
 
 

 

  

Abstract—Bayesian network (BN) is a useful tool to 
represent joint probability distribution in the form of 
graphical model providing flexible inference and uncertainty 
handling. If there is enough knowledge about domain, it is 
possible to design the structure and parameters of BN by 
expert. Also, it can be learned from massive dataset with 
statistical learning algorithm. Usually, because the search 
space of Bayesian networks is relatively huge compared to 
the other models, evolutionary algorithms have been used to 
find optimal structure and parameters by many researchers. In 
this paper, we have focused on the topic of adaptation of 
constructed models for better performance. If there are a 
number of models constructed or learned by different experts 
or sources, it is better to fuse them into one model by 
considering all the information of each model. However, the 
complexity of the integrated model is relatively higher than 
previous isolated models. Minimizing the complexity of the 
integrated model using evolutionary algorithm is proposed. 
After integrating models into single one, it needs to adapt to 
the new data from the environment. It is likely to provide 
wrong results to the newly generated data from the 
environment and slightly modifying the joint probability 
distribution is necessary. The refinement process is also 
guided by the evolutionary algorithm because the space of 
search is large. Experimental results on a benchmark network 
show that the proposed adaptation methods with evolutionary 
algorithm can perform better than heuristics or greedy 
approaches.  

I. INTRODUCTION 

There are two different approaches for adaptation of 
models: long-term and short-term adaptation [19]. Because 
greedy or heuristics are very fast to find solution, it is 
appropriate for short-term adaptation. It has a risk of getting 
stuck into the local optima. On the other hands, evolutionary 
algorithm needs more time to optimize the solutions but they 
are well in global search because of population-based search. 
It is better to use evolutionary approach for long-term 
adaptation.  

Adaptation is the process of reconfiguration of the basic 
installed system to the change of the environment. If human 
has no adaptation capability, he cannot survive or travel in 
many different areas because preparing all the information is 
not possible. In the perspective of Bayesian networks (BN), 
adaptation process means the modification of joint 
 
 

probability distribution by deleting, adding, or removing 
edges and changing parameters. The original model is 
defined as O and new information sources represented by 
Bayesian networks or raw data sets are referred as N. The 
purpose of adaptation process of BN is defined as a search 
process of appropriate BN that is similar to O and adjusted to 
the N.  

If the new information is represented as a BN, the process 
of adaptation is called as aggregation. It is simply fusion of 
two models into an integrated one. On the other hands, if the 
new information is a data set, the adaptation is called as 
refinement. Although, the structure and parameter of 
Bayesian networks are the targets of the adaptations, we focus 
only on the structural one because the structure of the model 
is more important than the parameters.  

The procedure of adaptation of Bayesian networks can be 
formulated as learning given original and new sources. In this 
paper, we have applied evolutionary algorithm to find the 
appropriate Bayesian networks given two sources (original 
and new). Because the aggregation and refinement of 
Bayesian network structure can be formulated in a different 
manner, the procedures of applying evolutionary algorithm 
into adaptation are a bit different. In aggregation part, basic 
aggregation algorithm of two Bayesian networks is from [3]. 
As noted by [4], the task of minimizing the number of arcs in 
their combined directed acyclic graph is NP-hard. Given a 
number of Bayesian networks, the evolutionary algorithm is 
used to minimize the number of arcs of combined model. In 
refinement part, scoring measure based on the minimum 
description length is adopted from [5]. In this paper, we have 
applied genetic algorithm to find the appropriate solution 
given the measure. Experimental results on ASIA network, 
one of the representative benchmark networks, show that the 
proposed methods can perform better than the heuristics or 
simple greedy algorithms.  

Contribution of this paper is like this. (1) The first 
experimentation on the optimization of the number of edges 
of aggregation based on the fusion method [3]. (2) Proposing 
chromosome representation based on permutation index for 
aggregation optimization. (3) The first evolutionary approach 
for the refinement measure proposed by [5].  

II. BACKGROUNDS 

A. Bayesian Networks 
Bayesian network is an acyclic directed graph that 

represents joint probability distributions of random variables. 
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Its node represents the random variable and the edges 
between nodes mean that the two nodes are probabilistically 
dependent on each other. Each node has its own conditional 
probability table. It describes conditional probabilities of 
itself given the states of parents. If there are n  variables in 
the domain, the set of variables is }.,,,{ 21 nxxxX L=  The 
basic meaning of edges between two nodes is cause and effect 
relationships. If there is link from parent to child node, it 
means that parent node is a cause and the child node is a result 
of the cause. The conditional probability of the node is 
defined as )).(|Pr( ii xPax  )( ixPa  is a set of parent nodes 
of .ix  The conditional probabilities define the strength 
between the parent and child. The joint probability 
distribution of  n  variables given such dependency 
(parent-child relationship) and conditional probabilities is 
defined using this formula.  

∏
=

=
n

i
iin xPaxxxxJPD

1
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If there is enough knowledge about cause-effect 
relationships and their strength among variables, it is not 
difficult to design Bayesian networks that represent the 
knowledge. However, such kinds of knowledge are not 
allowable in many domains excluding some special areas 
such as medical science, psychology, and troubleshooting of 
systems. If there is no available knowledge, it is possible to 
learn the structure and parameters of Bayesian networks 
using statistical learning algorithm. Structure of Bayesian 
networks means the parent-child relationships (edge of 
variables) and parameters are conditional probability tables. 
Learning of Bayesian networks are based on a scoring 
function that returns the degree of fitting of the network to the 
given datasets. The problem of searching for appropriate 
Bayesian networks given massive dataset is defined as 
searching problem in the Bayesian network space.  
 

B. Evolutionary Approaches for BN 
The search space of Bayesian networks is exponentially 

extended, if the number of variables increases. Enumerating 
all possible Bayesian networks is not feasible, heuristic 
search algorithm is necessary. The representative method is 
greedy heuristics. It incrementally adds an edge that 
maximizes the score increase given current structures. 
Though, it can get stuck into local optima, it is widely used 
because of its simplicity of implementation and speed of 
search. However, the risk of getting stuck into local optima 
causes the adoption of evolutionary algorithm for inducting 
Bayesian networks from data. There are two different 
approaches for inducing Bayesian networks using 
evolutionary algorithms.  
    The first approach uses connection matrix as a 
chromosome that represents Bayesian network [2]. When the 
number of variables is n , the size of matrix is .nn × Each 
entry indicates whether there is edge between two nodes. ije  

represents the entry of the  i th row and the j th column. If 

the value of the entry is 1, it means that  the j th variable is the 
parent of the i th node. The search space of n  variables is 

.2 nn×  Because BN does not allow cycles, there could be 
many invalid Bayesian networks. Also, some of Bayesian 
networks that have different structures might refer the 
identical probabilistic distribution and it can distort the search 
space. Some researchers attempt to solve this problem by 
applying the concept of equivalent classes [6][7]. Genetic 
operations on the model can generate invalid Bayesian 
networks and some repairing operators are needed to transfer 
the invalid one to a valid BN.  
     The second approach is searching for topological order for 
BN [1]. The order restricts the connection among variables by 
prohibiting the connection from low-ordered variables to 
high-ordered variables. The purpose of evolutionary 
algorithm is to find appropriate topological order. Given the 
order found, Bayesian networks are chosen using simple local 
search algorithm. This approach can save the search space 
significantly but still the size of space is relatively large. 
Some genetic operators used for traveling salesman problem 
can be adopted. Because it always guarantees the validity of 
Bayesian networks (topological order prohibits the cyclic 
links), repairing operations are not needed.  
    Matrix representation is easy to implement and intuitive to 
the programmer but needs additional effort to deal with large 
search space and invalid Bayesian networks. Compared to the 
former, order-based representation requires some knowledge 
about genetic operator design and it needs additional local 
search methods given the order found. However, it can reduce 
the search space and does not need repairing operators. 
    There are some different approaches for learning Bayesian 
networks. Lam et al. used evolutionary programming to 
evolve Bayesian networks and proposed knowledge-guided 
mutation for improving performance [16]. Novobilski et al. 
[17] proposed a genetic programming approach [17]. There is 
research on the development of new representation and 
genetic operators [18]. Campos et al. used evolutionary 
algorithm to enhance the inference procedure of Bayesian 
networks [20].  
 

C. Aggregation and Refinement of BN 
Kim et al. proposed evolutionary algorithm with fitness 

sharing to generate diverse Bayesian networks given massive 
dataset. At the final generation, the inference results of the 
representative Bayesian networks are combined for better 
inference [8].  Chen et al. uses a collective approach to 
learning a Bayesian network from distributed heterogeneous 
data. Chen et al. used union of nodes and edges of local 
Bayesian networks and non-local Bayesian networks [9][10]. 
Given a number of sites, they have learned each local 
Bayesian networks using their local data and non-local 
Bayesian network is learned using meta-information 
collected from each site. Moral et al. indicated shortcomings 
of previous Bayesian networks combination methods and 
proposed the union and intersection of independencies of 
each Bayesian network [11]. Pennock et al. investigated 
previously assumed context of consensus belief such as the 
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separation of conditional probability when authors find the 
combined structure [12].  

Lam et al. proposed a refinement measure based on the 
minimum description length [13]. In this approach, current 
network was used as a summarization of previously seen data 
and Friedman et al. proposed a similar method based on 
maximum a-posteriori probability approach [14]. Tian et al. 
improved the work of Friedman et al. and applied 
evolutionary algorithms to avoid getting into a local 
maximum [15]. In our approach, we proposed an 
evolutionary approach for Lam’s refinement measures.  
    

III. ADAPTATION OF BN USING EVOLUTIONARY 
ALGORITHMS 

A. Aggregation of Multiple Bayesian Networks 
If there are a number of authors of Bayesian networks 

about the same domain, there could be a variety of models 
that describe similar things. Because they have different 
expertise about the domain, it is better to integrate them into a 
single model. The easiest way of combining them is to use 
intersection and union operations. In the case of intersection 
operator, the common structure of all Bayesian networks is 
used as a global Bayesian network. On the other hands, union 
operator put all of the edges and variables of the networks 
into a global network.  

In the union operation, there are critical problem causing 
cycles. Given intermediate global network, inserting a new 
edge from one of networks could make a cycle and it must be 
discarded. However, it causes a loss of information. Using a 
reverse operation is a solution to the problem (figure 1). By 
reversing the direction of edge that makes a cycle, the edge 
can be incorporated to the intermediate global Bayesian 
network. Using this operation, the networks are able to 
encode the same relationships among variables with different 
settings of individual conditional probabilities.  

Figure 1: A reverse operation 
 

 A set of Bayesian networks that need to be integrated into 
one model is defined as }.,...,,{ 21 NBBBS = N  is the 
number of networks for combination. The integration process 
is conducted incrementally. At first, 1B  and 2B  are 
combined and the result is referred as .12B Then, 3B  is 
combined with 12B  and it produces .123B  Like this, the 
combination procedure is continued until the last Bayesian 
network is fused into the integrated model. The final model is 
referred as global Bayesian network or .123 NB L   

If there are N  Bayesian networks, the problem is how to 
determine the order of Bayesian networks for combination. 
According to the order, the result of integration process is 

different and the number of edges for the model varies. For 
example, the result of NB L123  and NB L21345  is not the same. 
For N  Bayesian networks, there are !N  cases of 
combination. The details of combination of two Bayesian 
networks are described in [3].  

There are source network and target network. 12B  is the 
result of the combination of source network 1B  and target 
network .2B  123B  is the combination of source network 

12B  and target network .3B The combination algorithm 
fuses the structural information of target network into source 
network. The edges of target network are classified into three 
categories: DIR, REV, and EQ. The decision of the category 
is based on the topological values of the variables of source 
network. The topological value of variable ix  means the 
length of the longest path from the root node of topological 
graph of source network to the variable. The connection from 
the node that has low topological value to the node with high 
topological value does not make cycles. However, cycles are 
generated in the case of the opposite way.  

DIR means that the edge of target network has the right 
direction that is directly inserted into the source network 
without modification. REV means that the edge that needs to 
be reversed using the reverse operation for the insertion. The 
reverse operation generates a number of new edges and they 
need to be classified into the three categories. EQ means the 
edges of two variables that have the same topological value. 
Insertion of the EQ edge makes the change of topological 
values of source network.  
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Figure 2: An example of topological fusion [3]. 

The algorithm has six steps. 1) Calculating the topological 
values of the variables in the source network. 2) Classifying 
the categories of the edges into DIR, REV and EQ. 3) For 
each edge in the REV, applying reversing operation to the 
target network and classifying the new edges from the 
operation into the three categories are done. 4) Inserting 
edges in the DIR into the source network from target network. 
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A B

Pa(A) Pa(B)

A B
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5) For each edge in the EQ, add the edge into the network and 
update the topological value of source network (some edges 
in EQ is transferred to the DIR). 6) After clearing all the 
edges in the three categories, the process is finished. The 
detailed insertion order of edges in the REV and EQ is 
described in the [3]. Figure 2 shows an example of 
topological fusion.  

    
                    (a) BN 1                            (b) BN2  

 
             (c) BN1, BN2                     (d) BN2, BN1 

 
Figure 3: The effect of the order 

The goal of the evolution of the order of Bayesian 
networks for combination is to minimize the edge of the final 
network. Figure 2 shows the effect of order for combination. 
The change of order results in different final network. The 
complexity of model is related to the generalization ability 
and the degree of difficulty to insert the parameters. In 
Bayesian network, the insertion of one edge can increase a 
huge number of parameters when the number of parents is 
relatively high or the number of discrete states of variables is 
large.  

To design the evolutionary algorithm, we have investigated 
the search space of the problem. The number of candidates 
for the combination is the factorial of the number of Bayesian 
networks. If the number of Bayesian networks is 15, the 
number of candidates (the size of solution space) is 1.3×1012. 
Enumerative approach for the problem is not feasible because 
the combination process itself has computational cost and the 
number of candidates is growing exponentially.  

 
Figure 4: The fitness landscape in the case of 8 Bayesian 

networks. 
 

To get some information about the search space, we have 
generated a number of random Bayesian networks. The 
number of variables of each Bayesian network ranges from 3 
to 40. A set of variables is }.,,,{ 5021 xxxX L=  If the 
number of variables of BN is 37, 37 variables are chosen from 
X  without duplication. When the number of Bayesian 

networks is larger than 8, it is impossible to enumerate all the 
candidates and draw fitness landscape. Figure 4 shows the 
fitness landscape of Bayesian network combinations for 8 
Bayesian networks. The global optimum is located around at 
16561~17281. The x-scale of the figure represents 
permutation index of 8 Bayesian networks. For example, 

12345678B  is 1 and 87654321B  is the last index (40320) .  
Figure 5 shows an example of permutation index.  

 
Permutation

Index 
Order of combination (Each number 

represents BN ID) 
0 1 2 3 4 5 6 7 8 
1 1 2 3 4 5 6 8 7 
2 1 2 3 4 5 7 6 8 
3 1 2 3 4 5 7 8 6 
4 1 2 3 4 5 8 6 7 
5 1 2 3 4 5 8 7 6 

… … … … … … … … …
40318 8 7 6 5 4 3 1 2 
40319 8 7 6 5 4 3 2 1 

Figure 5: Permutation index for 8 BNs. 
 
1:/* N : the number of Bayesian networks for combination 
*/ 
2: /* POP: Population */ 
3: /* order[] : array with length N */ 
4: /* Permutation(permutation index): return the order of N 

items given the inputted permutation index */  
5: /* fitness(j) : fitness of jth individual */  
6: /* Initialization(population): Each individual is 

initialized as a value from 0 to N!-1 */ 
7: /* θ: random variable */ 
8:  
9: Initialization(POP);  
10:  
11: For i=1 to MAX_GEN { 
12:   For j=1 to |POP| { 
13:     order = Permutation(POP(j)); 
14:     fitness(j) = Fusion (order); } 
15:   POP=Selection(POP, fitness); // selection 
16:   For j=1 to |POP|/2  // crossover  
17:   {Parent(); // select two indexes 

POP(children)= 
θ×POP(parent1)+(1-θ)×POP(parent2);}  

18:   For j=1 to |POP| // mutation  
19:     POP(j)=Random(POP(j), 0, N!-1) 
20:}     

Figure 6: The pseudo code for evolutionary aggregation 
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In this paper, we have used permutation index as a 
representation of evolutionary algorithms because the fitness 
landscape is partially continuous (not extremely fluctuated). 
If the small change of order makes huge difference of 
performance, it is difficult to use such representation. But, in 
this case, it is relatively continuous at neighbor of point 
though there are some sudden decreases. The adoption of the 
representation makes the implementation of the genetic 
operations very easy compared to the order-based 
representation. In permutation index, 1 is used to represent 
the combination order 12345678. The crossover operator is 
simply defined as the middle point of two parents. Figure 6 
shows the pseudo code of the evolutionary aggregation.  

 

B. Refinement of Bayesian Networks 
The refinement process of Bayesian network is defined as a 

machine learning problem. The input of learning is the 
original network and new input data. The output is refined 
network. The goal of refinement is to find the appropriate 
refined network given the original network and new input 
data. Original network that is learned from the accumulated 
data or designed manually can be wrong to the newly inputted 
data. The original network has good estimation about the 
domain but the recent change of the distribution makes the 
model has difficulty to estimate properly to the new data. 
Because it is a sudden change, the change of whole 
distribution based on the new data can cause severe problem 
when the environment produces usual cases.  
    Lam et al. proposed a minimum description length 
(MDL)-based score metric for the refinement process [5].  
They used MDL as a basic principle for the refinement 
learning. It finds a Bayesian network that has relatively low 
complexity with the similarity to the original network and 
new distribution cased by the newly inputted data. In the 
MDL, the best network is one with the minimized sum of 
description lengths of the learning data and model itself. The 
problem is to search the best one among a number of 
candidates. Let us define pH  as the candidate network and 

OH  as the original network. Newly inputted data are 
represented as .D  Basic components of the score metric are 
NDL, DDL, and NDSL.  
    (1) Network description length of  pH  

    (2) Data description length of  D  given pH  

    (3) Network description length of source OH  given pH  

The refinement metric is defined as the sum of (1), (2) and 
(3). The purpose of learning is the minimization of the sum. If 
the domain has n  variables, }.,,,{ 21 nxxxX L= ik  
represents the number of parents of .ix  d  is the necessary 
number of bits for storing real-value. is  is the number of 
states of .ix  jps  represents the number of states of the jth 

parents of .ix The first term of the metric is defined using this 
formula.  
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iq represents the number of all instances of parents of 
.ix R  means the relative frequency in the .D  M  is the 

number of samples in .D  Data description length is 
calculated using relative frequency.  
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 amr ,,  represent the number of reversed edges, removed 
edges, and added edges of OH  compared to  pH , 

respectively. The description length of source is based on the 
number of operations (add, deletion, and reverse).  
 

))1((log)( 2 −++ nnamr  
 
1: /* OH : Original network */ 
2: /* D : new data */ 
3: /* POP: Population of Bayesian networks */ 
4: /* Initialization(): Initialization of Bayesian networks */
5: /* Refine( OH , D , pH ): return the MDL score */ 

6: /* array[]: 1-d array */ 
7:  
8: Initialization(POP);   
9:  
10: For i=1 to MAX_GEN{ 
11:  For j=1 to |POP|{ 
12:    fitness(j)=Refine( OH , D , jH );} 

13:  POP=Selection(POP); 
14:  For j=1 to |POP|/2 { // crossover 
         Parent(); // select two indexes 
         array1=parent1; array2 = parent2;  

POP(children) = crossover(array1,array2);} 
15:  For j=1 to |POP| // mutation  
16:    POP(children)  

= Random(addition, deletion of edges); 
17:  Repairing(); // break cycle  
18:} 

Figure 7: The pseudo code for evolutionary aggregation 
 
   The evolutionary algorithm uses connection matrix as a 
representation of pH . The topological order of pH  could 

also be choice for the representation. Because the purpose of 
our research is to investigate the usefulness of evolutionary 
algorithm for the adaptation of Bayesian network, simple 
connection matrix is used without deep discussion about the 
comparison of two representations. The crossover is as 
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follows. The nn ×  matrix can be represented as a 
1-dimensional array of 2n members. Each parent is 
transformed to the 1-D array and the information is 
exchanged by 1-point crossover. The mutation is simple 
addition and deletion of edges. Repairing operator randomly 
deletes one of edges that form a cycle. Figure 7 shows the 
evolutionary approach for refinement.  
 

IV. EXPERIMENTAL RESULTS 

A. Aggregation of Multiple Bayesian Networks 
Randomly generated networks are used to test the 

performance of evolutionary approaches for combination 
(Table 1). The problem of fusion of 8 Bayesian networks (#1, 
#2, #3, #4, #5, #6, #7, and #8) is to find the best order that 
minimizes the number of edges of the final network. Table 2 
shows the results of enumeration of all candidates. # of BN=2 
means that it is the result of the combination of BN#1 and 
BN#2. Table 3 shows the percentage of the best solutions and 
the enumerative evaluation time. It is not feasible to do that 
for N>8.  

Table 1. The randomly generated BNs 
BN
ID 

# of  
variables 

# of  
edges 

BN 
 ID 

# of  
variables 

# of  
edges 

#1 38 229 #15 12 33 
#2 31 96 #16 29 14 
#3 33 182 #17 12 23 
#4 5 4 #18 28 129 
#5 33 22 #19 33 136 
#6 14 6 #20 22 65 
#7 27 114 #21 32 69 
#8 22 103 #22 38 12 
#9 33 128 #23 24 63 

#10 34 56 #24 30 35 
#11 20 87 #25 29 23 
#12 13 11 #26 21 25 
#13 28 128 #27 10 1 
#14 8 13 #28 5 4 
 
The parameters of evolutionary algorithms are as follows. 

The number of population size is 20, the number of maximum 
generation is 50, crossover rate is 0.8 and mutation rate is 
0.01.  

The evolutionary approach is compared to the various 
strategies. They are as follows.  

 
   (1) Heuristic #1: The order is based on the number of edges. 

If the BN has more edges than others, it will be 
combined later.  

   (2) Heuristic #2: It is also based on the number of edges. If 
the BN has more edges than others, it will be combined 
early.  

   (3) Greedy #1: This is a greedy strategy. It adds a BN that 
minimizes the number of edges of the final network.  

   (4) Greedy #2: It adds a BN that maximizes the number of 
edges of the final network.  

Table 2. The result of enumeration of all candidates (the 
values indicate the number of edges) 

# of
BN

# of  
candidates Average Max Min 

2 2 609.0±135.7645 705 513 
3 6 917.5± 61.7243 994 855 
4 24 926.1± 53.6475 995 858 
5 120 970.5± 62.6244 1056 880 
6 720 982.6± 61.3339 1065 883 
7 5040 1056.0± 39.3754 1119 984 
8 40320 1093.4± 31.0356 1140 1032

 
Table 3. The best solutions and the enumerative evaluation 

time 
# of
BN

# of minimum 
solutions 

% of minimum
 solutions Time 

2 1 50.0 - 
3 2 33.3 - 
4 6 25.0 - 
5 18 15.0 - 
6 90 12.5 - 
7 5 0.1 1h 40m
8 96 0.23 22h 

 
Table 4. The results of each strategy (the values indicate the 

number of edges) 
# of
BN 

Heuristic
#1 

Heuristic 
#2 

Greedy 
#1 

Greedy 
#2 GA 

2 513 705 513 705 513 
3 855 989 855 904 855 
4 858 990 990 905 858 
5 880 1005 1041 932 880 
6 883 1005 1046 933 883 
7 1014 1093 1105 993 986 
8 1055 1118 1126 1039 1034
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Figure 8: The results of comparison between Heuristic #1 and 

genetic algorithm 
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Figure 9: Average fitness change over generation (# of BN = 

14) 
 

Table 4 shows the number of edges of the final network. 
The results show that Heuristic #1 shows good performance 
compared to other methods. Heuristic #2 shows the worst 
performance.  Greedy #1 shows relatively low performance 
compared to the Heuristic #1. Greedy #2 shows low 
performance when the number of Bayesian networks is small, 
but it shows improved performance when the number of 
Bayesian networks is increased. Figure 8 shows the 
comparison of performance between GA and Heuristic #1. It 
shows that the GA shows better performance than the 
Heuristic #1. Greedy #2 shows comparable results to the 
genetic algorithm but it shows low performance when the 
number of Bayesian networks is small. Figure 9 shows the 
change of average fitness. It converges in the early 
generation.  

 

B. Refinement of Bayesian Networks 
ASIA, one of representative benchmark networks, is a 

small Bayesian network that calculates the probability of a 
patient having tuberculosis, lung cancer or bronchitis 
respectively based on different factors, for example whether 
or not the patient has been to Asia recently (Figure 10). 
Shortness-of-breath (dyspnoea) may be due to tuberculosis, 
lung cancer, bronchitis, more than one of these diseases or 
none of them. A recent visit to Asia increases the risk of 
tuberculosis, while smoking is known to be a risk factor for 
both lung cancer and bronchitis. The results of a single chest 
X-ray do not discriminate between lung cancer and 
tuberculosis, as neither does the presence or absence of 
dyspnoea. 

Figure 11 shows the ways of performance evaluation of the 
proposed genetic algorithm refinement. The ASIA network is 
the original network and 2000 data are sampled from the 
network using probabilistic logic sampling. After modifying 
the original network with some ratio, it will be recovered 
using new data and the likeness between the recovered one 
and original one is measured. Modification ratio δ means 
δ×100% edges are modified using addition, deletion and 
reverse operations (each δ/3×100%).  

The number of new data and the rate of modification are 
changed. Figure 12 shows the performance comparison of 
genetic algorithm and greedy approaches. It shows that the 
genetic algorithm performs better than greedy algorithm. It is 
the average of 10 runs.  

The increase of the new data makes the performance 
improvement but more than 1800 shows decrease of 
performance. It might be the result of biased optimization to 
the distribution of new data. The modification ratio degrades 
the performance as expected but evolutionary approach 
shows robust performance even for 0.4~0.8 ratio.  

Visit to Asia?

Tuberculousis? Lung cancer?

Smoker?

Bronchitis?

Lung cancer or
Tuberculosis?

Positive X-ray? Dyspnoea?
 

Figure 10: ASIA network 
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Figure 11: The procedure of comparison 

V. CONCLUSIONS 

In this paper, we have proposed two evolutionary 
approaches for adaptation of Bayesian networks. A 
preliminary test with a benchmark problem indicates that the 
genetic algorithm approach can provide more improved 
results than the heuristics or greedy search. Further 
investigation with a variety of realistic problems might 
strengthen the point of this paper.  
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Figure 12: The performance comparison 
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