
S.K. Pal et al. (Eds.): PReMI 2005, LNCS 3776, pp. 649 – 653, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

DNA Gene Expression Classification with Ensemble 
Classifiers Optimized by Speciated Genetic Algorithm  

Kyung-Joong Kim and Sung-Bae Cho 

Department of Computer Science, Yonsei University, 
134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749, South Korea 

{kjkim, sbcho}@cs.yonsei.ac.kr 

Abstract. Accurate cancer classification is very important to cancer diagnosis 
and treatment. As molecular information is increasing for the cancer classifica-
tion, a lot of techniques have been proposed and utilized to classify and predict 
the cancers from gene expression profiles. In this paper, we propose a method 
based on speciated evolution for the cancer classification. The optimal combi-
nation among several feature-classifier pairs from the various features and clas-
sifiers is evolutionarily searched using the deterministic crowding genetic algo-
rithm. Experimental results demonstrate that the proposed method is more ef-
fective than the standard genetic algorithm and the fitness sharing genetic algo-
rithm as well as the best single classifier to search the optimal ensembles for the 
cancer classification.  

1   Introduction 

The ensemble classifier, a combination of several feature-classifier pairs, has been 
regarded as promising due to the incompleteness of classification algorithms, the 
defects of data, and the difficulty of setting parameters. With the ensemble classifier, 
we can obtain more reliable solutions than with a single feature-classifier alone. How-
ever, because not all ensembles yield good classification performance, it is necessary 
to find the optimal\ ensembles in order to classify the samples accurately. In the neu-
ral network domain, it is well known that many ensembles instead of all neural net-
works were better. Therefore, forming an ensemble of all the feature-classifier pairs is 
not a good heuristic. A straightforward way of finding the optimal ensemble is to 
compare all the ensembles and simply select the best one. However, the possible 
number is too huge. In this paper, we used 42 feature-classifier pairs, indicating 242 
possible ensembles. It would be almost impossible to enumerate all the ensembles 
with even the most powerful computer.  

 Kuncheva et al. used the GA approach to design the classifier fusion system which 
was tested on a non-biological benchmark dataset [5]. In this paper, we propose the 
deterministic crowding genetic algorithm (DCGA) to search the optimal ensemble 
classifier. The reasons why we use DCGA rather than standard genetic algorithm 
(SGA) and fitness sharing genetic algorithm (FSGA) are summarized as follows: 

(1) Geometry of the ensemble space is not known, 
(2) Feature (gene) space is very huge, 
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(3) SGA tends to converge to only one local optimum of the function, and 
(4) DCGA does not require prior knowledge. 

The proposed method is unique to search the optimal ensemble evolutionarily from 
huge number of ensembles, whereas most of the other ensemble methods combine 
small number of classifiers according to specific rule.  

2   Backgrounds 

Studies for cancer classification based on gene expression data using ensemble ap-
proaches are summarized in Table 1. Most of the previous studies generate the base 
classifiers using different subsets of features to obtain diverse classifiers. Most of 
these studies have explored a small part of the ensemble space. However, the objec-
tive of this paper is to make a huge ensemble space and search optimal ensembles 
evolutionarily, which is the main contribution of this paper.  

Table 1. Studies using ensemble approach for gene expression data classification 

Researcher Feature  
selection 

Classifier Ensemble method Remark 

Cho et al. [1] Several  
methods 

MLP 
KNN 
SVM 

SASOM 

Majority voting 
Weighter voting 

Bayesian combination 

Systematical compariso
n of features, classifiers 
and ensemble methods 

Tan et al. [2] 
Fayyad and I
rani’s discreti

zation 
C4.5 

Bagging 
Boosting Resampling 

Tsymbal et al.
 [3] 

N/A 
Simple  

Bayesian
classifier 

Cross-validation majority 
Weighter voting 

Dynamic selection 
Etc. 

Various ensemble  
method 

Cho et al. [4] 
Correlation 

Analysis MLP Majority voting 
Ensemble classifier trai
ned in mutually exclusi

ve feature spaces 

3   Proposed Method 

GA (Genetic Algorithm) is stochastic search method that has been successfully ap-
plied in many search, optimization, and machine learning problems. However, stan-
dard GA has a defect which tends to converge to local minimum. DeJong’s crowding 
is one of the niching methods which have been developed to reduce the effect of ge-
netic drift resulting from the selection operator in the standard GA.  

The structure of a chromosome is very important in the GA. In this paper, a chromo-
some corresponds to an ensemble. The chromosome is composed of 48 bits string, each 
of which indicates whether the corresponding FC (Feature-Classifier pair) is joined to 
the ensemble or not. In this paper, MLP (Multilayer-Perceptron), KNN (K-nearest 
neighbor), SVM (Support Vector Machine), and SASOM (Structure Adaptive  
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Self-Organizing Map) [1] are used as classification models. PC (Pearson Correlation), 
SC (Spearman Correlation Coefficients), ED (Euclidean Distance), CC (Cosine Coef-
ficient), IG (Information Gain), MI (Mutual Information), SN (Signal-to Noise Ratio) 
and PCA (Principal Component Analysis) [1] are used as feature selection.  

Cfitness = ENSaccuracy – k Np 

where k is a constant, Np is the number of participant FCs to the ensemble and ENSac-

curacy is the accuracy of the corresponding ensemble on the validation data set. 

samplesn  validatio totalof #

samples classifiedexactly  of #=accuracyENS  

The crossover operation changes individual FCs partly between mated chromo-
somes, and the mutation operation either adds new FC to current chromosome or 
deletes a FC from it. The similarity between chromosomes is computed using ham-
ming distance of genotypes. The algorithm of the procedure is described in Fig. 1. 
The majority voting scheme is used for combining the classifiers in an ensemble in 
this paper. This is a very popular combination scheme because of both its simplicity 
and its performance on real data. 

1: Initialize P individuals; {each individual represents an ensemble} 
 2: Insert P individuals into Q; {Q holds individuals of the population} 
 3: for (i = 0 ; i < MAX_GEN; i++)  
 4:   Shuffle P individuals in Q; 
 5:   while (Q is not empty) do 
 6:     Delete (p1, p2) from Q; 
 7:     q1, q2=Crossover p1, p2; 
 8:     r1, r2=Mutate q1, q2; 
 9:     if (distance (p1, r1)+distance (p2, r2) < distance (p1, r2)+distance (p2, r1)) then  
10:       if (fitness (p1) < fitness (r1)) then Insert (r1) to Q2; else Insert (p1) to Q2; end if  
11:       if (fitness (p2) < fitness (r2)) then Insert (r2) to Q2else Insert (p2) to Q2; end if  
12:     else  
13:       if (fitness (p1) < fitness (r2)) then Insert (r2) to Q2 else Insert (p1) to Q2; end if 
14:       if (fitness (p2) < fitness (r1)) then Insert (r1) to Q2 else Insert (p2) to Q2; end if  
15:     end if  
16:  end while 
17:  Q=Q2; 
18: end for  

Fig. 1. A pseudo code for crowding algorithm 

If there are m classes and k classifiers, the ensemble result by majority voting is de-
termined as follows: 

⎭
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⎫

⎩
⎨
⎧
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=≤≤

}(maxarg
11

k

j
ji

mi
ensemble classifiersc  

where ci is the class i, i = 1, …, m, si(classifierj) is 1 if the output of the j-th classifier 
classifierj equals to the class i, 0 otherwise.  
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4   Experimental Results 

B cell diffuse large cell lymphoma (B-DLCL) is a heterogeneous group of tumors, 
based on significant variations in morphology, clinical presentation, and response to 
treatment. Gene expression profiling has revealed two distinct tumor subtypes of B-
DLCL: germinal center B cell-like DLCL and activated B cell-like DLCL. This lym-
phoma cancer dataset consists of 24 samples of GC B-like and 23 samples of acti-
vated B-like (http://genome-www.stanford.edu/lymphoma).  

For the feature selection, we have selected top 25 genes or principal components 
(for PCA) considered as informative since a preliminary study suggested the optimal 
number of genes as 25~30 [1]. We have calculated PC, SC, ED and CC between each 
gene vector and ‘ideal gene vector’ in which the expression level is uniformly high in 
class 1 and uniformly low in class 2. IG, MI and SN are calculated using the feature 
values and the class label. Only PCA does not use the label information of samples. 

For the classifiers, we have set the number of input-hidden-output nodes to 25-8-2. 
We also set 0.01~0.50 of learning rate, 0.3~0.9 of momentum, and 500 of maximum 
iterations. We let the back-propagation algorithm stop the training when it reaches to 
98% of training accuracy. In the case of kNN, we have set the k from 3 to 9, and used 
Pearson correlation coefficients and cosine coefficients for the similarity measures. 
We have used Joachim’s SVMlight with linear and radial basis function kernels 
(http://svmlight.joachims.org/). In SASOM, we have used initial 4×4 map which has 
rectangular shape. The details of parameters for each classification model can be 
found in [1]. 

For the DCGA, we have set the 0.9 of crossover rate, 0.05 of mutation rate, 500 of 
population size, and 2000 of maximum iterations and employed roulette wheel selec-
tion scheme. The value of k is set to 0.01. Fitness sharing which is for comparison, we 
set the sharing radius of 5. Table 2 shows the average accuracies of individual FCs for 
lymphoma dataset. 

Leave-one-out cross-validation (LOOCV) is employed in our experiments both to 
overcome the number of samples and to just evaluate the proposed method. For 
LOOCV, dataset is divided into three parts: training samples, validation samples and 
one test sample. The FCs are trained by training samples. DCGA operates with vali-
dation samples to find the optimal ensemble. Finally, the best solution in the last gen-
eration is validated by test sample. These are repeated as many times as the number of 
data.  

Table 2. The accuracy of individual FCs for lymphoma dataset 

 MLP SASOM SVM(L) SVM(R) KNN(C) KNN(P) AVG 
PC 77.6 67.7 66.4 55.6 78.4 78.0 70.6 
SC 78.8 67.2 68.0 57.6 78.4 76.8 71.1 
ED 75.2 62.8 66.4 64.0 76.0 77.6 70.3 
CC 80.0 64.4 72.4 56.4 78.0 78.4 71.6 
IG 85.2 75.2 77.6 66.8 81.6 83.2 78.3 
MI 80.0 67.6 67.2 58.4 76.4 77.2 71.2 
SN 81.2 70.8 68.0 58.4 78.8 79.2 72.7 

PCA 87.2 84.0 88.4 58.4 86.0 86.4 81.7 
AVG 80.7 70.0 71.8 59.5 79.2 79.7 73.5 
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Table 3. The comparison of performance (Average of ten runs) 

Methods LOOCV accuracy 
Best single feature-classifier pair 95.3±3.05 
Ensemble of all classifiers whose accuracy is larger than 80% 94.7±3.16 
Simple GA 98.0±2.10 
Crowding 98.8±1.93 

 
DCGA found the optimal ensembles which exactly classify every validation sam-

ple. To demonstrate the superiority of our method, we have compared it with other 
methods and the result is in the Table. 3. The accuracy means the rate of exactly clas-
sified samples among test samples. Ensemble of good base classifiers (accuracy > 
80%) is the combination of good individual FCs for classification. The performances 
of all GA strategies (SGA, DCGA and FSGA) are the best ensembles among 1 mil-
lion ones which are generated by their operations. This shows that the combination of 
similar good ensemble classifiers degrades the performance and the proposed method 
performs well.  

5   Conclusion and Future Work 

This paper presents a DCGA-based method of searching the optimal ensemble for 
cancer classification using DNA microarray data. Though FSGA is also well known 
for one of good niching methods, we have employed DCGA because FSGA is known 
that it usually fails on hard problems and it requires prior knowledge for good result. 
Experiments have supported the use of DCGA for the optimal ensemble to classify 
cancers. The result of LOOCV also confirms the superiority of the proposed method.  
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