
Learning to automatically spectate games for Esports using object detection mechanism

Ho-Taek Jooa,1 (hotaek87@gm.gist.ac.kr), Sung-Ha Leeb,1 (shlee0414@gm.gist.ac.kr), Cheong-mok Baea

(cmbae0307@gm.gist.ac.kr), Kyung-Joong Kima,b (kjkim@gist.ac.kr)

a School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South
Korea
b AI Graduate School, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
1 HT Joo and SH Lee contributed equally to this work.

Corresponding Author:
Kyung-Joong Kim
School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
Tel: (062) 715-5345
Email: kjkim@gist.ac.kr

Learning to automatically spectate games for Esports using object detection mechanism

Ho-Taek Jooa,1, Sung-Ha Leeb,1, Cheong-mok Baea, Kyung-Joong Kima,b,∗

aSchool of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
bAI Graduate School, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea

Abstract

Human game observers, who control in-game cameras and provide viewers with an engaging experience, are a vital part of elec-
tronic sports (Esports) which has emerged as a rapidly growing industry in recent years. However, such a professional human
observer poses several problems. For example, they are prone to missing events occurring concurrently across the map. Further,
human game observers are difficult to afford when only a small number of spectators are spectating the game. Consequently, various
methods to create automatic observers have been explored, and these methods are based on defining in-game events and focus on
defined events. However, these event-based methods necessitate detailed predefined events, demanding high domain knowledge
when developing. Additionally, these methods cannot show scenes that contain undefined events. In this paper, we propose a
method to overcome these problems by utilizing multiple human observational data and an object detection method, Mask R-CNN,
in a real-time strategy game (e.g., StarCraft).By learning from human observational data, our method can observe scenes that are
not defined as events in advance. The proposed model utilizes an object detection mechanism to find the area where the human
spectator is interested. We consider the pattern of the two-dimensional spatial area that the spectator is looking at as the object to
find, rather than treating a single unit or building as an object which is conventionally done in object detection. Consequently, we
show that our automatic observer outperforms both current rule-based methods and human observers. The game observation video
that compares our method and the rule-based method is available at https://www.youtube.com/watch?v=61JIfSrLHVk.

Keywords:
Esports, Spectators, Automatic Observer, Mask R-CNN, StarCraft

1. Introduction

Multiple humans called observers control camera movement
in Esports to provide an engaging and comprehensive viewing
experience for spectators. These observers play an important
role in Esports because only a portion of the game screen is
shown to spectators, not the entire game screen, and the ob-
server must control the camera to select the most interesting
and important part. However, because multiple events occur
simultaneously across the map, human observers may miss im-
portant events. Furthermore, because such professional human
observers require extensive domain knowledge and observing
experience, they are difficult to afford in small tournaments (Lie
et al. (2019)) or personal spectating. As a result, the demand for
automatic observers has grown.

Therefore, various automated observing methods have been
developed in pursuit of artificial observers. These methods can
be classified into two types: rule-based methods and learning-
based methods. Rule-based cameras can be found in games
such as Defense of the Ancients 2 (Dota 2), League of Legends
(LoL), and StarCraft (Mattsson et al. (2015)). Typically, the

∗Corresponding author.
Email addresses: hotaek87@gm.gist.ac.kr (Ho-Taek Joo),

shlee0414@gm.gist.ac.kr (Sung-Ha Lee), cmbae0307@gm.gist.ac.kr
(Cheong-mok Bae), kjkim@gist.ac.kr (Kyung-Joong Kim)

1HT Joo and SH Lee contributed equally to this work.

camera follows predefined important events across the map in
rule-based methods. There have been several studies conducted
on learning-based methods. The learning-based methods are
usually found in Dota 2. The learning-based methods use vari-
ous approaches such as predicting team-fight in advance (Tot
et al. (2021)), classifying types of predefined events (Phang
(2014)), or ranking the future importance of champions and
focusing on the champion using predefined event importance
value (Lie et al. (2019)).

Thus far, both rule-based and learning-based methods are
based on events and must predefine events and the importance
of each event, necessitating extensive domain knowledge when
developing. Furthermore, they cannot observe events that have
not been specifically defined. Furthermore, the significance of
events can change depending on the current state of the game,
making the observer unreliable. Additionally, as events become
more varied, such as in real-time strategy games similar to Star-
Craft which have significantly more units and strategies than
Dota 2, these event-based methods become even less viable be-
cause the events become more difficult to define.

In this paper, we first propose an approach to learning ob-
servation styles from human game observation data. Unlike
event-based approaches mentioned previously, the observation
module in our approach can observe the most important scenes
from the vast search space without requiring to predefine events
in detail, thus covering situations that are ambiguous or difficult

Preprint submitted to Expert Systems with Applications January 12, 2023

to define clearly.
To achieve this goal, unlike previous learning-based ap-

proaches, our framework used human data to learn human ob-
servation patterns in general rather than predefining each event
and finding it. We used data from multiple humans watching
the same game instead of a single human observation per game.
This is because the observer aims to observe the most engaging
situation, but a single human does not represent the interest of
spectators in general.

Furthermore, we propose the use of object detection mecha-
nisms as a method to learn human observational data. Apply-
ing object detection means that the proposed method focuses
on two-dimensional spatial regions. Hence, while event-based
learning only focused on the actions of in-game objects (e.g.,
attacking units, creating units in buildings, and upgrading at-
tacks/defenses in buildings), the proposed method focused on
patterns within a region that the humans watch. Generally, an
object detection (Zhao et al. (2019)) algorithm is the method for
determining what targets are in an image and where they are in
an image. In the case of a game, the target is objects, such as
player units or buildings. However, in this paper, the pattern of
the area humans are watching (viewport) is instead considered
as the target object. This is because, in game-spectating, the
overall patterns of observation, including places without build-
ings or units, are more important than the presence of specific
units or buildings.

In summary, we collect StarCraft in-game human observa-
tional data from participants (N=25) who played or watched
StarCraft for at least two hours per week. Using the collected
data, we proposed a framework for creating an automatic ob-
server using an object detection mechanism and modified an
algorithm to better fit our problem. The proposed framework
can be applied to various games that can obtain the game state,
such as a minimap, and the area viewed by a spectator is part of
the game state such as viewport (e.g., StarCraft, Dota 2, LoL).

However, unlike a typical object detection problem, our
problem lacks ground truths for each situation because the most
interesting region in the game is determined by the individual
interests and preferences of human observers. To compensate
for this difference, we developed the concept of the region of
common interest (ROCI), which is the region in which humans
have commonly observed interests. Specifically, ROCI refers
to the regions where the viewports of human observers over-
lap each other. Furthermore, by applying additional loss when
the model predicted an area that was not ROCI, the overall per-
formance of the automatic observer was improved. As for the
object detection algorithm, Mask R-CNN (He et al. (2020)) was
used.

The contributions of our study are as follows:

• This is the first automatic observer in-game that does not
require predefining events specifically, therefore requiring
far less domain-specific knowledge.

• We propose a novel method for creating an automatic
observer using object detection mechanisms and human
spectating data, which is being explored for the first time
in observer research.

• Furthermore, the proposed method outperforms existing
rule-based methods, human, and Mask R-CNN without
ROCI by defining and emphasizing ROCI.

• We propose a new evaluation metric for automatic ob-
servers and benchmark the various existing observers in-
cluding rule-based, imitation learning, and human obser-
vation.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses related work and background. Section 2.3
describes the problem in detail, using statements about Auto-
matic Observer and StarCraft. Section 4 presents the proposed
method and approaches. Detailed environmental settings and
procedures for experiments are stated in Section 5. Section 6
compares quantitative and qualitative evaluations with other ap-
proaches mentioned in this study. Finally, Section 7 concludes
our work.

2. Background and Related Work

This section introduces the existing automatic observer pa-
pers, the object detection algorithm used in our proposed frame-
work and how it was developed, the StarCraft game, the plat-
form we benchmarked, and the artificial intelligence techniques
used in this StarCraft game.

2.1. Automatic Observer

An observer is a subject who controls in-game cameras to
provide viewers with a spectating experience. The observer
displays significant or interesting events to viewers for them to
gain a better understanding or engaging experience of the game.
Any Esports match requires an observer, and generally, multi-
ple professional observers are required to broadcast Esports.

Several attempts have been made to develop an observer that
controls the camera automatically, without human intervention
because such professional observers are often prohibitively ex-
pensive in personal or small settings, get tired of observing mul-
tiple games, and make mistakes. Despite the growing interest
in Esports, studies on the spectating experience have received
insufficient attention (Lie et al. (2019)). In addition, the number
of existing studies on automatic observers is small compared to
the role of observers in Esports spectating.

We briefly summarized research on automatic observers of
the past in Table 1. Several games include built-in automatic
camera systems. Dota 2 and League of Legends, for exam-
ple, have an automatic observer called a directed camera in
spectator mode that follows important events across the map.
While not yet implemented in the game, in StarCraft, few rule-
based automatic observers have been developed such as AIIDE
(Artificial Intelligence and Interactive Digital Entertainment),
StarCraft AI Competition2 and SSCAIT (Student StarCraft AI
Tournament3) observers. They were developed because of the

2https://www.cs.mun.ca/ dchurchill/starcraftaicomp/
3https://sscaitournament.com/

2

Table 1: Previous works about automatic observers.

Works Game Event-based Method Comments
Phang (2014) Dota 2 Y Learning-based Hybrid of heuristic and machine learning (classification)

method
AIIDE StarCraft Y Rule-based Focus camera on predefined events and priorities

Mattsson et al. (2015) StarCraft Y Rule-based Focus camera on predefined events and priorities
Lie et al. (2019) Dota 2 Y Learning-based Find and predict important events using AdaRank
Tot et al. (2021) Dota 2 Y Learning-based Predict team-fight using deep neural network

Ours StarCraft N Learning-based Learn observing patterns of humans using object
detection

need to publicly stream bot games as public interest grows. To
accomplish this, the camera must follow interesting events to
make the stream appealing to viewers. Both AIIDE and SS-
CAIT examine a game screen based on these predefined in-
teresting game events, as well as the priorities of each defined
event. SSCAIT, on the other hand, has more detailed rules than
AIIDE. SSCAIT also employs a timer to determine the mini-
mum and maximum time between switching scenes (Mattsson
et al. (2015)).

Aside from rule-based methods, several works on automatic
observers that use deep learning or machine learning have been
investigated. These studies are primarily focused on Dota 2.
Existing studies must manually define each event and its event
importance hierarchy before using deep learning or machine
learning methods to predict or classify a few predefined events
such as team fights, farming, and ambushing (Phang (2014);
Tot et al. (2021)). However, while these event-driven learning
approaches have been widely used in the past, they have limi-
tations in that observers cannot observe events that are not de-
fined, and the importance of events that are defined can change
depending on the context of the game. These methods are
even less suitable for an environment with a greater variety and
number of events such as StarCraft. Because Real-Time Strat-
egy (RTS) games similar to StarCraft have far more units and
unit types than Multiplayer Online Battle Arena (MOBA) game
Dota 2, events are more diverse, increasing the likelihood of
undefined or poorly defined events. Additionally, because these
methods are developed in Dota 2, importing to other game plat-
forms can cause problems because the events are largely dif-
ferent and need redefining. The performance of these methods
could vary greatly depending on what events and importance
are defined.

2.2. Object Detection and Localization

Object detection is a sub-field of computer vision that detects
specific objects in digital images and videos. In detail, object
detection is a method that combines the recognition of the exis-
tence of an object (object recognition), what the object is (ob-
ject classification), and where the object (object localization) is
located in the image. The working principle of object detection
is to find a region with an object (this region is called Region
of Interest (ROI)) and then feed the ROI into the Convolution
Neural Networks (CNNs) to perform object classification and
box regression. The representative works of this object detec-

tion include regions with Convolutional Neural Networks fea-
tures (R-CNN) (Girshick et al. (2014)), Fast R-CNN (Girshick
(2015)), Faster R-CNN (Ren et al. (2017)), PointRend (Kirillov
et al. (2020)), and Mask R-CNN (He et al. (2020)).

R-CNN is the method that combines the selective search (Ui-
jlings et al. (2013)) method widely used in region proposals
with CNNs for object detection. This method extracts 2,000
“bounding boxes” (regional proposals) that are likely to have
objects in the image. Additionally, after making the extracted
“bounding boxes” the same size, pass them to CNNs to classify
what kind of object the extracted regions are. Fast R-CNN is
an algorithm that greatly accelerates R-CNN computation. R-
CNN locates ROI through selective search, and each region is
processed by the CNN, resulting in slow computation. Fast R-
CNN, on the other hand, sends the entire image to CNN, includ-
ing the ROI region discovered through selective search. The
ROI discovered through selective search is then projected based
on the size of the feature map passed through the CNN. Fast R-
CNN enabled learning as a single model, including classifica-
tion and bounding box regression, using this method. The layer
prior to ROI pooling in Mask R-CNN is the same as in Faster
R-CNN, and then a branch that predicts the mask is added to
make segmentation predictable. Mask R-CNN enabled object
detection by segmenting in pixels, as opposed to the object de-
tection model that predicted objects only with boxes.

2.3. StarCraft
StarCraft was one of the most commercially successful

games on the global market between the 1990s and 2000s. RTS
games, such as StarCraft, were considered to be among the most
challenging tasks for AI techniques to solve in the last decade.
RTS games typically have multiple subtasks, such as gathering
resources, training units, constructing buildings, and combating
enemies, to achieve a long-term goal, victory. To handle RTS
game-playing by AI agents, it should consider these tasks and
systemic constraints such as making real-time decisions.

The BroodWar Application Programming Interface45

(BWAPI) is an open-source C++ framework that interacts with
StarCraft. It enables the creation of custom-built AI players
and their incorporation into StarCraft games. StarCraft has
been used as a testbed of game AI research such as Hidden

4https://github.com/bwapi/bwapi
5https://bwapi.github.io/

3

Figure 1: Screen information for StarCraft. The observation screen (left) is
the actual screen of StarCraft, and Minimap (right) is an enlarged screen of the
picture on the left.

Markov Model (Hostetler et al. (2012)), Tree Search (Cho et al.
(2013)), Bayesian Network (Synnaeve & Bessière (2012)),
Reinforcement Learning (Wender & Watson (2012)) (Wang
et al. (2021)), Imitation Learning (Oh et al. (2017)), and others
since the release of BWAPI. Several international StarCraft
AI competitions (IEEE Conference on Games, SSCAIT, and
AIIDE) have been organized to promote the development of
AI players for the RTS games using BWAPI (Čertický et al.
(2019)).

3. Problem Definition for Observing the Game

In this section, we defined the viewport problem in automatic
observers and introduced what is critical to look at in viewports
and how difficult it is to create automatic observers in a Starcraft
game comparing Dota2.

3.1. Viewport Problem
The fundamental problem in many games, including popular

Esports games similar to Dota 2 or LoL, is that spectators can
only see a portion of the screen, known as the viewport, of the
entire game. Consequently, selecting a small area where spec-
tators are interested from a large observation space is required.
This issue also exists in StarCraft, which our method used as a
research platform. More detailed explanations about screens in
StarCraft to aid understanding of the platform are as follows.

In Figure 1, we describe how the screens of StarCraft are
structured based on example game screens. The “observation
screen” refers to the screen that the observer shows to the spec-
tators. This screen is composed of a “viewport” and HUD
(Head-Up Display) at the bottom of the screen. The “minimap”
shows abstracted information for the entire game state. It assists
the observer in grasping the overall situation such as unit move-
ments, battlefield conditions, and fog of war. As the “observa-
tion screen,” screen shows, observers in games cannot inspect
the entire situation at once. Thus, observers should determine
the region that is expected to make audiences most likely to be
currently interested in the entire game state and display it to
audiences via the viewport.

3.2. Finding Region of Interest
The problem we defined is to automatically find the ROI that

spectators are most likely to be excited about from the entire

screen for each frame of a game replay. Hence, our goal for
each frame of the game is to find the most exciting area that
spectators want to watch. This can be accomplished by collect-
ing human observing data, which each human viewed in an area
that they consider exciting, and learning the pattern of the view-
port where spectators watched in each situation. The detailed
method can be found in the following section.

3.3. Complexity of Providing an Observation Screen in Star-
Craft

While our framework can be applied to other games that can
get representative states of the game and if the observation area
is part of that state of the game, such as Dota 2 or LoL, our
framework used StarCraft as a research platform. Providing
an observing screen in StarCraft is a difficult task. The ma-
jority of existing studies on automatic observers using deep
learning have provided Dota 2 observing screens. However,
because Dota 2 is a five-vs-five game with each player control-
ling a single champion, the camera is usually focused on ten
players in those studies. While StarCraft is typically played in
one-on-one matches, unlike Dota 2, a player can control up to
200 units. Comparing the complexity of StarCraft with units
in games similar to LoL or Dota, the number of units in Star-
Craft is approximately 40 (400/10) times greater than those in
Dota 2 and LoL. Additionally, given the various types of units
and buildings, the events that can happen in StarCraft are more
diverse.

4. Proposed Framework for the Automatic Observer

This section introduces our proposed overall framework.
In the overall architecture section, it is explained in general
through Figure 2, and detailed explanations are given in the fol-
lowing subsection.

4.1. Overall Architecture

In this paper, we propose a framework for the automatic ob-
server based on human observational data, and Figure 2 depicts
the overall architecture of our proposed framework.

The proposed framework first requires replay files containing
in-game raw data. Replay files contain a set of actions that
the game engine can use to reproduce accurate events (Justesen
& Risi (2017)) and are now available in various games (e.g.,
StarCraft, LoL, Dota 2, Fortnite, etc.).

Then, the process of extracting in-game features is then car-
ried out using the raw data from the collected replay files. In-
game features, such as each unit or building in the game, serve
to represent the state of the game and are used as inputs for
creating automatic observers.

Unlike previous automated observer research, the proposed
method involves creating an automatic observer using human
observational data rather than expert-level domain knowledge
to create rules for in-game camera control. As a result, rather
than experts developing rules for automatic observers, our

4

Figure 2: Overall architecture for the proposed framework

method relies on human observational data. These game obser-
vation data can be obtained through video data on YouTube6,
Twitch7, etc., or by recruiting participants to observe the game.
The human observational collected data is used as target data to
create an automatic observer and must be transformed into part
of the overall game state. “Masked Human Data” in Figure 2
provides an example of five people watching the game.

Our proposed method searches for a ROI that corresponds to
a subset of the entire region using an object detection mech-
anism. The in-game features are used as input data of Mask
R-CNN, one of the representative algorithms of object mech-
anism, and the pre-processed human observational data is di-
vided into “labels,” “boxes,” and “masked data” for Mask R-
CNN to be used as target data.

Mask R-CNN model was performed in our framework using
these input data and target data, emphasizing the common area
of human observational data.

As a result of the model, “class scores,” “labels,” “boxes,”
and “masked data” are outputs, and our framework uses these
values for evaluation. The evaluation is divided into two parts:
a quantitative evaluation designed in the proposed framework
and a qualitative evaluation by replaying the actual StarCraft
game based on the predictions of automatic observers.

4.2. Input Data and Human Observational Data

With the replay file, the proposed framework does two things.
The first is to extract in-game features to create an automatic
observer and the second is to collect human observational data
from participants. It allows users to watch the game by load-
ing the replay file and controlling the observers by themselves
during the replay. Input data Selecting input features from
in-game raw data in Figure 3 to a neural network model on
the game’s screen is required to create an automatic observer.
When preprocessing in-game raw data for making input fea-
tures, it must consider whether to include all individual units

6https://www.youtube.com/
7https://www.twitch.tv/

Figure 3: Examples of raw data and human observational data in StarCraft
with map size (128×128). Each cell represents the accumulated and normal-
ized number of in-game units or buildings in that location (purple background
denotes empty places and dots that are closer to yellow color denote more
units/buildings placed) and each rectangular box represents the partial screen
of the map multiple participants are viewing.

and buildings on the map or group them based on character-
istics such as ground unit and air unit. Because the raw data,
such as units and buildings, differs between games, so do the
in-game features.

Human observational data is used as target data in our
framework, which uses the object detection mechanism. The
target data for the object detection model requires labels indi-
cating which objects are present in a given image, masked data
corresponding to the locations of the objects, and the bounding
box coordinates of each masked data.

Thus, we gathered participants who watched or played Star-
Craft for at least 2 hours a week and gave them access to the
replay files (details are provided in the subsection 5.2.) We had
multiple people watching the same replay and recorded which
screens they were watching.

In Figure 3, each human views different scenes even though
they watch the same frames in the same game because each

5

Table 2: Comparison table between the Conventional Mask R-CNN and the proposed method

Conventional Mask R-CNN Proposed Method with Mask R-CNN
Objects Objects in the given image (e.g., In StarCraft, work-

ers, attack units, and buildings are recognized as ob-
jects.)

Recognize the screen that the participants watch as an
object (the number of objects in a given image is the
number of participants).

Labels Types of objects given image (e.g., In Starcraft, work-
ers, attacking units, and buildings are each assigned a
label. For example, the background is labeled as zero,
and workers are labeled as one. Attacking units are
labeled as two, and buildings are labeled as three.).

There are two types of labels. Screens watched by
the participants are labeled as one, and screens not
watched by the participants are labeled as zero.

Masked data The pixel coordinates corresponding to the object are
filled with 1. The rest pixel is 0.

All regions that the participants watch are filled with
1. The rest are 0, not individual objects.

Figure 4: Masked data from human observational data and instance segmenta-
tion

human has unique preferences. Therefore, the proposed method
aims to find scenes that Esports audiences can enjoy by using
the collected data of participants to identify consistent common
points from the game screen that multiple participants watch.

The main advantage of utilizing human observational data is
by learning from the human spectating data; defining events and
the importance of each event is no longer necessary. Therefore,
generally less domain knowledge is required than in previous
event-based methods. Additionally, the observer can focus on
the interesting situation even if the corresponding event is not
defined.

4.3. Finding Common Interests of Humans with Mask R-CNN
4.3.1. Object Detection Mechanism

The role of the observer is to find specific ROI for the spec-
tators across the entire map. This process of finding a viewport,
which is a portion of the entire screen, is similar to the object
detection mechanism’s principle of determining what objects
are in the image and where they are located in the image. Sim-
ilarly, in the object detection algorithm, the region where the
object exists is ROI in the image and is a part of the entire im-
age. Thus, in the object detection algorithm, finding the ROI
corresponding to the mask in the image is analogous to find-
ing the ROI corresponding to a portion of the entire StarCraft
screen.

However, while the existing object detection algorithm de-
tects individual objects, our method identifies a region with a
pattern formed by in-game objects. For example, there are var-
ious patterns of objects gathered together in the rectangular re-
gions observed by humans in Figure 3. Therefore, the area that
the observer should look for is not each object, but the pattern
that the objects are forming such as what objects (player’s units
and buildings) are doing, where objects move, how many ob-
jects are grouped, and where objects are located on the entire
map (one player’s units are in another player’s base).

4.3.2. Finding Region of Interest with Mask R-CNN
As mentioned in the previous subsection 4.3.1, because our

handling problem detects a set of objects, not each object,
our method particularly adjusted target data that consist of the
masked data, labels, and bounding box coordinates used in
the Mask R-CNN such as Table 2.

For masked data, the human observational data in Figure 3
are masked as in Figure 4. In this figure, the observed area
is marked with one, and the non-watched area is marked with
zero. Additionally, for example, when there are data of five
spectators, as shown in Figure 3, the masked data is processed
by dividing it into five channels, as shown in Figure 4. The
existence of masked data is advantageous because masked data
allow the model to accurately express the area containing an
object.

Labeling in the object detection algorithm refers to determin-
ing which object the masked images are. Furthermore, in our
method, each masked data by human observation in Figure 4
was labeled as the same type of object, as presented in Table
2, such as (1, 1, 1, 1, 1). This labeling representation is called
instance segmentation (Hafiz & Bhat (2020)).

There are two types of segmentation methods in computer
vision: semantic segmentation and instance segmentation. Se-
mantic segmentation is a technique for treating multiple objects
of the same type with the same category as if they were one
entity. When multiple objects of the same type are in an im-
age, each object is masked differently as an individual object in
instance segmentation.

On the other hand, in the case of semantic segmentation,
multiple objects of the same type are all displayed on the same
screen as one class. The problem of choosing an observing re-

6

gion is not to represent all the different regions of interest, but
to adopt one ROI with the highest priority. Therefore, our pro-
posed method employs instance segmentation and can output
one partial screen for the entire game state by using instance
segmentation.

Furthermore, when the trained model predicts multiple
screens for a single partial screen, the screen with the highest-
class score can be chosen. Because Mask R-CNN is one of
the popular object detection algorithms among the instance seg-
mentation algorithms, we used Mask R-CNN as an object de-
tection algorithm for our method.

It is applied to box coordinates similarly as the existing Mask
R-CNN. The box (xmin, ymin, xmax, ymax) representing the mask
coordinates is also shown in Figure 4.

Loss Function The loss functions of our method with Mask
R-CNN are as follows.

Ltotal = Lmask +Lcls +Lbbox +LROCI (1)

where the mask loss Lmask, the classification loss Lcls, and
the box loss Lbox are inherited from Mask R-CNN.

The first following loss function of the mask branch Lmask

(2) applied average binary cross-entropy (Ruby & Yendapalli
(2020)).

Lmask = −

K∑
i=1

(yi log(pi) + (1 − yi) log(1 − pi)) (2)

where y denotes the label for the masked data (in 128×128 size.
The area observed by the participant is filled with 1, with the
remaining 0, as shown in Figure 4). p denotes the predicted
probability for the point for all K points. K denotes (128×128)
the entire pixel points.

Second, the loss function of classification branch Lcls (3) is
applied to cross-entropy. Mask R-CNN solves multi-class clas-
sification problems using cross-entropy by assigning class la-
bels based on the types of objects defined in the image dataset.
However, because the screen that the participants are watch-
ing is labeled as one in our setting for an automatic observer,
as presented in Table 2, the multi-class loss function in our
method modifies the binary classification problem that deter-
mines whether there is an area to watch in a given image.

Lcls = −

N∑
i=1

M∑
j=1

yi, j log(oi, j) (3)

N denotes the number of participants, and M denotes the
number of class categories. For our setting, M is one. Addi-
tionally, o represents the probability that there is an area for the
participants to watch in a given image.

The loss function of bounding-box Lbbox (4) applied smooth
L1 loss8:

Lbbox =

{
0.5(z − ẑ)2 i f |(z − ẑ)| < 1
|z − ẑ| − 0.5 otherwise (4)

8https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html

Figure 5: ROCI: applying Gaussian filter to masked image and finding local
maxima from the processed image

The box loss represents the regression problem that attempts
to fit four coordinates (xmin, xmax, ymin, andymax). z denotes four
x and y coordinate labels, and ẑ denotes four x and y coordinates
predicted by the model.

Input: Input masked image I, Gaussian filter FW of size
w × h
Output: Additional loss function LROCI

if overlapping area exists then
for all pixel I(x, y) do

Define a window W of size w × h around I(x,y)

Compute the Gaussian filter FW(x,y) at the
location (x,y)

Z(x,y) =
∑∑

(FW(x,y) ∗W(x,y))
end
Remove all elements inside the Z(x,y) that are less
than a threshold δ
Zmax(x,y) = maximum filter applied to Z(x,y)
Peak candidates C = nonzero elements in Zmax(x,y)
Sort C by intensities
Define maximum distance between peaks, D
for i = 0, ..., len(C) do

for j = 0, ..., len(C) do
if Minkowski distance between candidates
ci, c j < D then Remove c j from C

end
end
Peaks = C with size of number of observers, n
Consider each peak as the viewport of human
Calculate mask, labels, and boxes using the found
peaks
LROCI =

∑n
i=0(Lmaski +Lclsi +Lbboxi)

else
LROCI = 0

end
Ltotal = Lmask +Lcls +Lbbox +LROCI

Algorithm 1: Loss Function for Mask R-CNN with
ROCI term

ROCI-Mask R-CNN The goal of the observer is to view
events that satisfy as many spectators as possible, so viewing
the area where spectators are commonly interested is critical.
To emphasize human common interests, we first defined the re-
gion of common interest (ROCI), which refers to the area that
overlaps with each human observer’s viewport.

7

Figure 6: Example for model input. The left four columns describe player-side information. Each player’s information consists of workers, ground units, air units,
and buildings on that frame. The last figure shows an overlapped channel for all information in that frame, an aspect similar to the minimap information.

The first image of Figure 5 is the masked human observa-
tional data, and the overlapped area between masked viewports
of humans is highlighted in yellow. To find the point where the
views of humans overlap, we applied a Gaussian filter to the
masked image, which can be seen in the second image of Fig-
ure 5. This is done to smooth the abrupt increase in value so
that local maxima are found in the centers of overlapping areas
rather than on the edge. Next, we calculated the local maxima
of the image to find peaks of the processed masked image. In
the last image of Figure 5, the dots are the found local maxima.
We also created artificial viewports by using the peaks as cen-
ter points. The number of these additional viewports changes
proportionally to the number of human viewport intersections
or ROCI. Next, we used these new viewports as an additional
object to add additional loss, LROCI , to the original Mask R-
CNN loss, as shown in Algorithm 1. Therefore, loss increased
when the model predicted viewport farther from ROCI, which
emphasizes the most interesting region to multiple humans.

4.4. Evaluation Metric

Our evaluation is divided into quantitative and qualitative
components. Quantitative evaluation determines how similar
our findings are to the general human data. When applied to the
case of game observing, one of the evaluation metrics in object
detection is the intersection of union (IoU), which is expressed
as the following equation. Here, VP is a predicted viewport by
model, and VH is a viewport of humans.

IoU =
Area o f overlap
Area o f union

=
|VP ∩ VH|
|VP ∪ VH|

(5)

However, in the case of observing, this evaluation metric should
be modified. As it has been discussed in section 4.3, the match-
ing ground truth for a predicted viewport is not a single view-
port of a specific human but viewports of all human observers.
Therefore, in the quantitative evaluation, the performance of the
observer can be measured using the following equation.

Figure 7: Quantitative Evaluation

Per f ormance =
Areas o f overlap

Area o f a viewport

=
|VP ∩ (VH0 ∪ ... ∪ VHn−1 ∪ VHn)|

|VP|

(6)

Here, n is the number of human observers, and VHn is a view-
port of the nth human. If the overlapping area between pre-
dicted and human viewports is large, it indicates that the pre-
diction model’s observing behavior is similar to general human
behaviors. The overlapping area of viewports was summed and
divided by the size of a single viewport, as shown in Figure 7.
It is then averaged across entire frames of testing replay.

Qualitative evaluation is the process of actually running the
StarCraft game to check where it is observing. The qualitative
evaluation process confirms how close the proposed method is
to human observation in the game. Qualitative evaluation was
performed by selecting and comparing specific frames that only
humans could observe, which event prediction could not do.

5. Experiments

In this section, we explain the experimental setup in detail,
including data collection, data preprocessing, and benchmark-
ing methods.

8

Table 3: Replay information for training and evaluation. In “Matchup Races”, Z, P, and T denote Zerg, Protoss, and Terran, respectively.

Map Name Fighting Spirit Jade Othello

Matchup Races Z vs. P T vs. P Z vs. T Z vs. P Z vs. P

Starting Location 11 7 1 7 11 1 11 7 11 5 11 5 11 5

of Replays 15 1 1 1 1 1 1

Difference Default
(Table 5)

Start Location
(Table 6b)

Race
(Table 6a)

Map
(Table 6c)

Experiments
Evaluation 3-Fold Cross

Validation
Generalization Test

5.1. Input Data from Replay Files

5.1.1. Collecting Replay Files
Among several online sites, game replays are collected. We

collected StarCraft replay files from two well-known game
communities where various players upload game replays they
played: Ygosu9 and BWReplays10. We choose replay files un-
der constraints:

• APM (Actions Per Minute) is one of the most commonly
used measures in StarCraft to represent a player’s level.
This measurement can be quantified by collecting player
command actions. We gathered replay files from each
player whose APM is greater than 250.

• Race, StarCraft has three playable races: Protoss, Zerg,
and Terran. We used Protoss vs. Zerg, Terran vs. Protoss,
and Zerg vs. Terran replay files for training and evaluation.

• Playing map, even though there are many existing Star-
Craft maps, we collected games played in representative
competitive map “Fighting Spirit,” “Jade,” and “Othello.”
Each map layout is shown in Figure 8.

• Starting Location Each player starts at an arbitrary place
among the preset places upon maps whenever the game be-
gins. For example, “Fighting Spirit” and “Jade” have four
preset start locations on 2, 5, 8, and 11 clock positions on
the map; and also “Othello” has four preset start locations
but start locations on 1, 4, 7, and 10 clock positions. We
filtered replay files with each player’s start location. We
trained our model with Zerg (11) vs. Protoss (4) (num-
ber indicates the start location in the clock position on the
map)replay files. The model is then evaluated on other
cases for generalization tests.

We collected 15 replay files that met these criteria for the
training dataset. We collect additional 6 replay files to consider
various cases, such as different starting locations, different race
combinations, and different playing maps, for evaluating and
testing. Each replay contains about 4,000 frames, and the total

9https://ygosu.com/
10http://bwreplays.com/

Fighting Spirit Jade Othello

Figure 8: Actual images for used map

amount of collected data is approximately 420,000 (= 21 re-
plays × 4,000 frames × 5 times per replay). Table 3 presents re-
play information about matchup races, playing maps, and start-
ing locations for training and evaluation steps.

5.1.2. Data Extraction
We extract raw data from replay files using BWAPI for every

8 frames (one second ≃ 24 frames.) Raw data include below:

• Unit Information involves unit id, type, owner, and coor-
dinate for every unit and building.

• Vision Information includes players’ union visible re-
gions for each frame. Because many popular RTS games
use the fog of war concept, a visible region for each player
changes over game time as a result of unit position and
movement. We hypothesized that the actual observational
screen would be counted as one of the visible regions at the
time. Consequently, we expected this information to aid
model selection by narrowing the candidate region across
the entire map.

5.1.3. Data Preprocessing
In handling StarCraft data via BWAPI, there are two types

of coordinate systems: Position denotes the distance from the
left-top of the map in pixel unit values; and Tile Position de-
notes the divided position value by tile size (default: 32). We
chose the tile position coordinate system because computing
with pixel unitized values requires a significant amount of com-
putational resources and effort. Furthermore, we classified unit
information based on the features of abstracted units rather than
all of the detailed unit types. The following are the characteris-
tics of the abstracted units:

9

• Worker involves worker units, which can gather resources
and construct buildings. Probe (Protoss), SCV (Terran),
and Drone (Zerg) are included. Although worker units can
be classified as ground (they can also attack other units),
there are no significant differences between them except
under certain conditions such as in the early stages of the
game or when employing some strategies in which work-
ers make up a large part of the force.

• Trivial involves trivial units such as critters (neutral or-
ganisms) and larva (Zerg unit that only has the ability to
morph into other Zerg units.)

• Ground involves all the ground units except worker units
and trivial units.

• Air involves all the flyable units, including not only having
the capability of attack ability but also only transport or
support ability.

• Building involves all the constructions. Each construction
has different abilities, such as training units, increasing the
number of units that players can have, improving unit per-
formance, and unlocking abilities. Furthermore, some of
them are capable of attacking other units.

We transformed raw data into (T×C×W×H) shaped data. T
denotes the number of frames over the replay. C denotes the
number of channels. W and H denote map width and height
unitized by tile size.

Figure 6 shows the example of 8 input channels used in
our proposed framework. The input data include each player’s
workers, ground units, air units, and buildings.

We trimmed the data every four frames with these processes
so that models can process temporal information as model in-
puts. Hence, models receive (4×32×128×128) shaped data as
input (32 is calculated as 4 frames × 8 channels).

5.2. Collecting Human Observational Data

We gathered human observational data to train the automatic
observer model. Approximately 40 hours of observation data
from 21 games attended by 25 participants are collected. Each
replay is viewed by five different people. Fifteen participants
watched five replays each, while ten participants watched three
replays each. Participants were people between the ages of
20 and 35 who watched or played StarCraft for at least two
hours per week. Each participant used a keyboard and mouse
to spectate the game replays freely from start to end. While
the participants spectate the replay file, the (x, y) coordinates of
the location they currently watched are recorded at each frame.
Following the completion of data collection, participants were
asked to complete questionnaires about the parts they were most
interested in.

Even though the five participants watched the same replay,
the observing patterns of each participant were different. On
average, the viewport of a participant overlapped the mean of
52.3 percent (SD = 4.36) with the viewport of the other four
participants. The participants focused on different aspects of

Table 4: Target data and prediction data shape

Target Data Prediction Data
Masked Data [−1, 5 + n, 128, 128] [-1, over 10, 128, 128]
Bboxes [−1, 5 + n, 4, 1] [-1, over 10, 4, 1]
Labels [−1, 5 + n, 1] [-1, over 10, 1]
Class Scores [-1, over 10, 1]

the game. While some participants said they focused on build-
ing upgrades, others said they focused on expanding resources
or fighting. However, based on the percentage of overlapped
viewports, while the participants’ priorities in observing differ,
there are some events that they are all interested in and observe.

5.3. Benchmarks with Our Methods

As presented in Table 3, we first collected 15 replay files and
performed K-folds cross-validation (k = 3) based on these data.
15 replays were sampled into three sets, two of which were used
as training data and the third as testing data. The total number
of training epochs was 20. The procedure was repeated three
times, and the test set was rotated between them.

5.3.1. Our Method using Object Detection Mechanism
In the previous section, we collected human observational

data from five participants per replay file, which is recorded as
(x, y) left-top coordinates on the map for each frame. We con-
verted these data into target data that consist of masked data,
bounding box coordinates (bboxes), and labels, as presented
in Table 4.

Masked data are one observing screen corresponding to
(20×12) size in the total map size of (128×128). (128×128)
is filled with zeros, without the area corresponding to (20×12)
that is filled with one. There are five participants per replay file,
so there are five masked data per frame. Therefore, the total size
of masked data is (−1× (5 + n) ×128×128). Here, “-1” means
batch size, “n” means additional masked data using ROCI, as
shown in Figure 9c. Additionally, Figure 9d shows the total
masked data with ROCI (“5+n”). These masked data indicate
the ROI on the entire map by participants.

Bounding box coordinates are tangentially related to the
masked data such as Figure 4. Bounding box coordinates in-
dicate (xmin, ymin, xmax, ymax) coordinate values corresponding to
ROI on the map. The “x” coordinates of these boxes range from
0 to 108 (128-20), “y” coordinates of these boxes range from 0
to 116 (128-12); this is because the size of the masked data is
(20×12). We experiment with our method using Mask R-CNN
under three conditions as follows.

• Target data with a single human data We used training
data that only included observations from one person per
game. One of the five participants was chosen at random.
Labels are fixed in size (1).

• Target data with five human data We used training data
that contains five different human observations in the same
game. Labels are fixed in size (1, 1, 1, 1, 1).

10

(a) Five masked data based on human observing data

(b) ROCI (region of common interest)

(c) Additional masked data using ROCI

(d) Total masked data with ROCI

Figure 9: Masked Data used in Our Method

• ROCI-Mask R-CNN At each frame, we calculated the lo-
cation of a viewport-sized region where human viewports
intersected with other humans using Algorithm 1. The
threshold value δ used is 1.1, which was determined ex-
perimentally. We selected the threshold value between 1,
which was the value of the area where the single human
observer was watching in a masked image, and 2, which
was the value of the area two human observers were con-
currently watching. The final threshold value, 1.1, was
experimentally determined by testing the value from 1 to
2 with intervals of 0.1. As shown in Figure 9b, the red dots
indicate the detected center of overlapping points between
humans.

Then, we created masked data with that viewport-sized re-
gion, as shown in Figure 9c. Finally, we added additional
masked data on Figure 9b, as shown in Figure 9d. In this
case, the size of the labels changes depending on the num-
ber of detected ROCI. If the number of detected ROCI in-
creases, the size of the label proportional is greater.

After experimenting with our framework, our framework
predicts four values: “masked data,” “bounding boxes,” “la-
bels,” and “class scores,” as presented in Table 4.

Masked data display an area of approximately (20×12)
in size of (128×128). Bounding boxes predict values for
(xmin, ymin, xmax, andymax), and labels output a matrix of ones
similar to (1, 1, 1, 1, 1). The number of labels indicates the num-

ber of ROI predicted by the model. Additionally, class scores
show the probability that labels are predicted correctly.

Usually, the trained model by our framework predicts that
there are more than 10 objects (ROIs) in one image frame, as
presented in Table 4. Because the trained model predicted that
there are more than ten ROIs on average in a single frame, the
most accurate region should be chosen. Among the predicted
ROIs, our framework selects a region with the most probability
of class scores. The pairs of “masked data,” “bounding boxes,”
“labels,” and “label scores” are used for evaluation in the fol-
lowing section 6.

5.3.2. Behavior Cloning for Automatic Observer
To imitate human observational data, one method we used is

behavior cloning (BC), which is one of the primary methods
for imitation learning (Torabi et al. (2018)). First, the agent re-
ceives training data, which consists of expert-performed states
and actions. The expert policy is then replicated by training
classifiers or regressors. (Ross & Bagnell (2010)) In our case,
a regressor is used for training (Bain & Sammut (1999)). The
Mean Squared Error (MSE) loss function is used, as shown in
the following equation.

D∑
i=1

(xi − yi)2 (7)

11

Table 5: Evaluation: Percentage of the overlapped viewport with fixed races, starting location, and map.

Game Progression BC SSCAIT AIIDE Human Mask R-CNN
w/ one human

Mask R-CNN
w/ five humans

Mask R-CNN
w/ ROCI

1/4 0.075 0.485 0.557 0.549 0.593 0.624 0.641
2/4 0.059 0.503 0.513 0.516 0.550 0.584 0.595
3/4 0.058 0.511 0.501 0.509 0.535 0.574 0.586
4/4 0.061 0.524 0.491 0.516 0.530 0.569 0.588

Here, i denotes frame. x denotes predicted camera location, and
y denotes human camera location.

5.3.3. Rule-based Observer in StarCraft
We used modified observer modules that were used in Star-

Craft AI competitions, SSCAIT1112 and AIIDE StarCraft AI
Competition13, to compare our learning-based methods. AIIDE
and SSCAIT observers are both rule-based automatic StarCraft
observers. SSCAIT was created to control the in-game camera
using game events, priorities, and timers. The camera focuses
on predefined events such as an attack on a unit with the high-
est predefined priority score. The timers are used to determine
whether the camera should proceed to the next event, such as a
more prioritized event or a new event, or whether it should re-
main stationary. Furthermore, rather than teleporting, SSCAIT
smoothly moves the camera to the desired position. More de-
tails for each observer module can be found in (Mattsson et al.
(2015)).

6. Result Analysis and Evaluation

In this section, we present and analyze the results of the
experiment conducted in the previous section. The result and
analysis are divided primarily into quantitative analysis, which
shows how much each method is similar to general human data
quantitatively, and qualitative analysis, which compares the in-
game viewport of each method.

6.1. Quantitative Analysis

We compared seven different observing methods presented in
Table 5: Human observer, SSCAIT (rule-based observer), AI-
IDE (rule-based observer), behavior cloning observer model,
Mask R-CNN observer with the single human label, Mask R-
CNN observer with multiple human labels, and ROCI-Mask
R-CNN. We used an overlapping area between the predicted
viewpoint by each method and the viewport of multiple human
observers to evaluate how similar the behavior of each method
is to the behavior of multiple humans, as shown in Figure 7. A
detailed explanation of the evaluation method can be found in
section 4.4.

We did not choose a single human viewport to calculate the
overlapping area. Instead, we used all five human viewports.

11https://github.com/Plankton555/SSCAIT-ObserverModule
12https://sscaitournament.com/
13https://github.com/davechurchill/StarcraftAITournamentManager

This is because each human has different priorities and inter-
ests and views different scenes, as it was presented in section
5.2. According to our questionnaires, some human observers
valued building upgrades more than others, while others valued
battles and unit movements more. However, because humans
share approximately 52% of their viewport with other humans
on average, there is still significant overlapping of the view-
port between humans, implying that humans agree on the im-
portance of certain situations despite having different perspec-
tives on the game. Thus, focusing on these common interests
while mimicking human behavior is important because it sat-
isfies more viewers. In this metric, if the resulting viewport
predicted such a common area of interest, the viewport is more
likely to overlap with humans, resulting in a higher score.

We evaluated each model in four types of test sets. The first
test set is to evaluate the overall performance of each model
based on 3-fold cross-validation using 15 replay files, as pre-
sented in Table 3. The first test set is set on the same starting
location, matchup races, and map of the training set (Table 5).
The second to last test set (Table 6a, 6b, 6c) is to evaluate
how well it performs in unseen situations (Table 6c), specifi-
cally, how well the model generalizes. We conduct a general-
ization test with three models generated based on the first test
set through 3-fold cross-validation. The second test set is set
in a different starting location from the training set (Table 6a).
The third type of test set is set on different matchup races from
the training set (Table 6b). Additionally, the last test set is set
on a different map from the training set (Table 6c).

The overall result of the first type of test set is presented in
Table 5. Because game strategy evolves over time, we evaluated
each model based on game progression time: the first quarter of
the game, the half of the game, the third quarter of the game,
and the entire game. From the start to the end of the game,
the overlapping area of ROCI-Mask R-CNN was the largest,
followed by the order of five humans Mask R-CNN, one human
Mask R-CNN, human, SSCAIT, AIIDE, and BC.

Consequently, the ROCI-Mask R-CNN best observed the ar-
eas where it was viewed by most humans with interests. Mask
R-CNN with one human label performed worse than Mask R-
CNN with five human labels. As each human values the inter-
esting parts of the game state differently, a single human obser-
vational data is insufficient to represent the ROI of the public in
general. Therefore, Mask R-CNN with multiple human labels
was able to find a pattern that is more similar to the general hu-
man observation pattern. The ROCI-Mask R-CNN performed
the best out of the seven. This is because ROCI-Mask R-CNN
additionally considers regions where objects, which are human

12

Table 6: Generalization Test

(a) Generalization Test: percentage of overlapped viewport with different races.

Game Progression BC SSCAIT AIIDE Human Mask R-CNN
w/ one human

Mask R-CNN
w/ five humans

Mask R-CNN
w/ ROCI

1/4 0.020 0.562 0.621 0.607 0.597 0.612 0.610
2/4 0.015 0.547 0.495 0.559 0.551 0.584 0.578
3/4 0.008 0.589 0.490 0.576 0.563 0.600 0.611
4/4 0.004 0.581 0.482 0.572 0.569 0.593 0.615

(b) Generalization Test: percentage of overlapped viewport with different starting locations.

Game Progression BC SSCAIT AIIDE Human Mask R-CNN
w/ one human

Mask R-CNN
w/ five humans

Mask R-CNN
w/ ROCI

1/4 0.028 0.526 0.558 0.545 0.585 0.567 0.609
2/4 0.031 0.487 0.477 0.493 0.481 0.500 0.538
3/4 0.038 0.482 0.459 0.496 0.483 0.498 0.529
4/4 0.042 0.508 0.476 0.512 0.508 0.529 0.559

(c) Generalization Test: percentage of overlapped viewport with different map.

Game Progression BC SSCAIT AIIDE Human Mask R-CNN
w/ one human

Mask R-CNN
w/ five humans

Mask R-CNN
w/ ROCI

1/4 0.088 0.510 0.649 0.556 0.557 0.628 0.598
2/4 0.111 0.470 0.544 0.515 0.521 0.565 0.563
3/4 0.101 0.490 0.514 0.519 0.516 0.545 0.55
4/4 0.109 0.502 0.509 0.514 0.519 0.556 0.581

Game State Human
Observational Data

Single Human
(Prediction)

Five Humans
(Prediction)

Figure 10: The result of comparing a single human and five humans

observational data, intersect. Therefore, when ROCI is empha-
sized, it is more suitable for locating the most general human
observer.

While both SSCAIT and AIIDE are rule-based methods, they
demonstrated significant performance differences. This demon-
strates that rule-based methods are not consistent, and their
performance is heavily dependent on the person specifying the
rules, making them less suitable for automatic observation.

It is worth noting that, despite the fact that the Mask R-CNN
with five humans model was trained using human observational
data, the overlapping area of the Mask R-CNN with five hu-
mans was larger than the human average. This is because Mask
R-CNN with five humans was trained with multiple human ob-
servers rather than just one. Because humans have different
preferences and perspectives and they can make mistakes oc-
casionally, such as not observing important scenes, humans do
not watch the same scene as other humans do constantly. In
Figure 10, each human views different scenes except for a few
overlaps. If trained with a single human data, Mask R-CNN
only learns from the view and perspective of a single human.

As shown in Figure 10, in the testset, the Mask R-CNN with
one human predicts the viewport where only a single human is
watching, rather than the area where the humans are generally
watching. On the other hand, the Mask R-CNN with five hu-
mans learns from multiple views and perspectives of humans.
Additionally, its prediction is more likely general to multiple
humans, such as in Figure 10, resulting in higher performance
than both a human average and Mask R-CNN with a single hu-
man. More examples about Figure 10 are in the appendix sec-
tion. More examples are Figure 16.

Additionally, Mask R-CNN has access to more detailed in-
formation about the entire map, such as the layout of air or
ground units, whereas humans only have access to more gen-
eral information such as the minimap and current viewport.

Generalization Test As mentioned in section 5.1.1, we col-
lected 15 replay files with fixed race, location, and map with
Zerg (11), Protoss (4), and map (Fighting Spirit). Addition-
ally, our proposed method in the same race, location, and map
showed superior performance to the previous study, as pre-
sented in Table 4. Moreover, we additionally collected the six
replay files in three unseen situations, which are with two un-
seen maps, two unseen races, and two unseen starting locations,
to measure the generalization performance of our model. Addi-
tionally, we evaluated our model with new replay files. Tables
6a, 6b, and 6c present the generalization performance results
for unseen races, unseen starting locations, and unseen maps,
respectively.

In the first quarter of the game, when testing the model on the
test set with different races and maps from the training set, the
rule-based observer, AIIDE, outperformed the Mask R-CNN
with ROCI. Mask R-CNN with five humans performed better in

13

Game State Human
Observational Data

Five Humans
(Prediction)

ROCI
(Prediction)

Figure 11: Result of comparing five humans and ROCI at the beginning of the
game

Game State Human
Observational Data

Five Humans
(Prediction)

ROCI
(Prediction)

Figure 12: The result of comparing five humans and ROCI at the end of the
game

the first half of the game. However, the performance of both AI-
IDE and Mask R-CNN with five humans dropped dramatically
as the game progressed, with AIIDE dropping more dramati-
cally than Mask R-CNN and Mask R-CNN with ROCI show-
ing the best overall performance. The number of players and
units is small at the start of the game, and the game is relatively
simple. As shown in Figure 11, in the early stage of the game,
the human observers mostly view a small number of the same
scenes because significant events do not occur much. However,
as the game progresses, the game and strategies become more
complex, and significant events, such as battles, can occur in
multiple locations at the same time. However, in the middle
or end stage of the game, in Figure 12, the human observers
view different scenes, and only a few human viewports overlap
with each other. Therefore, as for the Mask R-CNN with five
humans, in the early stage of the game, the performance does
not affect much even without additional ROCI masked data be-
cause the human viewports already mostly overlap with each
other, and the area of human viewports is mostly the same as
ROCI. However, as the game progress, the viewports of humans
are divided. Additionally, the areas of human viewports are no
longer mostly the same as ROCI. Thus, the Mask R-CNN with
ROCI shows better performance in the entire game because it
highlights commonly interesting areas when the viewports of
humans are divided. As for the AIIDE, which has to manually
define each event and the importance of each event, in the early
stage of the game, it is easier to show high performance because
events are few and simple, unlike in the later stage of the game.
More examples about Figures 11 and 12 can be found in the
appendix section. More examples are Figures 14 and 15.

The result of the generalization test of Mask R-CNN with
ROCI shows that our model is flexible and can adapt to different
types of situations from the training data.

6.2. Qualitative Analysis
In this section, we compare how each method is applied qual-

itatively. Although our method performs well and is better de-
duced in quantitative evaluation when compared to other meth-
ods, it needs to be demonstrated through practical proofs in var-
ious cases. Therefore, we examine the same test replay file with
all methods to see where each method focuses on specific situ-
ations such as events or unit tracking. By doing this, it demon-
strates how each method performs in practice.

Figure 13 shows how each method practically works out in
event cases. Columns indicate each method: Behavior-Cloning;
Rule-based methods results that AIIDE and SSCAIT observer
module; human’s observational results that replay data from a
person’s log, which is arbitrarily chosen, among test datasets;
and our method result.

Figure 13a and Figure 13b show when players first encounter
each other using a worker unit and a ground unit, respectively.
Both scenarios are critical for each player, and revealing veiled
information and specifying the enemy’s location as soon as pos-
sible can help them plan their build order and playing style. In
the first encounter, humans and ours usually focused/tracked
where the appropriate position was, whereas behavior-cloning
and rule-based did not. While the first encounter between two
players is an important situation in the game, the rule-based
methods watch the base of the player rather than focusing on
the first encounter. In the rule-based method, to detect an event
that a unit of each player encounters, the distance between units
should be calculated. Because a single player can control up to
200 units, calculating the distance between each unit is inef-
ficient, more so if the number of players increases. Thus, in
event-based methods, the event encounter between two players
is not defined and fails to observe the important scene, such as
the first encounter, unlike our method.

In StarCraft, gathering more abundant resources than the en-
emy can make advantageous situations by pressing the enemy
using plenty of units; thus, interrupting gathering resources for
the enemy is an important strategic action. Figure 13c shows
the situation where Zealots (Protoss ground units) intrude on
Zerg’s expanded base and prevent gathering resources. This
situation lasts about 30 seconds as Zealots travel around nar-
row aisles between mineral fields inflicting drones. Except for
behavior-cloning, most methods focus on this situation. Rule-
based methods, on the other hand, concentrate on other loca-
tions where other events occurred recently.

Figure 13d shows that Hydralisks (Zerg ground unit) attack
Protoss’s defense line. In this situation, rule-based methods
did not observe before combat began and only observed when
combat started. Humans and our method, on the other hand,
predict that the battle will happen and are focused on the battle-
field from the moment units are deployed to the frontlines, even
when no combat occurs.

Figure 13e shows that Protoss assembles units on the outpost
to break down Zerg’s pressure. There are no notable events
or battles in this situation. Therefore, rule-based methods shift
their focus to another location where an event occurred recently.
However, humans and ours are focused on the scene where units
are assembling to watch a possible future battle.

14

Behavior-Cloning AIIDE SSCAIT Human Ours

(a) Probe (Protoss worker unit) first encounters Zerg camp

(b) Zergling (Zerg melee ground unit) found Protoss camp

(c) Zealots (Protoss melee ground units) inhibit Zerg gather resources behind Minerals

(d) Hydralisks (Zerg ranged ground units) press Protoss defense-line

(e) Protoss assemble units to breakdown Zerg’s pressure

Figure 13: Example for comparing methods qualitative evaluation

Overall, the behavior-cloning tries to catch our situations
but failed to find our exact positions or timings, also it gets
dramatically worse on the test dataset. The rule-based meth-
ods try covering predefined events on each script. Its perfor-
mance depends on how many rules are predefined and how fine
they are. If the rule did not cover the specific situation, it fails
to observe properly. Furthermore, the rule-based method did
not predict future events. Although humans’ performance re-
lies on their personal interests and preferences, it usually con-
verges in important situations. However, some humans focus
on trivial scenes sometimes, even though the majority of hu-
man are focusing on other places the interesting events are oc-
curring. Our method is overall successful in detecting impor-
tant situations using human observational data. Some human

observers frequently fail to focus on appropriate scenes; how-
ever, our method learns from the observational data of multiple
human observers, thus observing the scenes that humans will
commonly be interested in.

7. Conclusion

We proposed a novel framework of automatically providing
an observing screen to the audience for Esports using the object
detection mechanism based on human observational data.

The role of the observer in Esports is to provide a screen that
the public will find most interesting. Therefore, the proposed
framework collects several human observational data represent-
ing the public and creates an automatic observer using an object

15

detection mechanism based on this data. The object detection
mechanism is to classify what objects are in the image and dis-
cover where they are. Our method treats the observation area of
the participants as an object of the object detection mechanism.

The participant’s observation area contains many in-game
objects. Therefore, treating the participant’s observation area as
an object is to objectify the various patterns that these in-game
objects are making. Thus, our method also includes selecting
in-game features to create patterns for these in-game objects.

Moreover, we evaluated our proposed methods, IL, Mask R-
CNN, rule-based methods, and the average value of collected
human observational data using two evaluation metrics. The
first is quantitative evaluation. Using quantitative evaluation,
the performance of methods is assessed by noting how similar
viewports are to the collected human observational data. The
second is qualitative evaluation, which involves entering the
predicted coordinates into the StarCraft game and evaluating
which screens are displayed under what conditions.

Our proposed method outperformed other methods up to the
total playtime in the quantitative evaluation. Moreover, the
qualitative evaluation shows that the automatic observer by our
method was able to capture scenes where humans are interested,
which could not be done by event prediction.

Our main contribution is to propose a method for automat-
ically providing the most exciting scenes, even in complex
games similar to StarCraft. Furthermore, we proposed several
methods for using human observational data and an evaluation
metric based on human observational data. Our framework can
also be applied to other games that can represent some of the
overall game state, not only StarCraft.

There are several limitations of this study. First, current Es-
ports observers must interact with commentators to provide a
more satisfying experience to the spectators. However, the pro-
posed model cannot yet interact with the commentators. The
second limitation is that to achieve real-time automatic obser-
vation, the help of the development company is needed to obtain
the real-time in-game state.

Several future works exist. The first one is to improve the
performance of the proposed automatic observer. For exam-
ple, simple data augmentation techniques, such as translat-
ing/rotating, can increase the generalization performance. The
second one is to extend our method to other games. This paper
only applies the automatic observer to the StarCraft platform.
We plan to expand our work to other commercial games, such
as Dota 2 or LoL. Moreover, while only the Mask R-CNN was
applied in this paper, we plan to use different object detection
algorithms and compare their performances.

Acknowledgements

This research was supported by the National Re-
search Foundation of Korea (NRF) funded by the MSIT
(2021R1A4A1030075).

References

Bain, M., & Sammut, C. (1999). A framework for behavioural
cloning. Machine Intelligence, 15, 103–129.

Cho, H. C., Kim, K. J., & Cho, S. B. (2013). Replay-based
strategy prediction and build order adaptation for starcraft
ai bots. In 2013 IEEE Conference on Computational Intel-
ligence and Games, CIG 2013. doi:10.1109/CIG.2013.
6633666.

Girshick, R. (2015). Fast r-cnn. In inproceedings of the IEEE
International Conference on Computer Vision (pp. 1440–
1448). doi:10.1109/ICCV.2015.169.

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich
feature hierarchies for accurate object detection and se-
mantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition (pp.
580–587).

Hafiz, A. M., & Bhat, G. M. (2020). A survey on instance seg-
mentation: state of the art. International Journal of Mul-
timedia Information Retrieval, 9, 171–189. doi:10.1007/
s13735-020-00195-x.

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2020). Mask r-
cnn. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 42, 2961–2969. doi:10.1109/TPAMI.2018.
2844175.

Hostetler, J., Dereszynski, E., Dietterich, T., & Fern, A. (2012).
Inferring strategies from limited reconnaissance in real-
time strategy games. In Uncertainty in Artificial Intelli-
gence - inproceedings of the 28th Conference, UAI 2012
(pp. 367–376).

Justesen, N., & Risi, S. (2017). Learning macromanagement in
starcraft from replays using deep learning. doi:10.1109/
CIG.2017.8080430.

Kirillov, A., Wu, Y., He, K., & Girshick, R. (2020). Pointrend:
Image segmentation as rendering. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition (pp. 9799–9808).

Lie, H., Lukas, D., Liebig, J., & Nayak, R. (2019).
A novel learning-to-rank method for automated cam-
era movement control in e-sports spectating. Com-
munications in Computer and Information Science,
996, 149–160. URL: https://link.springer.com/

chapter/10.1007/978-981-13-6661-1_12. doi:10.
1007/978-981-13-6661-1_12/COVER/.

Mattsson, B. P., Vajda, T., & Čertickỳ, M. (2015). Automatic
observer script for starcraft: Brood war bot games
(technical report). arXiv preprint arXiv:1505.00278,
. URL: https://arxiv.org/abs/1505.00278v1.
doi:10.48550/arxiv.1505.00278.

16

http://dx.doi.org/10.1109/CIG.2013.6633666
http://dx.doi.org/10.1109/CIG.2013.6633666
http://dx.doi.org/10.1109/ICCV.2015.169
http://dx.doi.org/10.1007/s13735-020-00195-x
http://dx.doi.org/10.1007/s13735-020-00195-x
http://dx.doi.org/10.1109/TPAMI.2018.2844175
http://dx.doi.org/10.1109/TPAMI.2018.2844175
http://dx.doi.org/10.1109/CIG.2017.8080430
http://dx.doi.org/10.1109/CIG.2017.8080430
https://link.springer.com/chapter/10.1007/978-981-13-6661-1_12
https://link.springer.com/chapter/10.1007/978-981-13-6661-1_12
http://dx.doi.org/10.1007/978-981-13-6661-1_12/COVER/
http://dx.doi.org/10.1007/978-981-13-6661-1_12/COVER/
https://arxiv.org/abs/1505.00278v1
http://dx.doi.org/10.48550/arxiv.1505.00278

Oh, I.-S., Cho, H., & Kim, K.-J. (2017). Playing real-
time strategy games by imitating human players’
micromanagement skills based on spatial analy-
sis. Expert Systems with Applications, 71, 192–205.
URL: https://www.sciencedirect.com/science/

article/pii/S0957417416306613. doi:https:
//doi.org/10.1016/j.eswa.2016.11.026.

Phang, D. W.-S. (2014). Intelligent Camera Control in Game
Replays. Ms thesis.

Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster r-
cnn: Towards real-time object detection with region pro-
posal networks. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 39. doi:10.1109/TPAMI.
2016.2577031.

Ross, S., & Bagnell, D. (2010). Efficient reductions for imi-
tation learning. In Y. W. Teh, & M. Titterington (Eds.),
inproceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics (pp. 661–668).
PMLR volume 9. URL: https://inproceedings.mlr.
press/v9/ross10a.html.

Ruby, U., & Yendapalli, V. (2020). Binary cross entropy with
deep learning technique for image classification. Int. J.
Adv. Trends Comput. Sci. Eng, 9.

Synnaeve, G., & Bessière, P. (2012). Special tactics: a bayesian
approach to tactical decision-making. In IEEE Confer-
ence on Computational Intelligence and Games (CIG) (pp.
978–979). URL: https://hal.archives-ouvertes.
fr/hal-00752841.

Torabi, F., Warnell, G., & Stone, P. (2018). Behavioral cloning
from observation. In IJCAI International Joint Confer-
ence on Artificial Intelligence. volume 2018-July. doi:10.
24963/ijcai.2018/687.

Tot, M., Conserva, M., Chitayat, A. P., Kokkinakis, A., Patra,
S., Demediuk, S., Munoz, A. C., Olarewaju, O., Ursu, M.,
Kirmann, B., Hook, J., Block, F., Drachen, A., & Perez-
Liebana, D. (2021). What are you looking at? team fight
prediction through player camera. In IEEE Conference
on Computatonal Intelligence and Games, CIG. volume
2021-August. doi:10.1109/CoG52621.2021.9619038.

Uijlings, J. R., Sande, K. E. V. D., Gevers, T., & Smeul-
ders, A. W. (2013). Selective search for object recog-
nition. International Journal of Computer Vision, 104.
doi:10.1007/s11263-013-0620-5.

Wang, X., Song, J., Qi, P., Peng, P., Tang, Z., Zhang, W., Li, W.,
Pi, X., He, J., Gao, C. et al. (2021). Scc: an efficient deep
reinforcement learning agent mastering the game of star-
craft ii. In International Conference on Machine Learning
(pp. 10905–10915).

Wender, S., & Watson, I. (2012). Applying reinforcement learn-
ing to small scale combat in the real-time strategy game

starcraft:broodwar. In IEEE Conference on Computational
Intelligence and Games, CIG 2012. doi:10.1109/CIG.
2012.6374183.

Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object
detection with deep learning: A review. IEEE Trans-
actions on Neural Networks and Learning Systems, 30.
doi:10.1109/TNNLS.2018.2876865.

Čertický, M., Churchill, D., Kim, K.-J., Čertický, M., & Kelly,
R. (2019). Starcraft ai competitions, bots, and tournament
manager software. IEEE Transactions on Games, 11, 227–
237. doi:10.1109/TG.2018.2883499.

Appendix A.

The hyper-parameters used in the proposed method are as
follows in Table 7. Our basic parameter settings follow the
site14. We conducted additional experiments according to the
window size, epochs, and learning rate in hyper-parameters.
The experimental results are presented in Appendix D.

Table 7: Hyper-parameters setup for Mask R-CNN

Hyper-parameters Value
Backbone Resnet50
Input image size 800 × 800
Window size [1, 2, 4, 8]
Batch size 4
Epochs [5, 10, 20, 30]
Network optimizer SGD
Learning momentum 0.8
Learning rate [0.00025 ,0.005, 0.01]
Weight decay 0.0005
Scale of anchor (32, 64, 128, 256, 512)
Aspect ratio of anchor (0.5, 1, 2)
RPN NMS threshold 0.7

Appendix B.

In our paper, we used Algorithm 1 to find multiple points
where humans are commonly interested. We have experi-
mented and included the result of when only a single intersec-
tion that has the largest value is used as ROCI. As shown in Ta-
ble 10, the results show lower performance than the proposed
method.

Appendix C.

Rather than using the percentage of overlapped viewport
area, the other evaluation metrics exist. We included an alter-
native quantitative evaluation to further validate our result. One
feasible evaluation is using a specific threshold value to deter-
mine whether each method predicted the object, in our case the

14https://pytorch.org/tutorials/intermediate/torchvision tutorial.html

17

https://www.sciencedirect.com/science/article/pii/S0957417416306613
https://www.sciencedirect.com/science/article/pii/S0957417416306613
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2016.11.026
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2016.11.026
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/TPAMI.2016.2577031
https://inproceedings.mlr.press/v9/ross10a.html
https://inproceedings.mlr.press/v9/ross10a.html
https://hal.archives-ouvertes.fr/hal-00752841
https://hal.archives-ouvertes.fr/hal-00752841
http://dx.doi.org/10.24963/ijcai.2018/687
http://dx.doi.org/10.24963/ijcai.2018/687
http://dx.doi.org/10.1109/CoG52621.2021.9619038
http://dx.doi.org/10.1007/s11263-013-0620-5
http://dx.doi.org/10.1109/CIG.2012.6374183
http://dx.doi.org/10.1109/CIG.2012.6374183
http://dx.doi.org/10.1109/TNNLS.2018.2876865
http://dx.doi.org/10.1109/TG.2018.2883499

Table 8: The percentage of correct prediction with intersection threshold=0.3

Game Progression BC SSCAIT AIIDE Human Mask R-CNN
w/ one human

Mask R-CNN
w/ five humans

Mask R-CNN
w/ ROCI

1/4 0.104 0.596 0.664 0.665 0.686 0.725 0.743
2/4 0.081 0.630 0.628 0.634 0.651 0.695 0.702
3/4 0.080 0.644 0.618 0.633 0.641 0.689 0.701
4/4 0.084 0.660 0.607 0.639 0.638 0.685 0.706

Table 9: The percentage of correct prediction with intersection threshold=0.5

Game Progression BC SSCAIT AIIDE Human Mask R-CNN
w/ one human

Mask R-CNN
w/ five humans

Mask R-CNN
w/ ROCI

1/4 0.059 0.538 0.631 0.619 0.658 0.695 0.711
2/4 0.044 0.564 0.588 0.581 0.612 0.656 0.661
3/4 0.044 0.575 0.573 0.576 0.599 0.645 0.653
4/4 0.046 0.590 0.561 0.580 0.594 0.640 0.657

Table 10: The comparison of the percentage of the overlapped viewports be-
tween Mask R-CNN with ROCI and Mask R-CNN with single ROCI that had
the largest value.

Game Progression Mask R-CNN /w ROCI Mask R-CNN /w single ROCI

1/4 0.641 0.639
2/4 0.595 0.588
3/4 0.586 0.581
4/4 0.588 0.575

human viewport, correctly or not to calculate the accuracy. For
example, in the case when the threshold is 0.5, if the percent-
age of the overlapped area between the human viewport and the
predicted viewport exceeds 0.5, the prediction is correct.

We included Table 8 and 9, which show the results of the
alternative evaluation method when the threshold is 0.3 and 0.5.
As shown in the table, similar to the original evaluation in our
paper, Mask R-CNN with ROCI shows the highest performance
in both thresholds 0.3 and 0.5.

Appendix D.

As mentioned Appendix A, we have trained models using
different epochs [5, 10, 20, 30], different window sizes [1, 2, 4],
and different learning rates [0.00025, 0.005, 0.01]. The results
are presented in Tables 11, 12, and 13. Here, the models are not
trained 3-fold and are only trained once.

Table 11: The results of Mask R-CNN with ROCI at learning rate 0.01, 0.005,
and 0.00025.

Learning Rate
Game Progression 0.01 0.005 0.00025

1/4 0.629 0.635 0.714
2/4 0.565 0.564 0.631
3/4 0.547 0.562 0.617
4/4 0.552 0.569 0.644

Table 12: The results of Mask R-CNN with ROCI at epoch 5, 10, 20, and 30.

Epoch
Game Progression 5 10 20 30

1/4 0.662 0.648 0.648 0.648
2/4 0.583 0.572 0.571 0.571
3/4 0.581 0.554 0.554 0.554
4/4 0.587 0.550 0.550 0.550

Table 13: The results of Mask R-CNN with ROCI at windowsize 1, 2, 4, and
8.

Windowsize
Game Progression 1 2 4 8

1/4 0.610 0.621 0.647 0.651
2/4 0.583 0.614 0.618 0.621
3/4 0.570 0.588 0.603 0.597
4/4 0.560 0.593 0.600 0.598

Appendix E.

As mentioned in section 6.1, we additionally show the ex-
perimental results at the beginning of the game and end of the
game, as shown in Figures 14 and 15. At the beginning of the
game, the predictions of human observation data (Figure 14b)
and the trained model with five human data (Figure 14c) and
ROCI (Figure 14d) are almost similar. On the other hand, at the
end of the game, predictions are almost different.

Appendix F.

As mentioned in section 6.1, we additionally show the exper-
imental results for various states, demonstrating that the use of
multiple human observational data is effective, as shown in Fig-
ure 16. Figure 16a shows the game state, and Figure 16b shows
the target data for five human observational data. Figures 16c,
16d, and 16e show the prediction of the model trained with sin-
gle human data, the prediction of the training model with five

18

(a) Game state feature

(b) Five masked data based on human observational data

(c) Results for Mask R-CNN with five human data

(d) Results for Mask R-CNN with ROCI

Figure 14: Experimental results at the beginning of the game

(a) Game state feature

(b) Five masked data based on human observing data

(c) Results for Mask R-CNN with five human data

(d) Results for Mask R-CNN with ROCI

Figure 15: Experimental results at the end of the game

19

(a) Game state feature

(b) Five masked data based on human observational data

(c) Results for Mask R-CNN with a single human data

(d) Results for Mask R-CNN with five human data

(e) Results for Mask R-CNN with ROCI

Figure 16: Experimental results for our method

human data, and the prediction of the learning model that com-
bines five human data and ROCI, respectively. Comparing the
results of Figure 16b and Figures 16c, 16d, and 16e, we can
see that Figure 16e predicts the overlapping part of the human
observational data best.

20

	Introduction
	Background and Related Work
	Automatic Observer
	Object Detection and Localization
	StarCraft

	Problem Definition for Observing the Game
	Viewport Problem
	Finding Region of Interest
	Complexity of Providing an Observation Screen in StarCraft

	Proposed Framework for the Automatic Observer
	Overall Architecture
	Input Data and Human Observational Data
	Finding Common Interests of Humans with Mask R-CNN
	Object Detection Mechanism
	Finding Region of Interest with Mask R-CNN

	Evaluation Metric

	Experiments
	Input Data from Replay Files
	Collecting Replay Files
	Data Extraction
	Data Preprocessing

	Collecting Human Observational Data
	Benchmarks with Our Methods
	Our Method using Object Detection Mechanism
	Behavior Cloning for Automatic Observer
	Rule-based Observer in StarCraft

	Result Analysis and Evaluation
	Quantitative Analysis
	Qualitative Analysis

	Conclusion

