

Abstract—Bayesian network (BN) is a useful tool to
represent joint probability distribution in the form of
graphical model providing flexible inference and uncertainty
handling. If there is enough knowledge about domain, it is
possible to design the structure and parameters of BN by
expert. Also, it can be learned from massive dataset with
statistical learning algorithm. Usually, because the search
space of Bayesian networks is relatively huge compared to
the other models, evolutionary algorithms have been used to
find optimal structure and parameters by many researchers. In
this paper, we have focused on the topic of adaptation of
constructed models for better performance. If there are a
number of models constructed or learned by different experts
or sources, it is better to fuse them into one model by
considering all the information of each model. However, the
complexity of the integrated model is relatively higher than
previous isolated models. Minimizing the complexity of the
integrated model using evolutionary algorithm is proposed.
After integrating models into single one, it needs to adapt to
the new data from the environment. It is likely to provide
wrong results to the newly generated data from the
environment and slightly modifying the joint probability
distribution is necessary. The refinement process is also
guided by the evolutionary algorithm because the space of
search is large. Experimental results on a benchmark network
show that the proposed adaptation methods with evolutionary
algorithm can perform better than heuristics or greedy
approaches.

I. INTRODUCTION

There are two different approaches for adaptation of
models: long-term and short-term adaptation [19]. Because
greedy or heuristics are very fast to find solution, it is
appropriate for short-term adaptation. It has a risk of getting
stuck into the local optima. On the other hands, evolutionary
algorithm needs more time to optimize the solutions but they
are well in global search because of population-based search.
It is better to use evolutionary approach for long-term
adaptation.

Adaptation is the process of reconfiguration of the basic
installed system to the change of the environment. If human
has no adaptation capability, he cannot survive or travel in
many different areas because preparing all the information is
not possible. In the perspective of Bayesian networks (BN),
adaptation process means the modification of joint

probability distribution by deleting, adding, or removing
edges and changing parameters. The original model is
defined as O and new information sources represented by
Bayesian networks or raw data sets are referred as N. The
purpose of adaptation process of BN is defined as a search
process of appropriate BN that is similar to O and adjusted to
the N.

If the new information is represented as a BN, the process
of adaptation is called as aggregation. It is simply fusion of
two models into an integrated one. On the other hands, if the
new information is a data set, the adaptation is called as
refinement. Although, the structure and parameter of
Bayesian networks are the targets of the adaptations, we focus
only on the structural one because the structure of the model
is more important than the parameters.

The procedure of adaptation of Bayesian networks can be
formulated as learning given original and new sources. In this
paper, we have applied evolutionary algorithm to find the
appropriate Bayesian networks given two sources (original
and new). Because the aggregation and refinement of
Bayesian network structure can be formulated in a different
manner, the procedures of applying evolutionary algorithm
into adaptation are a bit different. In aggregation part, basic
aggregation algorithm of two Bayesian networks is from [3].
As noted by [4], the task of minimizing the number of arcs in
their combined directed acyclic graph is NP-hard. Given a
number of Bayesian networks, the evolutionary algorithm is
used to minimize the number of arcs of combined model. In
refinement part, scoring measure based on the minimum
description length is adopted from [5]. In this paper, we have
applied genetic algorithm to find the appropriate solution
given the measure. Experimental results on ASIA network,
one of the representative benchmark networks, show that the
proposed methods can perform better than the heuristics or
simple greedy algorithms.

Contribution of this paper is like this. (1) The first
experimentation on the optimization of the number of edges
of aggregation based on the fusion method [3]. (2) Proposing
chromosome representation based on permutation index for
aggregation optimization. (3) The first evolutionary approach
for the refinement measure proposed by [5].

II. BACKGROUNDS

A. Bayesian Networks
Bayesian network is an acyclic directed graph that

represents joint probability distributions of random variables.

Evolutionary Aggregation and Refinement of Bayesian Networks
Kyung-Joong Kim and Sung-Bae Cho

Dept. of Computer Science, Yonsei University
134 Shinchon-dong, Sudaemoon-ku, Seoul, Korea

kjkim@cs.yonsei.ac.kr, sbcho@cs.yonsei.ac.kr

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

1513

Its node represents the random variable and the edges
between nodes mean that the two nodes are probabilistically
dependent on each other. Each node has its own conditional
probability table. It describes conditional probabilities of
itself given the states of parents. If there are n variables in
the domain, the set of variables is }.,,,{ 21 nxxxX L= The
basic meaning of edges between two nodes is cause and effect
relationships. If there is link from parent to child node, it
means that parent node is a cause and the child node is a result
of the cause. The conditional probability of the node is
defined as)).(|Pr(ii xPax)(ixPa is a set of parent nodes
of .ix The conditional probabilities define the strength
between the parent and child. The joint probability
distribution of n variables given such dependency
(parent-child relationship) and conditional probabilities is
defined using this formula.

∏
=

=
n

i
iin xPaxxxxJPD

1
21))(|Pr(),,(L

If there is enough knowledge about cause-effect
relationships and their strength among variables, it is not
difficult to design Bayesian networks that represent the
knowledge. However, such kinds of knowledge are not
allowable in many domains excluding some special areas
such as medical science, psychology, and troubleshooting of
systems. If there is no available knowledge, it is possible to
learn the structure and parameters of Bayesian networks
using statistical learning algorithm. Structure of Bayesian
networks means the parent-child relationships (edge of
variables) and parameters are conditional probability tables.
Learning of Bayesian networks are based on a scoring
function that returns the degree of fitting of the network to the
given datasets. The problem of searching for appropriate
Bayesian networks given massive dataset is defined as
searching problem in the Bayesian network space.

B. Evolutionary Approaches for BN
The search space of Bayesian networks is exponentially

extended, if the number of variables increases. Enumerating
all possible Bayesian networks is not feasible, heuristic
search algorithm is necessary. The representative method is
greedy heuristics. It incrementally adds an edge that
maximizes the score increase given current structures.
Though, it can get stuck into local optima, it is widely used
because of its simplicity of implementation and speed of
search. However, the risk of getting stuck into local optima
causes the adoption of evolutionary algorithm for inducting
Bayesian networks from data. There are two different
approaches for inducing Bayesian networks using
evolutionary algorithms.
 The first approach uses connection matrix as a
chromosome that represents Bayesian network [2]. When the
number of variables is n , the size of matrix is .nn × Each
entry indicates whether there is edge between two nodes. ije

represents the entry of the i th row and the j th column. If

the value of the entry is 1, it means that the j th variable is the
parent of the i th node. The search space of n variables is

.2 nn× Because BN does not allow cycles, there could be
many invalid Bayesian networks. Also, some of Bayesian
networks that have different structures might refer the
identical probabilistic distribution and it can distort the search
space. Some researchers attempt to solve this problem by
applying the concept of equivalent classes [6][7]. Genetic
operations on the model can generate invalid Bayesian
networks and some repairing operators are needed to transfer
the invalid one to a valid BN.
 The second approach is searching for topological order for
BN [1]. The order restricts the connection among variables by
prohibiting the connection from low-ordered variables to
high-ordered variables. The purpose of evolutionary
algorithm is to find appropriate topological order. Given the
order found, Bayesian networks are chosen using simple local
search algorithm. This approach can save the search space
significantly but still the size of space is relatively large.
Some genetic operators used for traveling salesman problem
can be adopted. Because it always guarantees the validity of
Bayesian networks (topological order prohibits the cyclic
links), repairing operations are not needed.
 Matrix representation is easy to implement and intuitive to
the programmer but needs additional effort to deal with large
search space and invalid Bayesian networks. Compared to the
former, order-based representation requires some knowledge
about genetic operator design and it needs additional local
search methods given the order found. However, it can reduce
the search space and does not need repairing operators.
 There are some different approaches for learning Bayesian
networks. Lam et al. used evolutionary programming to
evolve Bayesian networks and proposed knowledge-guided
mutation for improving performance [16]. Novobilski et al.
[17] proposed a genetic programming approach [17]. There is
research on the development of new representation and
genetic operators [18]. Campos et al. used evolutionary
algorithm to enhance the inference procedure of Bayesian
networks [20].

C. Aggregation and Refinement of BN
Kim et al. proposed evolutionary algorithm with fitness

sharing to generate diverse Bayesian networks given massive
dataset. At the final generation, the inference results of the
representative Bayesian networks are combined for better
inference [8]. Chen et al. uses a collective approach to
learning a Bayesian network from distributed heterogeneous
data. Chen et al. used union of nodes and edges of local
Bayesian networks and non-local Bayesian networks [9][10].
Given a number of sites, they have learned each local
Bayesian networks using their local data and non-local
Bayesian network is learned using meta-information
collected from each site. Moral et al. indicated shortcomings
of previous Bayesian networks combination methods and
proposed the union and intersection of independencies of
each Bayesian network [11]. Pennock et al. investigated
previously assumed context of consensus belief such as the

1514

separation of conditional probability when authors find the
combined structure [12].

Lam et al. proposed a refinement measure based on the
minimum description length [13]. In this approach, current
network was used as a summarization of previously seen data
and Friedman et al. proposed a similar method based on
maximum a-posteriori probability approach [14]. Tian et al.
improved the work of Friedman et al. and applied
evolutionary algorithms to avoid getting into a local
maximum [15]. In our approach, we proposed an
evolutionary approach for Lam’s refinement measures.

III. ADAPTATION OF BN USING EVOLUTIONARY
ALGORITHMS

A. Aggregation of Multiple Bayesian Networks
If there are a number of authors of Bayesian networks

about the same domain, there could be a variety of models
that describe similar things. Because they have different
expertise about the domain, it is better to integrate them into a
single model. The easiest way of combining them is to use
intersection and union operations. In the case of intersection
operator, the common structure of all Bayesian networks is
used as a global Bayesian network. On the other hands, union
operator put all of the edges and variables of the networks
into a global network.

In the union operation, there are critical problem causing
cycles. Given intermediate global network, inserting a new
edge from one of networks could make a cycle and it must be
discarded. However, it causes a loss of information. Using a
reverse operation is a solution to the problem (figure 1). By
reversing the direction of edge that makes a cycle, the edge
can be incorporated to the intermediate global Bayesian
network. Using this operation, the networks are able to
encode the same relationships among variables with different
settings of individual conditional probabilities.

Figure 1: A reverse operation

 A set of Bayesian networks that need to be integrated into
one model is defined as }.,...,,{ 21 NBBBS = N is the
number of networks for combination. The integration process
is conducted incrementally. At first, 1B and 2B are
combined and the result is referred as .12B Then, 3B is
combined with 12B and it produces .123B Like this, the
combination procedure is continued until the last Bayesian
network is fused into the integrated model. The final model is
referred as global Bayesian network or .123 NB L

If there are N Bayesian networks, the problem is how to
determine the order of Bayesian networks for combination.
According to the order, the result of integration process is

different and the number of edges for the model varies. For
example, the result of NB L123 and NB L21345 is not the same.
For N Bayesian networks, there are !N cases of
combination. The details of combination of two Bayesian
networks are described in [3].

There are source network and target network. 12B is the
result of the combination of source network 1B and target
network .2B 123B is the combination of source network

12B and target network .3B The combination algorithm
fuses the structural information of target network into source
network. The edges of target network are classified into three
categories: DIR, REV, and EQ. The decision of the category
is based on the topological values of the variables of source
network. The topological value of variable ix means the
length of the longest path from the root node of topological
graph of source network to the variable. The connection from
the node that has low topological value to the node with high
topological value does not make cycles. However, cycles are
generated in the case of the opposite way.

DIR means that the edge of target network has the right
direction that is directly inserted into the source network
without modification. REV means that the edge that needs to
be reversed using the reverse operation for the insertion. The
reverse operation generates a number of new edges and they
need to be classified into the three categories. EQ means the
edges of two variables that have the same topological value.
Insertion of the EQ edge makes the change of topological
values of source network.

a

c

d

b
e

e

c

b

d
f

a

D1D2

Initial DAGs D1 and D2
Reversing the arc (d,b)

a

c

d

b

e

e

c

b

d
f

a

D*

D2

Adding (a,d) from DIR to D*

a

c

d

b

e

e

c

b

d
f

a

D*D2

Adding (b,e) from EQ to D*

a

c

d

b

e

e

c

b

d

f

a

D*

D2

Finally, adding (a,b) from EQ to D*

a

c

d

b

e
e

c

b
d

f

a

D*
D2

Figure 2: An example of topological fusion [3].

The algorithm has six steps. 1) Calculating the topological
values of the variables in the source network. 2) Classifying
the categories of the edges into DIR, REV and EQ. 3) For
each edge in the REV, applying reversing operation to the
target network and classifying the new edges from the
operation into the three categories are done. 4) Inserting
edges in the DIR into the source network from target network.

Pa(A) Pa(B)

A B

Pa(A) Pa(B)

A B

=
Pa(A) Pa(B)

A B

Pa(A) Pa(B)

A B

=

1515

5) For each edge in the EQ, add the edge into the network and
update the topological value of source network (some edges
in EQ is transferred to the DIR). 6) After clearing all the
edges in the three categories, the process is finished. The
detailed insertion order of edges in the REV and EQ is
described in the [3]. Figure 2 shows an example of
topological fusion.

 (a) BN 1 (b) BN2

 (c) BN1, BN2 (d) BN2, BN1

Figure 3: The effect of the order

The goal of the evolution of the order of Bayesian
networks for combination is to minimize the edge of the final
network. Figure 2 shows the effect of order for combination.
The change of order results in different final network. The
complexity of model is related to the generalization ability
and the degree of difficulty to insert the parameters. In
Bayesian network, the insertion of one edge can increase a
huge number of parameters when the number of parents is
relatively high or the number of discrete states of variables is
large.

To design the evolutionary algorithm, we have investigated
the search space of the problem. The number of candidates
for the combination is the factorial of the number of Bayesian
networks. If the number of Bayesian networks is 15, the
number of candidates (the size of solution space) is 1.3×1012.
Enumerative approach for the problem is not feasible because
the combination process itself has computational cost and the
number of candidates is growing exponentially.

Figure 4: The fitness landscape in the case of 8 Bayesian

networks.

To get some information about the search space, we have
generated a number of random Bayesian networks. The
number of variables of each Bayesian network ranges from 3
to 40. A set of variables is }.,,,{ 5021 xxxX L= If the
number of variables of BN is 37, 37 variables are chosen from
X without duplication. When the number of Bayesian

networks is larger than 8, it is impossible to enumerate all the
candidates and draw fitness landscape. Figure 4 shows the
fitness landscape of Bayesian network combinations for 8
Bayesian networks. The global optimum is located around at
16561~17281. The x-scale of the figure represents
permutation index of 8 Bayesian networks. For example,

12345678B is 1 and 87654321B is the last index (40320) .
Figure 5 shows an example of permutation index.

Permutation

Index
Order of combination (Each number

represents BN ID)
0 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 8 7
2 1 2 3 4 5 7 6 8
3 1 2 3 4 5 7 8 6
4 1 2 3 4 5 8 6 7
5 1 2 3 4 5 8 7 6

… … … … … … … … …
40318 8 7 6 5 4 3 1 2
40319 8 7 6 5 4 3 2 1

Figure 5: Permutation index for 8 BNs.

1:/* N : the number of Bayesian networks for combination
*/
2: /* POP: Population */
3: /* order[] : array with length N */
4: /* Permutation(permutation index): return the order of N

items given the inputted permutation index */
5: /* fitness(j) : fitness of jth individual */
6: /* Initialization(population): Each individual is

initialized as a value from 0 to N!-1 */
7: /* θ: random variable */
8:
9: Initialization(POP);
10:
11: For i=1 to MAX_GEN {
12: For j=1 to |POP| {
13: order = Permutation(POP(j));
14: fitness(j) = Fusion (order); }
15: POP=Selection(POP, fitness); // selection
16: For j=1 to |POP|/2 // crossover
17: {Parent(); // select two indexes

POP(children)=
θ×POP(parent1)+(1-θ)×POP(parent2);}

18: For j=1 to |POP| // mutation
19: POP(j)=Random(POP(j), 0, N!-1)
20:}

Figure 6: The pseudo code for evolutionary aggregation

1516

In this paper, we have used permutation index as a
representation of evolutionary algorithms because the fitness
landscape is partially continuous (not extremely fluctuated).
If the small change of order makes huge difference of
performance, it is difficult to use such representation. But, in
this case, it is relatively continuous at neighbor of point
though there are some sudden decreases. The adoption of the
representation makes the implementation of the genetic
operations very easy compared to the order-based
representation. In permutation index, 1 is used to represent
the combination order 12345678. The crossover operator is
simply defined as the middle point of two parents. Figure 6
shows the pseudo code of the evolutionary aggregation.

B. Refinement of Bayesian Networks
The refinement process of Bayesian network is defined as a

machine learning problem. The input of learning is the
original network and new input data. The output is refined
network. The goal of refinement is to find the appropriate
refined network given the original network and new input
data. Original network that is learned from the accumulated
data or designed manually can be wrong to the newly inputted
data. The original network has good estimation about the
domain but the recent change of the distribution makes the
model has difficulty to estimate properly to the new data.
Because it is a sudden change, the change of whole
distribution based on the new data can cause severe problem
when the environment produces usual cases.
 Lam et al. proposed a minimum description length
(MDL)-based score metric for the refinement process [5].
They used MDL as a basic principle for the refinement
learning. It finds a Bayesian network that has relatively low
complexity with the similarity to the original network and
new distribution cased by the newly inputted data. In the
MDL, the best network is one with the minimized sum of
description lengths of the learning data and model itself. The
problem is to search the best one among a number of
candidates. Let us define pH as the candidate network and

OH as the original network. Newly inputted data are
represented as .D Basic components of the score metric are
NDL, DDL, and NDSL.
 (1) Network description length of pH

 (2) Data description length of D given pH

 (3) Network description length of source OH given pH

The refinement metric is defined as the sum of (1), (2) and
(3). The purpose of learning is the minimization of the sum. If
the domain has n variables, }.,,,{ 21 nxxxX L= ik
represents the number of parents of .ix d is the necessary
number of bits for storing real-value. is is the number of
states of .ix jps represents the number of states of the jth

parents of .ix The first term of the metric is defined using this
formula.

∑ ∏
= =

−+
n

i

k

j
jii

i

pssdnk
1 1

2))1()(log(

iq represents the number of all instances of parents of
.ix R means the relative frequency in the .D M is the

number of samples in .D Data description length is
calculated using relative frequency.

∑
=

−
n

i
ii xPaxWM

1

))(,((

))(()(
))(,(

log))(,(

))(,(

2
1 1 kiji

kiji
s

j

q

k
kiji

ii

qxPaRsxR
qxPasxR

qxPasxR

xPaxW
i i

==

==
==

=

∑∑
= =

 amr ,, represent the number of reversed edges, removed
edges, and added edges of OH compared to pH ,

respectively. The description length of source is based on the
number of operations (add, deletion, and reverse).

))1((log)(2 −++ nnamr

1: /* OH : Original network */
2: /* D : new data */
3: /* POP: Population of Bayesian networks */
4: /* Initialization(): Initialization of Bayesian networks */
5: /* Refine(OH , D , pH): return the MDL score */

6: /* array[]: 1-d array */
7:
8: Initialization(POP);
9:
10: For i=1 to MAX_GEN{
11: For j=1 to |POP|{
12: fitness(j)=Refine(OH , D , jH);}

13: POP=Selection(POP);
14: For j=1 to |POP|/2 { // crossover
 Parent(); // select two indexes
 array1=parent1; array2 = parent2;

POP(children) = crossover(array1,array2);}
15: For j=1 to |POP| // mutation
16: POP(children)

= Random(addition, deletion of edges);
17: Repairing(); // break cycle
18:}

Figure 7: The pseudo code for evolutionary aggregation

 The evolutionary algorithm uses connection matrix as a
representation of pH . The topological order of pH could

also be choice for the representation. Because the purpose of
our research is to investigate the usefulness of evolutionary
algorithm for the adaptation of Bayesian network, simple
connection matrix is used without deep discussion about the
comparison of two representations. The crossover is as

1517

follows. The nn × matrix can be represented as a
1-dimensional array of 2n members. Each parent is
transformed to the 1-D array and the information is
exchanged by 1-point crossover. The mutation is simple
addition and deletion of edges. Repairing operator randomly
deletes one of edges that form a cycle. Figure 7 shows the
evolutionary approach for refinement.

IV. EXPERIMENTAL RESULTS

A. Aggregation of Multiple Bayesian Networks
Randomly generated networks are used to test the

performance of evolutionary approaches for combination
(Table 1). The problem of fusion of 8 Bayesian networks (#1,
#2, #3, #4, #5, #6, #7, and #8) is to find the best order that
minimizes the number of edges of the final network. Table 2
shows the results of enumeration of all candidates. # of BN=2
means that it is the result of the combination of BN#1 and
BN#2. Table 3 shows the percentage of the best solutions and
the enumerative evaluation time. It is not feasible to do that
for N>8.

Table 1. The randomly generated BNs
BN
ID

of
variables

of
edges

BN
 ID

of
variables

of
edges

#1 38 229 #15 12 33
#2 31 96 #16 29 14
#3 33 182 #17 12 23
#4 5 4 #18 28 129
#5 33 22 #19 33 136
#6 14 6 #20 22 65
#7 27 114 #21 32 69
#8 22 103 #22 38 12
#9 33 128 #23 24 63

#10 34 56 #24 30 35
#11 20 87 #25 29 23
#12 13 11 #26 21 25
#13 28 128 #27 10 1
#14 8 13 #28 5 4

The parameters of evolutionary algorithms are as follows.

The number of population size is 20, the number of maximum
generation is 50, crossover rate is 0.8 and mutation rate is
0.01.

The evolutionary approach is compared to the various
strategies. They are as follows.

 (1) Heuristic #1: The order is based on the number of edges.

If the BN has more edges than others, it will be
combined later.

 (2) Heuristic #2: It is also based on the number of edges. If
the BN has more edges than others, it will be combined
early.

 (3) Greedy #1: This is a greedy strategy. It adds a BN that
minimizes the number of edges of the final network.

 (4) Greedy #2: It adds a BN that maximizes the number of
edges of the final network.

Table 2. The result of enumeration of all candidates (the
values indicate the number of edges)

of
BN

of
candidates Average Max Min

2 2 609.0±135.7645 705 513
3 6 917.5± 61.7243 994 855
4 24 926.1± 53.6475 995 858
5 120 970.5± 62.6244 1056 880
6 720 982.6± 61.3339 1065 883
7 5040 1056.0± 39.3754 1119 984
8 40320 1093.4± 31.0356 1140 1032

Table 3. The best solutions and the enumerative evaluation

time
of
BN

of minimum
solutions

% of minimum
 solutions Time

2 1 50.0 -
3 2 33.3 -
4 6 25.0 -
5 18 15.0 -
6 90 12.5 -
7 5 0.1 1h 40m
8 96 0.23 22h

Table 4. The results of each strategy (the values indicate the

number of edges)
of
BN

Heuristic
#1

Heuristic
#2

Greedy
#1

Greedy
#2 GA

2 513 705 513 705 513
3 855 989 855 904 855
4 858 990 990 905 858
5 880 1005 1041 932 880
6 883 1005 1046 933 883
7 1014 1093 1105 993 986
8 1055 1118 1126 1039 1034

900

950

1000

1050

1100

1150

1200

7 8 9 10 11 12 13 14 15 16
of BNs

of

 e
dg

es

GA
Heuristic #1

Figure 8: The results of comparison between Heuristic #1 and

genetic algorithm

1518

1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200

1 11 21 31 41

Generation

of

 e
dg

es

Figure 9: Average fitness change over generation (# of BN =

14)

Table 4 shows the number of edges of the final network.
The results show that Heuristic #1 shows good performance
compared to other methods. Heuristic #2 shows the worst
performance. Greedy #1 shows relatively low performance
compared to the Heuristic #1. Greedy #2 shows low
performance when the number of Bayesian networks is small,
but it shows improved performance when the number of
Bayesian networks is increased. Figure 8 shows the
comparison of performance between GA and Heuristic #1. It
shows that the GA shows better performance than the
Heuristic #1. Greedy #2 shows comparable results to the
genetic algorithm but it shows low performance when the
number of Bayesian networks is small. Figure 9 shows the
change of average fitness. It converges in the early
generation.

B. Refinement of Bayesian Networks
ASIA, one of representative benchmark networks, is a

small Bayesian network that calculates the probability of a
patient having tuberculosis, lung cancer or bronchitis
respectively based on different factors, for example whether
or not the patient has been to Asia recently (Figure 10).
Shortness-of-breath (dyspnoea) may be due to tuberculosis,
lung cancer, bronchitis, more than one of these diseases or
none of them. A recent visit to Asia increases the risk of
tuberculosis, while smoking is known to be a risk factor for
both lung cancer and bronchitis. The results of a single chest
X-ray do not discriminate between lung cancer and
tuberculosis, as neither does the presence or absence of
dyspnoea.

Figure 11 shows the ways of performance evaluation of the
proposed genetic algorithm refinement. The ASIA network is
the original network and 2000 data are sampled from the
network using probabilistic logic sampling. After modifying
the original network with some ratio, it will be recovered
using new data and the likeness between the recovered one
and original one is measured. Modification ratio δ means
δ×100% edges are modified using addition, deletion and
reverse operations (each δ/3×100%).

The number of new data and the rate of modification are
changed. Figure 12 shows the performance comparison of
genetic algorithm and greedy approaches. It shows that the
genetic algorithm performs better than greedy algorithm. It is
the average of 10 runs.

The increase of the new data makes the performance
improvement but more than 1800 shows decrease of
performance. It might be the result of biased optimization to
the distribution of new data. The modification ratio degrades
the performance as expected but evolutionary approach
shows robust performance even for 0.4~0.8 ratio.

Visit to Asia?

Tuberculousis? Lung cancer?

Smoker?

Bronchitis?

Lung cancer or
Tuberculosis?

Positive X-ray? Dyspnoea?

Figure 10: ASIA network

Probabilistic
Logic

Sampling

Modifying

GA

X1

X3 X4

X2

X5

X6

X7 X8

X1

X3 X4

X2

X5

X6

X7 X8

X1

X3 X4

X2

X5

X6

X7 X8

Original
Bayesian Network

Modified Network

Refined Network

New Data

X1 X2 X3 X4 X5 X6 X7 X8

1
2
.
.
.
2000

T F T T T T F T F
T F T F T F F T T

.

.

.
F F T F T F F T F

Comparison
Figure 11: The procedure of comparison

V. CONCLUSIONS

In this paper, we have proposed two evolutionary
approaches for adaptation of Bayesian networks. A
preliminary test with a benchmark problem indicates that the
genetic algorithm approach can provide more improved
results than the heuristics or greedy search. Further
investigation with a variety of realistic problems might
strengthen the point of this paper.

ACKNOWLEDGEMENT
This research was supported by the MIC (Ministry of

Information and Communication), Korea, under the ITRC
(Information Technology Research Center) support program
supervised by the IITA (Institute of Information Technology
Assessment) (IITA-2005-(C1090-0501-0019))

1519

REFERENCES
[1] P. Larranaga, C.M.H. Kuijpers, R. H. Murga, and Y.

Yurramendi, “Learning Bayesian network structures by
searching for the best ordering with genetic algorithm,”
IEEE Transactions on Systems, Man and Cybernetics
-Part A, vol. 26, no. 4, pp. 487-493, 1996.

[2] P. Larranaga, M. Poza, Y. Yurramendi, R. H. Murga, and
C.M.H. Kuijpers, “Structure learning of Bayesian
networks by genetic algorithms: A performance analysis
of control parameters,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 18, no. 9, pp.
912-926, 1996.

[3] I. Matzkevich, and B. Abramson, “The topological
fusion of Bayes nets,” Proceedings of the 8th Annual
Conference on Uncertainty in Artificial Intelligence, pp.
191-198, 1992.

[4] I. Matzkevich, and B. Abramson, “Some complexity
considerations in the combination of belief networks,”
Proceedings of the 9th Conference on Uncertainty in
Artificial Intelligence, pp. 159-165, 1993.

[5] W. Lam, “Bayesian network refinement via machine
learning approach,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 20, no. 3, pp.
240-251, 1998.

[6] J. Muruzabal, and C. Cotta, “A primer on the evolution
of equivalence classes of Bayesian network structure,”
The 8th International Conference on Parallel Problem
Solving from Nature, pp. 612-621, 2004.

[7] D. M. Chickering, “Learning equivalence classes of
Bayesian network structures,” Journal of Machine
Learning Research, vol. 2, pp. 445-498, 2002.

[8] K.-J. Kim, J.-O. Yoo and S.-B. Cho, “Robust inference
of Bayesian networks using speciated evolution,”
Lecture Notes in Artificial Intelligence, vol. 3488, pp.
92-101, 2005.

[9] R. Chen, K. Sivakumar, and H. Kargupta, “Learning
Bayesian network structure from distributed
data,“ Proceedings of the 3rd SIAM International Data
Mining Conference, pp. 284-288, 2003.

[10] R. Chen, K. Sivakumar, and H. Kargupta, “Collective
mining of Bayesian networks from distributed
heterogeneous data,” Knowledge and Information
Systems, vol. 6, no. 2, pp. 164-187, 2004.

[11] J. D. Sagrado, and S. Moral, “Qualitative combination of
Bayesian networks,” International Journal of Intelligent
Systems, vol. 18, no. 2, pp. 237-249, 2003.

[12] D. M. Pennock, and D. Wellman, “Graphical
representations of consensus belief,” Proceedings of 15th
Conference on University in Artificial Intelligence, pp.
531-540, 1999.

[13] W. Lam and F. Bacchus, “Using new data to refine a
Bayesian network,” Proceedings of the Uncertainty in
Artificial Intelligence, pp. 383-390, 1994.

[14] N. Friedman, and M. Goldszmidt, “Sequential update of
Bayesian network structure,” Proceedings of 13th
Conference on Uncertainty in Artificial Intelligence,
1997.

[15] F. Tian, H. Zhong, Y. Lu and C. Shi, “Incremental
learning of Bayesian networks with hidden variables,” 1st
IEEE International Conference on Data Mining, pp. 651,
2001.

[16] M. L. Wong, W. Lam, and K. S. Leung, “Using
evolutionary programming and minimum description
length principle for data mining of Bayesian networks,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 21, no. 2, pp. 174-178, 1999.

[17] A. J. Novobilski, and F. Kamangar, “Bayesian learning
with selective subsets of populations in genetic
programming,” The conference on Smart Engineering
System Design: Neural Networks, Fuzzy Logic,
Evolutionary Programming, Complex Systems and Data
Mining (ANNIE), 2002.

[18] A. J. Novobilski, “The random selection and
manipulation of legally encoded Bayesian networks in
genetic algorithms,” Proceedings of the International
Conference on Artificial Intelligence, pp. 438-443, 2003.

[19] R. Forster, and C. O. Wilke, “Tradeoff between
short-term and long-term adaptation in a changing
environment,” Physical Review E, vol. 72, no. 4, art. no.
041922, 2005.

[20] L. M. De Campos, J. A. Gamez, and S. Moral, “Partial
abductive inference in Bayesian belief networks – an
evolutionary computation approach by using
problem-specific genetic operators,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 2, pp. 105-131,
2002.

91.5

92

92.5

93

93.5

94

94.5

1000 1200 1400 1600 1800 2000
of data

A
cc

ur
ac

y

GA
Greedy

90
90.5

91
91.5

92
92.5

93
93.5

94
94.5

95
95.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Modification rate

A
cc

ur
ac

y

GA
Greedy

Figure 12: The performance comparison

1520

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

