
uses only forward links [38]. In the matrix, the upper right
triangle (see Fig. 4) has connection link information where
‘1’ means that there is a connection link and ‘0’ means that
there is no connection link. The lower left triangle describes
the weight values corresponding to the connection link
information. Fig. 4 shows an encoding example of an ANN
that has one input node, three hidden nodes, and one
output node. The number of hidden nodes can vary within

the maximum number of hidden nodes in the course of the
GA operations.

3.2. Crossover

The crossover operator exchanges the architectures of
two ANN’s in the population to search the ANN’s from
various architectures [28]. In a population of ANN’s, the
crossover operator selects two distinct ANN’s randomly
and chooses one hidden node from each ANN. These two
nodes should be in the same entry of each ANN matrix
encoding the ANN to exchange the architectures. The two
ANN’s exchange the connection links and the correspond-
ing weight information of the nodes.

3.3. Mutation

The mutation operator changes a connection link and
the corresponding weight of a randomly selected ANN
from the population. It performs one of two operations:
addition of a new connection and deletion of an existing
connection. The mutation operator selects an ANN from
the population of ANN’s randomly and chooses one
connection link from it. If the connection link does not
exist and the connection entry of the ANN matrix is ‘0’, a
new connection link is created. It adds the new connection
link to the ANN with random weights. Otherwise, if the
connection link already exists, it removes the connection
link and weight information.
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Fig. 2. Overall procedure for evolving neural networks.
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3.4. The fitness sharing technique

There are several ways to simulate speciation. In this
paper, the fitness sharing technique is used [12]. Fitness
sharing decreases the fitness of individuals in a densely
populated area and shares the fitness with other ANN’s.

Therefore, it helps the genetic algorithm search a broad
solution space and it generates more diverse ANN’s. With
fitness sharing, the genetic algorithm finds more diverse
solutions.
Given that f i is the fitness of an individual and shðdijÞ is a

sharing function, the shared fitness f si is computed as
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Fig. 3. A pseudo code for the procedure.
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follows:

fsi ¼
f iPpopulation size

j¼1 shðdijÞ
. (7)

The sharing function shðdijÞ is computed using the distance
value dij which means the difference of individuals i and j

as follows:

shðdijÞ ¼
1�

dij

ss
; 0pdijoss;

0; dijXss:

8><
>: (8)

Here, ss means the sharing radius. If the difference of the
individuals is larger than ss, they do not share the fitness.
Only the individuals who have smaller distance values than
ss can share the fitness.

The sharing radius is determined by a threshold value
derived from the following formula:

s ¼
1

2P2

XP

i¼1

XP

j¼1

dij, (9)

where P is the population size, and dij is the distance
between the ith and jth ANN’s.

Fig. 5 presents an example of fitness sharing. The fitness
of individuals on the second peak decreases because the
number of individuals in the area is dense.

3.5. Distance measures for fitness sharing

Average output, Pearson correlation and Kullback–
Leibler entropy are simple methods to measure the dis-
tance between two neural networks [18]. When n is the
number of data and m is the number of output nodes,
the average output of an ANN (represented as aÞ is as

follows:

oaj ¼
Xn

t¼1

eajðxtÞ

 !,
n, (10)

oa ¼ ðoa1; oa2; . . . ; oamÞ, (11)

where eajðxtÞ is the output of the jth output node for the tth
input data. The distance between the two ANN’s is the
Euclidean distance of their average outputs. The similarity
between ANN a and b can be calculated as follows:

dab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

ðoaj � objÞ
2

vuut . (12)

Pearson correlation can reveal the relationship between
two variables. The similarity between ANN a and b can be
calculated as follows:

oa ¼
Xm

j¼1

oaj

 !,
m, (13)

dab ¼

Pm
j¼1ðoaj � oaÞ � ðobj � obÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

j¼1ðoaj � oaÞ
2
�
Pm

j¼1ðobj � obÞ
2

q . (14)

Let one discrete distribution have probability function p

and the other discrete distribution have probability
function q. Then the relative entropy of pk (k is a random
variable and pk represents the probability of specific values
of kÞ with respect to qk, also known as the Kullback–Lei-
bler distance, is defined by

d ¼
X

k

pk log
pk

qk

� �
. (15)
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Although relative entropy does not satisfy the triangle
inequality and is therefore not a true metric, it satisfies
many important mathematical properties [9]. For example,
it is a convex function of pk, always non-negative, and
equal to zero only if pk ¼ qk. Relative entropy is a very
important concept in quantum information theory, as well
as statistical mechanics [31]. However, relative entropy is
not a true distance because it is not symmetric, i.e.,
Dðp; qÞaDðq; pÞ. To remedy this problem, the modified
Kullback–Leibler entropy measure is used

Dðp; qÞ ¼
1

2

X
k

pk log
pk

qk

þ qk log
qk

pk

� �
. (16)

Modified Kullback–Leibler entropy measures the differ-
ence of two ANN’s. Let p and q be the output probability
distributions of two ANN’s. p and q represent output
probability distributions given input evidences (a vector of
attribute values of a specific sample). The ith output node
provides the likelihood of a sample with respect to the ith
class. When the estimation is accurate, the network outputs
can be treated as probabilities [20,34]. The total KL
distance between the two neural networks is the sum of the
KL values for all samples and output nodes.

Then, the similarity of the two ANN’s (each neural
network is labeled as a and bÞ is calculated as follows:

dab ¼
1

2

Xn

t¼1

Xm

j¼1

eajðxtÞ log
eajðxtÞ

ebjðxtÞ
þ ebjðxtÞ log

ebjðxtÞ

eajðxtÞ

� �
.

(17)

The two ANN’s are more similar as the symmetric relative
entropy decreases.

3.6. Combination of multiple neural networks

Single linkage clustering provides the representative
neural networks for each species. In this method, the
distance between the two clusters is as follows:

dðcluster1; cluster2Þ ¼ min
i2cluster1; j2cluster2

dij . (18)

The distance is calculated with the same method used in the
fitness sharing. A dendrogram is a branching diagram that
can be used to show the interconnections among neural

networks (Fig. 6). The Y-axis means the dissimilarity and
the X-axis means the index number of 20 neural networks.
In the figure, the number of clusters is four if the threshold
value is set as 40.
Agglomerative hierarchical clustering models form an

initial partition of P clusters (each neural network is a
cluster) and proceed to reduce the number of clusters one
at a time until all P neural networks are in one cluster. In
the first stage, the P-1 clusters are formed by selecting the
two most similar objects (a single neural network and
clusters of neural networks). In the second stage, the P-2
clusters are formed in a similar manner, and so on.
Mojena provided a way to determine the number of

groups for hierarchical clustering procedures [27]. Moje-
na’s cut-off value was hþ ash where h is the average of the
dendrogram height for all P-1 clusters, sh is the unbiased
standard deviation of the heights and a is a specified
constant. Mojena initially suggested that a should be
specified in the range of 2.75–3.50. Milligan and Cooper
concluded that the best overall performance of Mojena’s
rule occurs when the value of a is 1.25 [26].
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4. Experimental results

4.1. Experimental environments

To show the effectiveness of the proposed method,
experiments were conducted with several benchmark
problems: Australian credit approval, breast cancer, and
diabetes from the UCI machine learning dataset.
The Australian credit approval dataset was a 2-class
problem with 690 examples. Each example had 14
attributes. The training, validation and test datasets
consisted of 346, 172 and 172 examples, respectively. The
breast cancer dataset was a 2-class problem with 699
examples, each of which had 9 attributes and 1 class. The
training, validation and test datasets contained 349, 175
and 175 examples, respectively. The diabetes dataset had
768 examples. Five hundred examples out of 768 were class
0 and the others were class 1. Each example had 9
attributes and 1 class. The training, validation and
test datasets contained 384, 192, and 192 examples,
respectively.

Because we want to increase the generalization capability
of the model, relatively large validation data (25%) are
used. Following 4-fold split, 50% training, 25% validation
and 25% test data are used. In the Australian data, the
missing values were replaced by the mode of the attribute
(categorical) and mean of the attribute (continuous). In the
diabetes data, there were no missing values. In the breast
cancer data, the missing values were replaced with ‘�1.’
After that, the values of the attributes were normalized
between 0 and 1.

As a realistic dataset, colon dataset consists of 62
samples of colon epithelial cells taken from colon-cancer
patients. Each sample is from one person and contains
2000 gene expression levels. Although original data consist
of 6000 gene expression levels, 4000 out of 6000 were
removed based on the confidence in the measured
expression levels. Forty of 62 samples are colon cancer
samples and the remaining are normal samples. Each
sample was taken from tumors and normal healthy parts of
the colons of the same patients and measured using high-
density oligonucleotide arrays. Leave-one-out cross-valida-
tion is used (available at http://www.sph.uth.tmc.edu:8052/
hgc/default.asp).

The population size was 20 and the maximum generation
number was 200. The crossover rate was 0.3 and the
mutation rate was 0.1. The selection ratio was 0.5. Each
ANN was a feed-forward ANN trained by BP with a
learning rate of 0.1. The threshold value of the sigmoid
function was 0.8. The training data were presented 50 times
(determined empirically) in partial training and 1000
times in full training. Experimental results were the average
of 10 runs. Batch learning for BP was used. The number
of input nodes was the same as that of the features in
the dataset. The number of maximum hidden nodes
was 5, and the number of output nodes was 2. The number
of clusters was decided by the performance for the

validation data. Four parameters (population size,
crossover rate, mutation rate, and selection ratio)
dealt with the genetic algorithms and four parameters
(learning rate, threshold value, the number of hidden
nodes, and epochs for partial learning) dealt with the BP
algorithms.
The number of output nodes was the same with

the number of classes. Each output node produced a
confidence value for each class. Among the values of
nodes, a class label with the maximum one was chosen
for the sample. The error was calculated based on the
results of classification on the test set. The weights of
the neural network were trained by using the BP algo-
rithm in partial and full training. The difference between
partial and full training was the number of epochs for the
learning.

4.2. A comparison of the combination methods

� To combine the speciated neural networks we adopt
behavior knowledge space (BKS) method of the
‘‘multinomial’’ rule. This fusion method is well-known
to provide good performance if large and representa-
tive data set is available. Methods for fusing multiple
classifiers can be divided into three types: abstract
level, rank level and measurement level. In abstract-
level outputs, the behavior knowledge space became
very popular. In this BKS method, every possible
combination of abstract-level classifier outputs is
regarded as a cell in a look-up table. The BKS table
is from a training set. Each cell contains the number of
samples characterized by a particular value of
class labels and the most dominated class is chosen
for the cell. In the method, a term ‘‘cell’’ is used to
represent a space for storing behaviors of ANN. BKS
is a set of cells, where the MK cells are required to store
the necessary information of the K classifiers with the
M classes. BKSðe1ðxÞ; . . . ; eK ðxÞÞ is a cell with index
ðe1ðxÞ; . . . ; eK ðxÞÞ:

BKS a K-dimensional behavior-
knowledge space

BKSðe1ðxÞ; . . . ; eK ðxÞÞ a unit of BKS, where the 1st
classifier gives its decision as
e1ðxÞ; . . ., and the Kth classifier
gives its decision as eK ðxÞ

ne1ðxÞ...eK ðxÞðmÞ the total number of incoming
samples belonging to class m in
BKSðe1ðxÞ; . . . ; eK ðxÞÞ

Te1ðxÞ...eK ðxÞ the total number of incoming
samples in BKSðe1ðxÞ; . . . ; eK ðxÞÞPM
m¼1

ne1ðxÞ;...;eK ðxÞðmÞ

Re1ðxÞ...ekðxÞ the best representative class of
BKSðe1ðxÞ; . . . ; eK ðxÞÞ
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The combination function of BKS is defined as
follows:

F ðeðxÞÞ ¼

Re1ðxÞ...eK ðxÞ if Te1ðxÞ...eK ðxÞ40

and
ne1ðxÞ...eK ðxÞðRe1ðxÞ...eK ðxÞÞ

Te1ðxÞ...eK ðxÞ

Xl;

M þ 1 otherwise

8>>>>><
>>>>>:

(19)

l is a threshold value to decide whether the result is
rejected or not. For each class, there is a
ne1ðxÞ...eK ðxÞðmÞ=Te1ðxÞ...eK ðxÞ � 100 percent probability to
class m. If rejection is not allowable, then the class with
the highest probability is the best and the safest choice
as the final decision [15].
� Voting: The result supported by the majority of

ANN’s is the output of the ensemble. x! Ci means
that pattern x belongs to class i:

F ðeðxÞÞ ¼ j if Sðx! CjÞ ¼ max
i2B
ðSðx! CiÞÞ, (20)

where Sðx! CiÞ ¼
PK

k¼1Gkðx! CiÞ; i 2 B and
Gkðx! CiÞ is 1 if ekðxÞ ¼ i and i 2 B, 0 otherwise.
� Winner: Among all ekiðxÞ (k 2 A; i 2 BÞ, the greatest

one is selected and the i value is assigned as the
ensemble’s choice.
� Bayesian method: This method takes each ANN’s

significance into account by allowing the error
possibility of each ANN to affect the ensemble’s
results [41]. The error possibility is represented by the
M �M matrix, where a matrix element ni

jðkÞ is the
number of data which belongs to class i while the kth
ANN outputs j. This error is used to calculate the
possibility that the kth ANN classifies the input x to
class i. The reliability function BELðiÞ is represented as
follows:

BELðiÞ ¼
YK
k¼1

Pðx! CijekðxÞÞ. (21)

Finally, the combination function F ðeðxÞÞ is defined

F ðeðxÞÞ ¼

j if BELðjÞ ¼ maxi2B BELðiÞ

Xa ð0oap1Þ;

reject otherwise;

8><
>: (22)

where a is a threshold.
� Borda function: Let ri

k be the ranking of the ith class of
the kth ANN. The Borda score is calculated by
summing M � ri

k. The output of an ensemble is
determined by the following equation:

F ðeðxÞÞ ¼ max
i2B

XK

k¼1

ðM � ri
kðxÞÞ. (23)

� Condorect function: With the Condorect function, the
output of an ensemble is the class with the highest

Condorect value. The Condorect value of a class is the
minimum among the numbers of classifiers that rank
the class higher than other classes. Mathematically, the
output of an ensemble is determined as follows:

F ðeðxÞÞ ¼ max
i2B

min
j2B�fig

#ðK : ri
k4r

j
kÞ

� �
, (24)

where #ðK : ri
k4r

j
kÞ is the number of ANN’s that rank

class i higher than j:
� Average: The output of an ensemble in this method is

determined as the class with the highest average value
of the sum of output ekiðxÞ of each class iðk 2 AÞ:

F ðeðxÞÞ ¼ max
i2B

XK

k¼1

ekiðxÞ

 !,
K

( )
. (25)

� Weighted average: The weighted average multiplies the
weight w to the output of each ANN when averaging
the outputs. Let Ei be the error rate of the ith ANN,
and the weight wi is computed as follows:

wi ¼
1� EiPK

k¼1ð1� EkÞ
. (26)

� Gating: Gating is a method for choosing the fittest
ANN by utilizing the information from the learning
data. Four steps are required to do this.

Step 1: In the learning stage, all ANN’s generate a data
list for which they have produced correct outputs.

Step 2: In the test stage, the learning data most similar to
the input data are searched.

Step 3: An ANN which has recognized the searched
learning data correctly is selected.

Step 4: The chosen ANN is applied to the test data.

4.3. Results and analysis

Single linkage cluster analysis is used to analyze the
speciation of the ANN’s on the Australian credit approval
dataset. From the last population, the species are identified
by using single linkage clustering. Fig. 7 shows the
dendrograms of the last population evolved by speciation
and simple genetic algorithms, respectively. Fig. 7(a) shows
a dendrogram of the population of ANN’s speciated with
Kullback–Leibler entropy with single linkage cluster
analysis. The figures show the difference of diversity
between the methods clearly.
Tables 2–4 show the combination results of neural

networks speciated by three distance measures and non-
speciated neural networks on the Australian credit
approval data, the breast cancer data, and the diabetes
data. The speciation methods perform better than the non-
speciation one. Kullback–Leibler entropy with BKS
combination shows better performance on the breast
cancer data. These results were produced from 10 runs.
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In the student t-test, the difference of accuracy between an
average output with BKS, and an entropy output with
BKS for the Australian credit card data is not statistically
significant (t ¼ 1:577, p ¼ 0:1). For more accurate results,
additional experiments were conducted for the breast
cancer and diabetes datasets. The difference of accuracy

between the average output with BKS and KL entropy
with BKS for breast cancer is statistically significant
(t ¼ 1:776, p ¼ 0:1). The difference of accuracy between
Pearson correlation with BKS and KL entropy with BKS
for diabetes is statistically significant (t ¼ 1:753, p ¼ 0:1).
Table 5 summarizes the predictive accuracy over the three
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Fig. 7. Dendrogram analysis (Y -axis is the dissimilarity between the individuals). (a) Dendrogram of speciated case; (b) Dendrogram of non-speciated

case.

Table 2

Recognition rates of speciated neural network ensembles: Australian credit card approval (predictive accuracy)

Non-speciation Average output Pearson correlation KL-entropy

Gating 0:8163� 0:033 0:8563� 0:004 0:8607� 0:017 0:8097� 0:079
Voting 0:8269� 0:010 0:8423� 0:012 0:8445� 0:010 0:8387� 0:010
Winner 0:7717� 0:067 0:7724� 0:082 0:8173� 0:043 0:7825� 0:077
Average 0:8485� 0:009 0:8522� 0:008 0:8552� 0:011 0:8642� 0:007
Weighted average 0:8485� 0:009 0:8522� 0:008 0:8552� 0:011 0:8643� 0:007
Bayesian 0:8064� 0:031 0:8358� 0:024 0:8453� 0:015 0:8103� 0:055
Borda 0:8375� 0:011 0:8481� 0:012 0:8550� 0:011 0:8600� 0:012
Condorect 0:8400� 0:011 0:8481� 0:012 0:8575� 0:008 0:8597� 0:012
BKS 0:9048� 0:010 0:9110� 0:001 0:9080� 0:015 0:9040� 0:014

Table 3

Recognition rates of speciated neural network ensembles: breast cancer (predictive accuracy)

Non-speciation Average output Pearson correlation KL-entropy

Gating 0:9190� 0:038 0:9583� 0:018 0:9660� 0:016 0:8795� 0:080
Voting 0:9490� 0:017 0:9694� 0:013 0:9681� 0:008 0:9461� 0:030
Winner 0:9149� 0:047 0:9724� 0:016 0:9337� 0:043 0:8816� 0:08
Average 0:9681� 0:009 0:9766� 0:006 0:9800� 0:008 0:9749� 0:013
Weighted average 0:9671� 0:009 0:9769� 0:005 0:9800� 0:008 0:9749� 0:013
Bayesian 0:9289� 0:033 0:9268� 0:038 0:9494� 0:027 0:9362� 0:035
Borda 0:9644� 0:010 0:9714� 0:011 0:9752� 0:007 0:9748� 0:013
Condorect 0:9698� 0:007 0:9750� 0:007 0:9815� 0:007 0:9799� 0:008
BKS 0:9810� 0:008 0:9875� 0:008 0:9875� 0:006 0:9882� 0:010
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data sets. Fig. 8 shows experimental results on colon cancer
dataset. It shows that average output methods is the best
one and weighted average shows relatively high accuracy.

Fig. 9 shows the results of diversity analysis. The average
value of the KL distances among all individuals in the
population is used to measure the diversity. In this figure,
the speciation method maintains higher diversity than the

non-speciation one. Increasing the population size is a
good way to increase the performance but it requires much
computational cost. The sensitivity to the crossover rate
(mutation rate is fixed as 0.1) on Australian data shows
that the proposed method is sensitive to the crossover
rate (0.2–0.6) and 0.3 is the best. Increasing the maxi-
mum number of generation does not mean continuous
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Table 4

Recognition rates of speciated neural network ensembles: diabetes (predictive accuracy)

Non-speciation Average output Pearson correlation KL-entropy

Gating 0:5819� 0:052 0:6807� 0:027 0:6888� 0:040 0:6383� 0:090
Voting 0:5152� 0:052 0:6078� 0:027 0:5950� 0:040 0:5445� 0:090
Winner 0:5303� 0:052 0:6078� 0:027 0:5950� 0:040 0:5445� 0:090
Average 0:6126� 0:026 0:7453� 0:025 0:7194� 0:030 0:7476� 0:023
Weighted average 0:6128� 0:025 0:7424� 0:023 0:7208� 0:029 0:7476� 0:023
Bayesian 0:6475� 0:072 0:6655� 0:068 0:6590� 0:075 0:6663� 0:073
Borda 0:5625� 0:025 0:7349� 0:025 0:7189� 0:020 0:7389� 0:031
Condorect 0:5832� 0:024 0:7325� 0:027 0:7293� 0:020 0:7457� 0:025
BKS 0:5975� 0:037 0:7820� 0:036 0:7950� 0:028 0:7980� 0:047

Table 5

Recognition rates of speciated neural network ensembles over three data sets (Australian, breast, and diabetes) (predictive accuracy)

Accuracy Sensitivity Specificity

Gating 0.8046 0.7045 0.8587

Voting 0.7872 0.7104 0.8298

Winner 0.7603 0.6793 0.8024

Average 0.8453 0.7907 0.8734

Weighted average 0.8452 0.7512 0.8937

Bayesian 0.8064 0.7047 0.8559

Borda 0.8368 0.7406 0.8881

Condorect 0.8418 0.7769 0.8741

BKS 0.8787 0.8220 0.9062
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Fig. 8. LOOCV results on colon dataset.
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performance improvement as depicted in Fig. 10. In fact, it
is not possible to test the effect of all the parameters
because it needs a number of repeated runs and they are
also related to other parameters. In this paper, we have
shown results of part of them.

In one generation, we need to measure distance P� P=2
times. P is a population size, m is a number of output nodes
and n is a number of training data. For measuring the KL
entropy distance, we need to perform basic operations

(measuring entropy) mn times. The time complexity of
measuring the KL entropy distance is OðP2 �m� nÞ. The
number of generations is G and the number of partial
training is L. The size of the problem is dependent on the
G, P, and n. The time complexity of the speciated evolution
is OðGnP2Þ. In non-speciation, the complexity is
OðGnP logPÞ. Compared to non-speciation, the proposed
method needs more computational resources when calcu-
lating the distance among individuals.
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Because the evolutionary neural network approach
maintains multiple solutions, it has an inherent short-
coming in time. Compared to other methods such as
EPNET [43], our method uses the speciation technique and
needs additional computational resources. Apart from this
shortcoming, the paper presented an effective way to create
an ensemble of evolutionary neural networks for better
performance. The main processes of the proposed method
consist of partial training, fitness sharing, and fitness
evaluation. Fitness sharing is not a time consuming process
because it uses the output values of the training data and
the validation data. Only the distance calculation using the
stored outputs is required.

4.4. Comparison

To estimate the performance of the proposed method, a
comparative study was conducted. We compared the
BKSþKL method with the other published results. The
results in Tables 6–8 are the average of 10 runs. FNNCA
[36] is an ANN with a constructive algorithm. EPNET [43]

is an evolutionarily constructed ANN by Yao and Liu. The
comparisons show that the BKS combination of ANN’s
speciated by Kullback–Leibler entropy outperformed
FNNCA and EPNET. Table 8 shows the test results of
the BKSþKL and comparisons with the other methods on
the diabetes dataset. The BKS combination with speciation
by Kullback–Leibler entropy shows the best performance
in the breast cancer dataset. Table 9 shows the performance
comparison with other ensemble methods on the Austra-
lian credit card approval data. The proposed method
performs better than a non-evolutionary ensemble such as
CELS as well as an evolutionary ensemble such as Evo-En-
RLS. In sum, we can verify that the proposed method
yields competitive results.
As shown in Table 10, recent works adopt different

approaches to increase diversity in the evolutionary
ensembles of neural networks. The real values in the table
represent error rates on the dataset. [10,24] use implicit
sharing and [23] use minimization of mutual information.
However, we use standard fitness sharing by defining
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Table 6

Comparison of recognition rates: Australian credit card approval (average

error rate �s)

Methods Errors Time complexity

BKSþKL 0:096� 0:014 OðPnmÞ

BKSþ Pearson 0:092� 0:0156 OðPnmÞ

BKSþ average 0:089� 0:0 OðPnmÞ

EPNET 0.115 OðPmÞ

Cal5 0.131 OðmÞ

ITrule 0.137 OðmÞ

DIPOL92 0.141 OðmÞ

Discrim 0.141 OðmÞ

Logdisc 0.141 OðmÞ

SVM 0.145 OðmÞ

CART 0.145 OðmÞ

RBF 0.145 OðmÞ

CASTLE 0.148 OðmÞ

NaiveBay 0.151 OðmÞ

IndCART 0.152 OðmÞ

BP 0.154 OðmÞ

C4.5 0.155 OðmÞ

k-NN 0.181 OðmÞ

Table 7

Comparison of recognition rates: breast cancer

Methods Errors Time complexity

BKSþKL 0:0118� 0:01 OðPnmÞ

BKSþ Pearson 0:0125� 0:006 OðPnmÞ

BKSþ average 0:0125� 0:008 OðPnmÞ

EPNET 0.01376 OðPmÞ

FNNCA 0.0145 OðmÞ

SVM 0.0457 OðmÞ

Naı̈ve Bayes 0.0571 OðmÞ

BP 0.0800 OðmÞ

RBF 0.0857 OðmÞ

Table 8

Comparison of recognition rates: diabetes

Methods Errors Time complexity

BKSþKL 0:202� 0:047 OðPnmÞ

BKSþ Pearson 0:205� 0:028 OðPnmÞ

BKSþ average 0:218� 0:036 OðPnmÞ

Logdisc 0.223 OðmÞ

EPNET 0.224 OðPmÞ

DIPOL92 0.224 OðmÞ

Discrim 0.225 OðmÞ

SMART 0.232 OðmÞ

RBF 0.243 OðmÞ

Itrule 0.245 OðmÞ

BP 0.248 OðmÞ

Cal5 0.25 OðmÞ

CART 0.255 OðmÞ

CASTLE 0.258 OðmÞ

Quadisc 0.262 OðmÞ

Naı̈ve Bayes 0.262 OðmÞ

C4.5 0.270 OðmÞ

SVM 0.322 OðmÞ

k-NN 0.324 OðmÞ

Table 9

Comparison of recognition rates with other ensemble methods: Australian

credit card approval

Methods Errors Time complexity

BKSþKL 0:096� 0:014 OðPnmÞ

BKSþ Pearson 0:092� 0:0156 OðPnmÞ

BKSþ average 0:089� 0:0 OðPnmÞ

Evo-En-RLS [44] 0.095 OðPmÞ

CELS [21] 0.120 OðPmÞ

EENCLMI [22] 0.130 OðPmÞ

EENCL [24] 0.135 OðPmÞ

K.-J. Kim, S.-B. Cho / Neurocomputing 71 (2008) 1604–16181616



Author's personal copy

distance measures between two neural networks. Although
the proposed method performs a bit better than other
works, it is difficult to gauge the superiority of one
approach because they adopt different evaluation methods.

5. Conclusions

In this paper, the average output, Pearson correlation,
and Kullback–Leibler entropy distance measures were used
to measure the distance between two distinct neural
networks. Using this measure, it was possible to improve
the diversity of the evolved neural networks. From the
experimental results, the combination of the neural net-
works speciated by the fitness sharing distance measure
showed promising results compared to non-speciation
methods and other published results.

Though there are many works on evolving neural
networks, performance is not the best for all datasets
[8,21,24,39] and the proposed method does not always
outperform for all the benchmark datasets. Although the
proposed method does not produce the best results in all
the datasets, it does show some improvements compared
with previous works in this field.

Future works are as follows. Because calculating the
distance between two distinct neural networks has not yet
been perfectly solved, information geometry-based distance
measures for neural networks can be used for performance
improvement [4]. Also, multiclass data should be used for
proving the applicability of the method.
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