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a b s t r a c t

Designing controllers for simulated cars is a challenging task because there are numerous sensor inputs

and a lot of actuators to be controlled. Although it is possible to use domain-expert knowledge on the

car racing, it is not trivial to represent the knowledge into controllers and tune the parameters for them.

Therefore, it is natural to adopt machine learning approach into the knowledge-oriented controllers to

enhance their performance and minimize tedious parameter tunings. In this paper, we try to enhance

our own heuristic controllers using machine learning models which decide the appropriate parameters

of the heuristic controllers given the current sensory inputs. At first, we predict the desired speed only

using the equations derived by the linear regression analysis for the both curved and straight track

segments. Because the decision on reducing speed before the corner is more complex than the one in

the straight line and the corners, it is necessary to use a non-linear model such as artificial neural

networks. Secondly, the linear regression and artificial neural networks are specialized to predict

desired speed in different situations. Experimental results on TORCS-based car racing simulations show

that the combination of the two machine learning algorithms with the heuristic outperforms other

alternatives (heuristic only, heuristicþ linear regression, and heuristicþartificial neural networks).

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Game is one of the most important problems used in artificial
intelligence research because they provide with simple and
abstract models of real world. For example, iterated prisoner’s
dilemma (IPD) games have been widely used to find good
decision strategies in economy, politics, and foreign relations.
In the game, there are only two choices (cooperation or defection)
but it successfully simulates a lot of realistic dilemma situations.
Since the beginning of the artificial intelligence, several board
games have been widely used as a research platform and finally,
some of them are nearly solved. For example, Deep Blue team by
IBM defeated the world chess champion with a specially designed
super computer. In the board games, each player has finite
number of decision choices and there is no hidden information
between players.

Recently, the game AI research has expanded their territories
to other game genres like real-time simulations, video games, and
role-playing games [1]. They’re quite different with the traditional
board games. It is not a turn-based game and each player has
ll rights reserved.

G. Park),
to respond to the game as quickly as possible. Unlike the board
games, players have to decide the degree of controls. Also, there is
hidden information between players and random factors make
games unpredictable. They have raised several new research
challenges asking for new computational methodologies dealing
with uncertainty, large amount of data, real-time decision mak-
ing, and adaptation. Because it is an early stage of development,
the AI for the games is still dependent on human’s expertise.

Since 2008, international game AI competitions have changed
their basic platform from 2D point-to-point car racing to realistic
3D car racing simulator, TORCS (The Open Racing Car Simulator)
[2] (Fig. 1). It provides with realistic 3D car racing simulation and
opens their source codes to public. Competition organizers have
developed patch programs for the TORCS to allow several AI
controllers run together in the simulator. In the competition,
TORCS continuously sends simulated car’s sensory information to
clients program connected through network. Each client gets the
data and decides the values of several actuators (steering wheel,
accelerator, brake and gear). Their decisions are returned to the
TORCS server and the next time step is simulated for the car
racing environments. In this way, the car racing is simulated
realistically with several AI controllers.

It is not a trivial task to control the simulated car because the
controller should determines the values of five actuators (steering
wheel, gear, clutch, break, and acceleration) based on seventy
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nine sensors available. In the competition, the three tracks used in
the competition day are unknown before the event so that it is
not possible to optimize their controller to them. Also, in the
racing, they see only 200 m around the car and it is not possible to
get the whole track data structure directly from the TORCS.
Because of the complexity of the task, there has been several
computational intelligence approaches for the controllers [3]. For
example, fuzzy controllers have been used to determine the
desired speed value of the simulated car and their fuzzy rules
are optimized using genetic algorithms [4,5].

In our previous work, we developed our own heuristic con-
troller placing the main focus on driving as safe as possible [6].
Although it is important to drive as fast as possible in the
competition, it has to minimize damage caused by bumping the
tracks and other cars. If the damage is larger than pre-defined
threshold, the car is automatically dropped out from the race. Our
basic driving algorithm was modified to improve safety by
incorporating memorizing failures, speed adaptation zone, and
artificial neural networks to predict corner difficulty. Experimen-
tal results on three tracks showed that it was able to minimize
damages successfully. In this work, we focus on speed and safety
together. Although the basic driving module and speed adaptation
zone is similar to the previous one, we newly adopt linear
regression analysis and artificial neural networks to adjust
desired speed module. Also, we test the proposed method on
fourteen tracks.
Fig. 1. TORCS (http://torcs.sourceforge.net/).

Fig. 2. An overview of th
In the modular approach, there are several parameters to be
tuned and usually, optimal parameter values are not the same for
different tracks. It means that the best parameters on track A are
not optimal on another track B. It is natural that each track
requires different playing strategy due to the difference of track
shapes. If designers choose parameters optimized for one track, it
is likely to result in performance degradation on unseen tracks
because of poor generalization capability. In this paper, we
propose to use artificial neural networks and linear regression
analysis to learn the different playing strategies of several con-
trollers optimized for different tracks. From the TORCS package,
we collected nineteen tracks and classified them into five groups
based on the difficulty of driving. One representative track was
chosen from each group to generate locally optimized controllers.
The behavior of the controllers was monitored and they’re used as
training samples for regression analysis and artificial neural
networks to predict the desired speed. Fig. 2 summarizes the
basic idea of our proposed method.

In this paper, we try to enhance our own heuristic controllers
using machine learning models which decide the appropriate
parameters of the heuristic controllers given the current sensory
inputs. At first, we predict the desired speed only using the
equations derived by the linear regression analysis for the both
curved and straight track segments. Because the decision on
reducing speed before the corner is more complex than the one
in the straight line and the corners, it is necessary to use a non-
linear model such as artificial neural networks. Secondly, the
linear regression and artificial neural networks are specialized to
predict desired speed in different situations. Experimental results
on TORCS-based car racing simulations show that the combina-
tion of the two machine learning algorithms with the heuristic
outperforms other alternatives (heuristic only, heuristic þ linear
regression, and heuristic þ artificial neural networks).
2. Backgrounds

2.1. Car racing competition

In this competition, each controller gets sensory information
from the TORCS server and sends their decisions to the simulator.
There are seventy nine sensors available and seven actuators to be
controlled by the program (Fig. 3).
e proposed method.

http://torcs.sourceforge.net/


Fig. 3. Illustration of (a) track and (b) speed sensors.

Table 1
Summary of TORCS-based car racing research.

Year Authors References Techniques

2010 Munoz et al. [7] NN

Cardarmone et al. [12] ENN

[13] GA

Quadflieg et al. [14] ES

2009 Onieva et al. [4] Fuzzy

[5] Fuzzy þ GA

Butz et al. [11] CMA-ES

Cardarmone et al. [15,16] ENN

[8] KNN, ENN

Perez et al. [17] Fuzzy, DT, MOEA

Quadflieg et al. [3] ES

Munoz et al. [3] EA

[9] NN

Bernardi et al. [3] Rule

Szymaniak [3] GP

Ebner et al. [18] GP

Hoorn et al. [10] MOEA

2008 Perez et al. [19] RuleþGA

[20] GA

Kinaird-Heether et al. [2] RuleþCA

Tan et al. [2] ES

Gowrisankar [21] ENN

Cardamone [21] ENN

Simmerson [2] ENN

nENN¼Evolutionary Neural Network, NN¼Neural Network, GA¼Genetic Algo-

rithm, ES¼Evolutionary Strategy, KNN¼K-Nearest Neighbor, DT¼Decision Tree,

MOEA¼Multi-Objective Evolutionary Algorithm, GP¼Genetic Programming.
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Competition organizers provide clients with the API that
accesses the sensory information and sends actuator values to
the server. The rule of the competition is simple. If the number of
competitors is larger than eight players, there is another pre-
liminary league called solo racing. In the racing, each player race
on the unseen tracks alone and the distance raced is used to rank
them. Finally, the best eight players race together in the same
unseen tracks and the final score is measured based on F1 system
used in real car racing competition. In 2010, there are small
changes in the competition rules. They added a new stage called
‘‘warming-up’’ and players are allowed to collect information
from unseen tracks. The maximum distance of range finder
sensors are extended from 100 to 200 m.

The competitions have been hosted by several international
conferences. For example, in 2010, there were three car racing
competitions by CIG, GECCO and WCCI (World Congress on
Computational Intelligence). For each competition, they used
different styles of tracks: motor speedways (GECCO), technical
(F1-like) tracks (WCCI), and dirt (involving non-asphalt stretches
and bumps) tracks (CIG). The final champion of 2010 was decided
based on the sum of scores collected from the three competitions.
The winner of the 2010 championship was AUTOPIA by Onieva
et al. who also won the 2009 championship. In 2008, the winners
of the CIG and WCCI used evolutionary neural networks to control
the simulated car. Computational intelligence algorithms have
been widely used for TORCS-based car racing competitions
(Table 1).

Onieva et al. proposed a parameterized modular architecture
consisting of desired speed, gear control, low level gas & brake
control, steering control, and opponent modifier modules [4].
In the gear control, they used simple heuristics: the gear control
increases the current gear if the rpm value is higher than a certain
value and decreases it if the rpm value is lower than a certain
value. In the desired speed module, it estimates the appropriate
speed given environmental sensors using hand-coded fuzzy rules.
If the desired speed is larger than the current speed, the car press
the acceleration pedal and vice versa. For steering module, they
calculated a weighted average from nine track sensors’ values.
Finally, the opponent modifier adjusts the brake, acceleration, and
steering values based on opponent sensors.

Butz et al. developed the controller named as COBOSTAR and
won CEC and CIG competitions in 2009 [11]. In their approach,
they used different strategies for on-track and off-track situations.
There were fourteen parameters for the on-road optimization and
the covariance matrix adaptation (CMA) evolutionary strategy
was used. All parameters were optimized on various available
tracks in TORCS. They reported that different CMA optimization
runs yield radically different parameter settings, each of which is
optimized for the track trained on. They tested the optimized
parameters on the other tracks and the most general parameter
set was finally chosen.
2.2. Learning approach

Human learns new skills by observing other’s behaviors and
this is more efficient than learning from scratch. Similarly, the
learning by imitation has been applied to create new controllers
from the behaviors of human players or other controllers. The first
step is ‘‘demonstration by experts’’: Human players or other
controllers drive the simulated cars through TORCS. In the
demonstration, the TORCS server records all the sensory informa-
tion of the cars and the decisions made by the players. The next
step is ‘‘learning from the training samples.’’ It is a kind of
supervised learning problems to predict the decisions of the
players given the sensory information.

There are several works on the imitative learning for the
simulated car competitions. Hoorn et al. proposed to solve the
imitation learning using multi-objective evolutionary algorithms,
with objectives relating both to traditional progress-based fitness
(playing the game well) and similarity to recorded human behavior
(behaviors like the recorded player) [10]. Munoz et al. used data
obtained from two controllers (the winner of the WCCI 2008
simulated car racing competitions and hand coded controller that
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performs a complete lap in all tracks) and one human player [9].
They tried to generate new controllers from the mix of the data.
They reported that it was very complicated to learn the human
behavior in a video game but it was possible to learn a behavior
from non-human controllers. In case of the mixed data, the results
showed that the controllers did not work. Cardamone et al. pro-
posed to use high-level information about the track ahead of the
car and predict high-level actions [8]. They reported that it was
possible to develop drivers with performance that in some cases are
only 15% lower than the performance of the fastest driver available
in TORCS. Munoz et al. trained neural networks with data retrieved
from a human player to predict trajectory and speed [7].
3. Proposed methods

Fig. 4 shows our heuristic controller with artificial neural
network and linear regression analysis. In the desired speed
module, it decides the target speed to be maintained by the car.
If the current speed is larger than the target speed, it controls
brakes. On the other hands, if the current speed is smaller than
the target speed, it accelerates. The desired speed is calculated
differently based on the current observation on the tracks. If the
sensory information tells that the track is straight, the target
speed is the maximum. If the car is in the area where speed
adaptation is required, it asks the target speed to artificial neural
networks. In other cases, the desired speed is calculated from the
equations derived from linear regression analysis.

3.1. Heuristic controller

Our controller was constructed following the philosophy of
modular architecture proposed by Onieva et al. [4]. However, the
implementation of each module is not the same with the original
Fig. 4. Basic driving module with artificial neur
proposal. Unlike the original proposal, we added new modules for
speed adjustment and failure handling, which reduces the speed
of the car at corners and stuck positions, and each module was
implemented using different algorithms. If the car is in stuck, it
uses different steering and low level gas & brake control strategies.
In normal situation, the controller calculates the desired speed and
gear levels. The gear control increases the current gear if the rpm
value is higher than a certain value and decreases it if the rpm
value is lower than a certain value. The speed adjustment module
is activated to reduce the speed of the car if the car is entering to
corners. If the current speed of the car and the desired speed are
different, the low-level gas & brake control do actions to reduce
the difference. ABS & TCL module protects the car from slipping.
The direction of the car is controlled by the steering module.

3.1.1. Steering control

The 19 track sensors are used to measure the distance between
the car and the track edge. By default, the sensors sample the
space in front of the car every 101, spanning clockwise from þp/2
up to �p/2 with respect to the car axis. From 2010 car racing
competition, it is allowed to customize the position of the track
sensors by users. In this work, we customized the configuration of
the track sensors. Unlike the default, there are a lot of track
sensors in front side of the car. The basic idea of the steering is to
control your car to go to the largest free distance.

We first check whether the car is in the straight or corner track
using the center track sensor. If the value of the center track
sensor is greater than 70 m, it is regarded as ‘‘straight’’ and we
steer the car toward the direction of the track axis. Angle is
between the car direction and the direction of the track axis.
TrackPos is the distance between the car and the track axis. In this
case, the target steering value is defined as

TSteering ¼ 0:1ðangle�trackPosÞ=ðp=4Þ:
al networks and linear regression analysis.



// steerLock = π/4

Procedure Get_Target_Steer( ){ 

index = argmax(track[2], track[3], …, track[16]);

If ( Track[9] > 70 ) // in straight track

TSteering angle – trackPos)/steerLock;

Else                        // in corner track

TSteering = w[index trackPos;

Return TSteering;

}

Fig. 5. Steering algorithm.

Procedure Get_Accel_Brake_Basic( ){ 

Tmax = max(track[1], track[17]);

Tmin = min(track[1], track[17]);

If ( track[9]  150 ) {   // in straight Track 

Desired_Speed = MAXSPEED;

}

Else {   // in corner track 

Desired_Speed = β track[9] |Tmax - track[9]| / |Tmin - track[9]|;

}

Return 2/(1+exp(speedX - Desired_Speed)) - 1; 

}

Fig. 6. Desired speed calculation and speed adjustment algorithm.
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Otherwise, the track is ‘‘curved’’ and we steer the car toward
the direction of the track sensor with the largest free distance. The
target steering value in the curve is defined as

TSteering ¼w½index��0:3� trackPos,

where index indicates the track sensor number with the max-
imum value (largest free distance) except the center, right, and
left track sensors, and w is a vector of weight values for the track

sensors tuned manually. Fig. 5 gives a full description of the
‘‘steering control’’ module.

3.1.2. Desired speed calculation and speed adjustment

Based on the value of the center track sensor (CT), we
categorized current situation into two groups. If the CT is larger
than 150 m, it means that there is no obstacle in front of the car
and the maximum speed is desired. If the CT is smaller than
150 m, the desired speed is proportionate to the CT. The bending
of track is proportionate to 9Tmax�CT9 but inverse proportionate
to 9Tmin�CT9, where Tmax¼max(track [1], track [17]) and
Tmin¼min(track [1], track [17]). Consequently, the desired speed
is computed as follows:

Desired_Speed¼
b� CT � 9Tmax�CT9

ðTmin�CTÞ
,

where b is a parameter to be tuned.
After the desired speed is computed, the acceleration and

brake signal (A&B) is adjusted by the difference between the
current speed (speedX) and the desired speed (Desired_Speed) as
follows:

A&B¼
2

ð1þexpðspeedX�Desired_SpeedÞÞ
�1:

The acceleration and brake signal is in �1 (full brake) �1 (full
acceleration). Fig. 6 gives a full description of the basic module.

3.1.3. Speed adaptation zone

Another strategy to improve the performance of the controller
is to introduce a new category called the speed adaptation zone

(SAZ) in addition to the straight track and the corner track. From
our initial observation, we realized that the car accidents fre-
quently occur before corners with high speed entering. Based on
this observation, we set the front of a corner as SAZ and compute
the desired speed differently from the straight track and the
corner track. If 70oCTo150, the car is considered in the SAZ and
the desired speed is computed as follows:

Desired_Speed¼
a� ðMAX_SPEED�speedXÞ � 9Tmax�CT9

9Tmin�CT9
,

where a is a parameter to be tuned like b. Fig. 7 gives the
description of controlling the acceleration and brake signal when
the SAZ strategy is combined with the basic module.
3.1.4. Failure handling

To improve the performance of the heuristic controller, we
added to the basic module a new module called ‘‘Failure Handling.’’
This module utilizes the car racing property that the car rounds
repeatedly the same track. The basic idea is to memorize the
position where the car is stuck and reduce the speed when the
car approaches the position in the next round. If the value of
the angle sensor is not between �p/4 and þp/4, it is regarded that
the car is stuck. The ‘‘distFromStart’’ sensor was used to indicate the
failure position. If the failure position is denoted by x, then the speed

reducing area is between x�300 m and xþ20 m. If the car is in the
speed reducing area and the current speed of the car is greater than
(15� Track_Width), we set the acceleration and brake signal as �1
(full brake) ignoring the value computed by the ‘‘Speed Adjust-
ment’’ module. Fig. 8 gives the description of controlling the
acceleration and brake signal in ‘‘Failure Handling’’ module.

3.2. Learning approach

Usually, there are a lot of tracks available. However, it is not
always useful to use multiple tracks because it increases the
number of training samples and learning time. Our approach is to
group the tracks into several categories based on its difficulty. Our
heuristic controller has two parameters alpha and beta to control
desired speed for different situations (SAZ and corners). For each
track, we run grid search for the alpha and beta to minimize lap
time. Based on the record, we calculate average speed for each
track. If the average speed is large, the track is regarded as an easy
one. In our work, we set the group size as five. For each group, we
choose one track and they are used to generate training samples
with the best alpha and beta for the track. The training sample
contains all the sensory information and the decision of the
controllers. The last step is to merge the training samples from
the five tracks and run machine learning algorithms. It is also
possible to find the global best alpha and beta on the five tracks.
The final generalized controller contains a neural network, equa-
tions from linear regression and the global best alpha and beta.
Fig. 9 summarizes this process as a flowchart.



Procedure Get_Accel_Brake_SAZ ( ){ 

Tmax = max(track[1], track[17]);

Tmin = min(track[1], track[17]);

If ( track[9] ≥ 150 ) { // in straight track 

Desired_Speed = MAXSPEED;

}

Else if (70 < track[9] && track[9] < 150){ // in SAZ 

Desired_Speed = α speedX Tmax-track[9]| / |Tmin - track[9]|;

}

Else {   // in corner track 

Desired_Speed = β track Tmax - track[9]| / |Tmin - track[9]|;

}

Return 2/(1+exp(speedX - Desired_Speed))-1;

}

Fig. 7. Algorithm with SAZ. (a) An example of SAZ. (b) A pseudo code with SAZ.

// If the car is near the memorized failure position again, reduce speed 

Procedure Get_Accel_Brake_Failure(current_accel_brake){

If ( the car is in a speed reducing area && speedX > 15 Track_Width ) 

Return -1; // Reduce Speed 

Else

Return current_accel_brake; // Don’t need to change the value 

}

Fig. 8. Failure handling algorithm and example. (c) An example of the stuck list for

memorizing failure. (d) A pseudo code for failure handling.
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3.2.1. Track categorization and training sample generation

Our first approach for discovering the generalized models is to
find the generalized parameters a and b for the selected tracks.
The behavior of our heuristic controller is dependent on the
parameters a and b. Because each track has different properties,
the optimal parameters for each track might not be the same.
To find the generalized parameters, we first computed the sum of
the lap time on every sampled track for various a and b, and chose
the parameters with the minimum sum as the generalized
parameters. The parameters with the minimum sum can be found
using an exhaustive search on some parameter candidates.

In this paper, we tried to extract generalized controller from
several optimized controllers, each of which is optimized for the
track trained on. The first step is to generate training samples
that record all the sensory information and decisions of each
controller on the track optimized (Table 2). From the mix of
training samples from the multiple controllers, linear regression
analysis and neural networks are used to discover the generalized
models.

3.2.2. Linear regression analysis

From Section 3.2.1, we found the generalized parameters a and
b for the five tracks. As we can see at experimental results section,
the generalized controller did good performance on the sampled
tracks, but it worked poor in some unknown tracks. To improve
the performance on unknown tracks, we apply machine learning
methods such as linear regression analysis.

Linear regression analysis is used to predict the desired speed
given environmental sensors. In this analysis, 22 sensors (19 track

sensors and 3 speed sensors) are used and their weighted sum is
the output of the prediction. Linear regression algorithms search
for the weight vectors for the linear equation of sensors. If the



Fig. 9. Flowchart of learning approach (the shade box means models used in the generalized controller).

Table 2
An example of training data.

Time Input variables Target variables

track [0]

(T0)

track[1]

(T1)

� � � track [18]

(T18)

speedX

(SX)

� � � speedZ

(SZ)

Desired speed

(DS)

0, SXrDS

1, SX4DS

00:00:00 200 200 � � � 100 10 � � � 2 20 0

00:00:02 198 199 � � � 99 20 � � � 4 40 0

00:00:04 195 197 � � � 98 30 � � � 1 20 1

^ ^ ^ ^ ^ ^ ^ ^ ^ ^

Procedure Get_Accel_Brake_LR ( ){ 

If ( track[9] ≥ 150 ) {  // in straight track 

   Desired_Speed = MAXSPEED;

}

Else { // in SAZ & corner track 

Desired_Speed = speedZwspeedYwspeedXwtrackwtrackw 222120191 ]18[]0[ +++++ ;

}

Return 2/(1+exp(speedX - Desired_Speed ))-1; 

}

Fig. 10. A controller only with equations from linear regression.
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linear regression is used, the desired speed is calculated with the
following equation:

Desired_Speed¼w1Track½1�þ � � �w2Track½1�þw19Track½18�

þw1speedXþw21speedYþw22speedZ

Fig. 10 gives the description for the acceleration and brake
signal modified with the linear regression analysis.

3.2.3. Artificial neural network

The neural network consists of one hidden layer and all
neurons of the network have a sigmoid transfer function f ðxÞ ¼

1=ð1þexpð�xÞÞ. The network is fully connected and each neuron
has a bias. The training rule is as follows:

Wnþ1 ¼WnþZ
@E

@W
þzðWn�Wn�1Þ
where E is the sum of squared error with respect to weight vector
W, the term Z denotes learning rate and z represent momentum.
The learning strategy employs on-line method during epochs.
Fig. 11 gives the description for the acceleration and brake signal
modified with the linear regression analysis and artificial neural
network.
4. Experimental results and analysis

4.1. Track categorization

In the TORCS, there are nineteen tracks that have different
properties. For each track, we did the exhaustive parameter
search on a and b (Table 3). The parameters are chosen from
{0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}. It yields different



Table 3
The optimal parameters for each track (the best lap time with zero damage).

Track name Length a b Lap time Average speed Group

Alpine2 3772.91 2.0 5.0 116.06 30.41 A
ETrack2 3147.41 5.0 3.5 88.58 35.53 A

Alpine1 6390.86 3.5 5.0 147.17 39.72 A

Street1 3822.60 2.0 3.0 94.83 40.31 A

E Road 3383.50 2.0 3.5 82.45 41.04 B
Ruud 3352.55 2.5 3.5 78.90 42.49 B

ETrack6 4441.24 4.5 3.0 102.22 43.45 B

CGTrack1 2056.97 3.0 3.5 47.27 43.52 B

ETrack3 4799.26 1.0 3.0 106.78 44.95 C
Wheel1 4257.60 4.0 3.5 92.74 45.91 C

Wheel2 6205.44 3.0 3.5 134.77 46.05 C

CGTrack2 3184.97 3.5 3.5 63.65 50.04 D
E-Speed 3049.78 3.5 3.5 59.05 51.65 D

Forza 5784.09 3.0 3.5 106.58 54.27 D

A-Speed way 1917.04 5.0 4.5 35.17 54.51 D

ETrack4 7041.56 5.0 3.5 122.53 57.47 E
C-Speed 3293.98 3.5 3.5 49.29 66.83 E

D-Speed 3427.40 3.5 3.5 50.73 67.57 E

B-Speed way 3999.00 3.5 3.5 57.89 69.08 E

Procedure Get_Accel_Brake_LR_ANN ( ){ 

If ( track[9] ≥ 150 ) {  // in straight track 

   Desired_Speed = MAXSPEED;

}

Else if (70 < track[9] && track[9] < 150){ // in SAZ 

Prob = ANN(Sensors);

Desired_Speed= (α-Prob speedX Tmax-track[9]| / |Tmin - track[9]|;

}

Else { // in corner track 

Desired_Speed = speedZwspeedYwspeedXwtrackwtrackw ]18[]0[ +++++ ;

}

Return 2/(1+exp(speedX - Desired_Speed ))-1; 

}

Fig. 11. A controller with linear regression and artificial neural networks.

Fig. 12. Categorization of tracks based on their difficulty.
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Table 4
The number of training samples collected from the optimized controller on its

track.

Tracks The number of training samples Percentage

Alpine2 6363 25.8

ERoad 4041 16.4

ETrack3 5156 20.9

CGTrack2 3243 13.1
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parameter settings, each of which is optimized for the track
trained on. In the table, the tracks are sorted by the average
speed in ascending order. If the average speed is low, it means
that the track is too difficult to drive. They are categorized into
five groups based on the difficulty of driving. If a track is grouped
into A, it is one of the most difficult tracks in the TORCS. Fig. 12
shows the tracks grouped into five categories.

Figs. 13 and 14 shows training and test tracks respectively.
ETrack4 5863 23.8

Total 24,666

Table 5
4.2. Learning approach

The next step is to learn the generalized controller from the
observed behavior of the optimized controllers. From the group A,
Fig. 13. Optimized controllers for the tracks are used to train machine learning

models. (a) Alpine2. (b) ERoad. (c) ETrack3. (d) CGTrack2. (e) ETrack4.

Fig. 14. Fourteen tracks for evaluation. (a) Alpine1. (b) Ruudskogen. (c) Street1. (d) Wheel1. (e) Wheel2. (f) Forza. (g) A Speed Way 1. (h) B Speed Way 1. (i) C Speed Way 1.

(j) D Speed Way 1. (k) E Speed Way 1. (l) CG Track1. (m) E Track 2. (n) E Track 3. (o) E Track 6.

The results of feature selection algorithm.

Sensors

All Track[0]�Track[18], speedX, speedY, speedZ

8 Track[1], Track[7], Track[8], Track[9], Track[10], Track[11], Track[17],

speedX

6 Track[1], Track[8], Track[9], Track[10], Track[17], speedX

4 Track[1], Track[9], Track[17], speedX

Table 6
False positive rate, negative predictive value, and false discovery rate for different

number of features.

The number of features FPR NPV FDR

22 0.338578 0.714723 0.056823

8 0.414412 0.630847 0.069583

6 0.440529 0.604762 0.073929

4 0.263059 0.560421 0.047237



Table 7
Summary of results (LR¼Linear Regression, NN¼Neural Network).

(a) The performance of controllers optimized on one track

Track name Group Sum of lap time on the fourteen tracks Sum of damage on the fourteen tracks

Alpine2 A 1236.19 53

Eroad B 1395.164 77

ETrack3 C 1236.19 53

CGTrack2 D 1621.086 1996

ETrack4 E 1818.028 1784

(b) The performance of controllers generalized from the five controllers

Average controller Average controllerþNN Average controllerþLR Average controllerþNNþLR

Lap time Damage Lap time Damage Lap time Damage Lap time Damage

Alpine1 171.42 0 171.44 0 156.62 0 162.51 0

CGTrack1 48.71 0 48.71 0 47.36 3 47.77 3

A-Speed Way 38.90 5 38.84 4 36.97 0 37.4 0

B-Speed Way 58.28 11 58.28 11 58.28 11 58.28 11

C-Speed 49.84 12 49.84 12 49.84 12 49.84 12

D-Speed 51.27 9 51.27 9 51.27 9 51.27 9

E-Speed 59.59 13 59.59 13 59.59 13 59.59 13

ETrack2 94.65 0 94.66 0 89.87 0 90.59 0

ETrack6 106.56 0 103.45 0 110.06 74 106.51 0

Forza 110.18 0 110.17 0 112.01 3 111.37 0

Ruud 81.90 0 82.47 0 80.02 0 79.73 0

Street1 117.05 2602 98.39 0 101.45 407 99.23 42

Wheel1 95.84 0 95.78 0 92.51 111 93.34 0

Wheel2 139.40 0 139.13 0 135.00 3 136.71 0

Sum 1223.59 2652 1202.02 49 1180.85 646 1184.14 90

Fig. 15. Snapshots show the difference of behaviors by the average controller and plus NN (Street 1 track).
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the controller (a¼2.0 and b¼5.0) optimized for Alpine2 was
chosen as a demonstrator because the track is the most difficult
one in the group. ERoad, ETrack3, CGTrack2, and ETrack4 became
the demonstrator because they are the most difficult one from
each group.

Fig. 13 shows the five tracks selected. In this way, it is possible
to get the mix of training samples from controllers optimized for
tracks with different difficulty. Each controller drove on the track
where it had optimized while it generated training samples on
sensory input and target variables.

Table 4 summarizes the number of training samples from each
controller. Because each track has different length, the number of
samples from the track is not the same. However, they used the
same sampling rate (50 samples/s). From the training samples, we
ran the feature selection algorithm based on Pearson correlation
analysis (Table 5). At first, we applied linear regression to predict
Fig. 16. The comparison of actuators’ value of the two
the desired speed. For the analysis, WEKA software toolkit was
used [22]. In the learning, we used a least median squared linear
regression. The best linear equation is as follows and it uses only
six features:

Desired_Speed¼ 0:0639� Track½1�þ1:2619� Track½8��0:2008

�Track½9�þ1:1424� Track½10�þ0:1808

�Track½17�þ0:3701� speedX�7:9175

The number of input neuron was the same with the number of
features. It had one hidden layer and the number of hidden
neurons was equal to the number of input neurons. It was trained
using standard back-propagation algorithms. Learning rate
was 0.1 and momentum parameter was set as 0.01. The number
of epoch was 200. The best neural network used only four
input features (Track [1], Track [9], Track [17], and speedX). The
accuracy of the network was 87.78% on the dataset. Table 6 shows
controllers for the situation depicted in Fig. 15.
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that the performance of artificial neural networks for different
number of features.

The performance of controllers optimized on one track was
tested on the fourteen tracks in terms of the sum of lap time and
damages (Table 7(a)). It shows that the controller optimized on
Alpine2 (the most difficult track) performs the best among the
five controllers. However, the performance was poor if the
controller was optimized on the easy tracks (for example,
CGTrack2 and ETrack4). If you optimize controllers with small
number of tracks, it is a good strategy to use difficult one instead
of easy one.

It is possible to define ‘‘average controller’’ that minimizes the
sum of lap time on the five tracks. The average performance of the
controller is better than any controller optimized to single track.
In our work, the average controller was defined as a¼4.0 and
b¼3.0. In Table 7(b), it summarizes the lap time and the damage
of the average controller and the proposed method on the four-
teen unseen tracks. It shows that the average controller reduced
the sum of lap time than the Alpine2 controller but was poor
in terms of damage. The hybrid of the average controller and
NN significantly reduced the damage with small improvement
on the lap time. On the other hands, the combination of the
average controller and the LR significantly reduced the sum
of lap time but suffered from the high damage. The last one
was the average controller with NN and LR. The results were
promising because it reduced both the sum of the lap time and
the damages.

Fig. 15 shows some snap shots of the cars controlled by the
average controller and the plus neural networks on Street1 track.
In this curve, the average controller failed to avoid crashes.
However, the controller with the neural network reduced the
speed and turned its directions safely. Fig. 16 shows the actuator’s
values and response from the neural network while driving the
corner depicted in the Fig. 15.
5. Conclusion and future works

It is quite challenging to design controllers for simulated cars
because it requires much expert knowledge on car racing. In this
work, we tried to combine our heuristic controllers with two
machine learning approaches. It is true that the optimized con-
troller play well in the track trained on but there is often
performance degradation on unseen tracks. In this paper, we
applied the machine learning to generate the generalized controller
using the training samples from several optimized controllers.
In details, we used neural networks and linear regression analysis
to model the common properties in the training samples. Experi-
mental results show that the combination of two methods with our
basic controller performed the best on the fourteen unseen tracks.

It is interesting to compare the generalization ability of
different machine learning algorithms for this kind of problems.
For example, it is interesting to use evolutionary neural networks
to predict the desired speed instead of the standard neural
networks. It might be interesting to use training samples from
human players together with the data from the controllers.
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