
Evolutionary Learning Program’s Behavior
in Neural Networks for Anomaly Detection

Sang-Jun Han, Kyung-Joong Kim, and Sung-Bae Cho

Dept. of Computer Science, Yonsei University,
134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749, Korea

{sjhan,kjkim,sbcho}@cs.yonsei.ac.kr

Abstract. Learning program’s behavior using machine learning tech-
niques based on system call audit data is effective to detect intrusions.
Among several machine learning techniques, the neural networks are
known for its good performance in learning system call sequences. How-
ever, it suffers from very long training time because there are no formal
solutions for determining the suitable structure of networks. In this pa-
per, a novel intrusion detection technique based on evolutionary neural
networks is proposed. Evolutionary neural networks have the advantage
that it takes shorter time to obtain superior neural network than the con-
ventional approaches because they learn the structure and weights of neu-
ral network simultaneously. Experimental results against 1999 DARPA
IDEVAL data confirm that evolutionary neural networks are promising
for intrusion detection.

1 Introduction

In host-based anomaly detection, the idea of learning program’s behavior has
been studied and used actively by many researchers. It considers normal behav-
ior from the point of individual program. Profiles for program’s behavior are built
and the behaviors which deviate from the profile significantly are recognized as
attacks. Machine learning methods have been used to profile program’s behavior
because it can be viewed as a binary classification problem which is one of the
traditional problems in pattern classification. Especially, in previous researches,
neural network showed the performance superior to other techniques. However,
profiling normal behavior requires very long time due to the huge amount of au-
dit data and computationally-intensive learning algorithm. Moreover, to apply
neural network to real world problems successfully, it is very important to deter-
mine the topology of network, and the number of hidden nodes which are proper
for the given problem, because the performance hinges upon the structure of
network. Unfortunately, although many works on designing the domain-specific
network structure automatically, there is no absolute solution [1] and typically
the network structure is designed by repeating trial and error cycles on the basis
of the experiences of working on similar problem. A.K. Ghosh who showed the
best performance against the pubic benchmark data trained 90 neural networks
in total for each program: 10, 15, 20, 25, 30, 35, 40, 50, and 60 hidden nodes

N.R. Pal et al. (Eds.): ICONIP 2004, LNCS 3316, pp. 236–241, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Evolutionary Learning Program’s Behavior in Neural Networks 237

and 10 networks for each number of hidden nodes. Then a neural network which
showed best performance against the validation data was selected [2]. Therefore
it takes a very long time to build normal behavior model and it is the vital
drawback of neural network-based intrusion detection technique.

In this paper, we employ evolutionary neural network (ENN) to overcome the
shortcoming of the conventional intrusion detection technique based on neural
network. ENN does not require trial and error cycles for designing the network
structure and the near optimal structure can be obtained automatically. Due
to these advantages of ENN, we can get better classifier in shorter time. We
examine the proposed method through experiments with real audit data and
compare the result with that of other methods.

2 Intrusion Detection with Evolutionary NNs

Fig. 1 illustrates the overall architecture of ENN-based intrusion detection tech-
nique. We use system call-level audit data provided by BSM (Basic Security
Module) of Solaris operating system. Preprocessor monitors the execution of
specified programs and generates system call sequences by programs. GA mod-
eler builds normal behavior profiles using ENN. One neural network is used per
one program. New data are input to the corresponding neural network. If the
evaluation value exceeds the pre-defined threshold, the alarm is raised.

NNps

B
S

M
 A

udit F
acility

.

.

.

P
re

pro
cessor

D
etector

ALARM

ps

su

at

login

ping

G
A

 M
odeler

Normal ProfileAudit Data

.

.

.

NNsu

NNat

NNlogin

NNping

Fig. 1. Overall architecture of the proposed technique.

2.1 Modeling Normal Behavior

Our ENN has L input nodes because the system call sequence St which is gen-
erated at time t with window length L is used as input. There are two output
nodes which represent normal and attack behavior respectively. 10 input nodes
are used because we have set the window length as 10. There are 15 hidden
nodes among which the connectivity is determined by evolutionary algorithm.
Anomaly detector uses only attack-free data in training phase, but to train the
supervised learner like neural network, the data labeled as attack are also needed.



238 Sang-Jun Han, Kyung-Joong Kim, and Sung-Bae Cho

For this reason, we have generated the artificial random system call sequences
and used them as intrusive data. The training data is generated by mixing real
normal sequences and artificial intrusive sequences in the ratio of 1 to 2. In this
way, we can obtain the neural network which classifies all system call sequences
except given normal sequence as attack behavior.

There are several genotype representations methods for neural network such
as binary, tree, linked list, and matrix representation. We have used a matrix-
based genotype representation because it is straightforward to implement and
easy to apply genetic operators. When N is the total number of nodes in a neural
network including input, hidden, and output nodes, the matrix is N ×N whose
entries consist of connection links and the corresponding weights. In this model,
each neural network uses only forward links. In the matrix, upper right triangle
(see Fig. 2) has connection link information and lower left triangle describes the
weight values corresponding to the connection link information. The number of
hidden nodes can be varied within the maximum number of hidden nodes in the
course of genetic operations.

H1

OI

H2

PhenotypeGenotype

0.4

0.3

0.7

0.50.0   1.0   1.0   1.0

0.5   0.0   0.0   0.0

0.4   0.0   0.0   1.0

0.3   0.0   0.7   0.0

I      H1      H2    O

I
 

H1

H2

O

Connectivity

Weight

Fig. 2. An example of genotype-phenotype mapping.

Crossover and mutation operator is used as genetic operators and the fitness
is calculated as the recognition rate for the training data. The rank-based selec-
tion in which the individuals’ selection probabilities are assigned according to
the individuals’ rank based on the fitness evaluation function values is used.

2.2 Anomaly Detection

For accurate intrusion detection, it is important to recognize the temporal lo-
cality of abnormalous events, not the fluctuation of the output value [2]. High
output values of attack node for very short time should be ignored because it
is not sufficient to decide if that process is attack. To do that it is required to
consider the previous output values as well as the current output values. For
this purpose, we define a new measure of abnormality that has a leaky integra-
tor. When o1

t denotes the output value of attack node, o2
t denotes the output

value of normal node, and w1, w2, w3 denote the weights to these values, the raw
evaluation score rt is calculated as follws:

rt = w1 · rt−1 + w2 · o1
t + w3 · o2

t (1)



Evolutionary Learning Program’s Behavior in Neural Networks 239

It retains the evaluation value of past evaluation with decay and we get higher
abnormality of current process as the output value of attack node is higher
and the output value of normal node is lower. In this way, we can measure the
abnormality of program’s behavior robustly to short fluctuation and recognize
the temporal locality of abnormal behaviors.

We define threshold and check whether its abnormality is exceeds it, to deter-
mine whether current process is attack or not. However, the decision boundaries
vary from program to program because the different neural network is used to
evaluate the different program behavior. Thus, applying a threshold to overall
neural network is not feasible. To solve this problem we have normalized the raw
evaluation values statistically. First, we test the training data using the trained
neural network and we calculate the mean and variance of rt. Then, under as-
sumption of that rt is normally distributed, we transform rt to corresponding
value in standard normal distribution Rt. When m is the mean of rt and d is the
standard deviation against the training data, the normalized evaluation value
Rt is calculated as follows:

Rt = eval(St) =
rt − m

d
(2)

If Rt exceeds the pre-defined threshold, current process is considered as attack.

3 Experiments

3.1 Experimental Settings

To verify the proposed method, we have used the 1999 DARPA intrusion evalu-
ation data set [4]. In this paper, our experiments are focused on detecting U2R
attack attempts to gain root privilege by privileged program misuse. Thus, we
monitors only SETUID privileged programs which are the target of most U2R
attacks. This data set consists of five weeks of audit data. 1-3 week data are for
training and 4-5 week data are for testing. We have used 1 and 3 weeks data
which do not contain any attacks for training neural networks and 4 and 5 week
data are used for testing. The test data contain 11 instances of 4 types of U2R
attacks.

Population size is 20 and the maximum generation number is 100. Crossover
rate is 0.3 and mutation rate is 0.08. The neural network which has the highest
fitness is selected and used for testing.

3.2 Results

Comparison of Training Time. The time required for training general MLP
and ENN is compared. The training program was run on the computer with
the dual Intel Pentium Zeon 2.4GHz processor, 1GB RAM, and Sun Solaris
9 operating system and the average time was taken. In the case of MLP, the
number of hidden nodes varied from 10 and 60 and for each number of hidden



240 Sang-Jun Han, Kyung-Joong Kim, and Sung-Bae Cho

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

False Alarm Per Day

D
et

ec
tio

n 
R

at
e

Fig. 3. Intrusion detection performance of ENN.

nodes, 10 networks were trained. Total 90 networks were trained. Error back
propagation algorithm was iterated until 5000 epoch. ENN has the maximum
15 hidden nodes and the population of 20 neural networks was evolved to the
100th generation. Both neural network has 10 input nodes and 2 output nodes
and are trained with the training data of login program which consists of 1905
sequences.

The conventional approach which repeats trial-and-error cycle requires about
17 hours 50 minutes. However, in case of evolutionary neural network, it takes
1 hour 14 minutes. Evolutionary approach can reduce the learning time as well
as it has advantage that the near optimal network structure can be obtained.

Comparison of Detection Performance. Fig. 3 depicts the detection/false
alarm plot which illustrates the intrusion detection performance of the proposed
method. It produces 0.7 false alarms at 100% detection rate. In 1999 DARPA
IDEVAL, the method which showed the best performance at detecting U2R at-
tacks is the work of A.K. Ghosh et at. that learns system call sequences with
Elman recurrent neural network [5]. It showed 3 false alarms at 100% detec-
tion rate [3]. The performance of ENN is superior to that of Elman network.
This result illustrates that ENN can find more optimal neural network than the
conventional neural network which has static and regular structure.

Comparsion of Network Structure. Table 1 compares ENN trained with
ps program’s behavior and general MLP in terms of network structure. Both
have the same number of nodes: 10 input nodes, 15 hidden nodes, and 2 output
nodes. The total number of connections does not differ much. However, ENN has
more various types of connection including connection types which do not exist
in MLP such as connections from input node to output node and from hidden
node to hidden node. In the work of A.K. Ghosh et al., they improved the
performance by retaining context information between samples with recurrent
topology. On the other hand, ENN attempts to increase learnable samples by
forming non-regular and complex network structure.



Evolutionary Learning Program’s Behavior in Neural Networks 241

Table 1. Comparison of network structure.

(a) ENN (b) MLP

From\To Input Hidden Output

Input 0 86 15

Hidden 0 67 19

Output 0 0 0

From\To Input Hidden Output

Input 0 150 0

Hidden 0 0 30

Output 0 0 0

4 Conclusion

This paper proposes an evolutionary neural network approach for improving
the performance of anomaly detection technique based on learning program’s
behavior. The proposed method cannot only improve the detection performance,
but also reduce the time required for training because it learns the structure
and weights of neural network simultaneously. The experimental result against
1999 DARPA IDEVAL which is superior to previous works verifies the proposed
method. As future work, it is needed to find the network structure which is good
for intrusion detection by analyzing the evolved structures. For more accurate
modeling, we can employ multiple expert neural networks which are evolved with
speciation and combine them.

Acknowledgement

This paper was supported by Brain Science and Engineering Research Program
sponsored by the Korean Ministry of Science and Technology.

References

1. X. Yao, “Evolving Artificial Neural Networks,” Proceedings of the IEEE, vol. 87,
no. 9, pp. 1423-1447, 1999.

2. A. K. Ghosh, A. Schwartzbard, and M. Schatz, “Learning Program Behavior Profiles
for Intrusion Detection,” Proceedings of the 1st USENIX Workshop on Intrusion
Detection and Network Monitoring, pp. 51-62, Santa Clara, CA, April, 1999.

3. A. K. Ghosh, C. C. Michael, and M. A. Schatz, “A Real-Time Intrusion Detection
System Based on Learning Program Behavior,” Proceedings of the Third Interna-
tional Symposium on Recent Advances in Intrusion Detection, pp. 93-109, 2000.

4. MIT Lincoln Laboratory, “DARPA Intrusion Detection Evaluation,” Available from
http://www.ll.mit.edu/IST/ideval/index.html.

5. R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das, “The 1999 DARPA Off-Line
Intrusion Detection Evaluation,” Computer Networks, vol. 34, no. 4, pp. 579-595,
2000.


	1 Introduction
	2 Intrusion Detection with Evolutionary NNs
	2.1 Modeling Normal Behavior
	2.2 Anomaly Detection

	3 Experiments
	3.1 Experimental Settings
	3.2 Results

	4 Conclusion
	References



