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Abstract 
Tangible agent (TA) is a new medium that commu- 
nicates the senses of sight, hearing, touch, smell, and 
taste of human to computer. Intelligent behavior is a 
key property to realize the agent because it must inter- 
act with human to grasp all the information. We have 
adopted behavior-based approach for high-level hehav- 
iors such as navigation of office, conversation with hu- 
man, and cleaning of room. Behavior-based method can 
control unexpected situation without prior knowledge 
and generate high-level behavior with behavior selec- 
tion. However, TA requires improvements of behavior 
selection architecture for better communication with hu- 
man. In this paper, we propose an intelligent behavior 
selection architectwe that contains inferencing, learning 
and planning capability to TA. In this paper, overview 
of technical details and experimental results on physi- 
cal device (Khepera robot) are presented. Preliminary 
results show the possibility of the proposed behavior se- 
lection architecture for TA. 

1 Introduction 

lkaditional user interface for cyberspace is restricted 
to the monitor connected to computer hut tangible 
medium expands the concept of interface by includ- 
ing physical devices such as desk, robot, blackboard, 
and electric light [I]. Tangible agent (TA) connects hu- 
man to bits by delivering the five senses of human to 
cyberspace. Among many candidates for TA, ph,ysical 
robot and artificial life character are easily apphcable 
because human can feel Wendship from them. For au- 
tonomous and seamless interaction, intelligent behavior 
generation for TA has many issues including infereuc- 
ing user’s goals, automatically constructing behavior 
selection architecture (BSA), and optimizing behavior. 
Behavior-bawd approach have been adopted for hehav- 
ior generation of TA because the metbod can react with- 
out hesitation in unexpected situation. This property is 
necessary for TA that does jobs in office. 

There are many ASM’s (Action Selection Mecha- 
nisms) to combine behaviors for generating high-level 
behaviors including spreading activation network, sub- 
sumption architecture and hierarchical ASM [Z]. The 
ASM is essential in behavior-based methods because it 
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selects appropriate one among candidate behaviors and 
coordinates them. Usually, ASM’s can not insert goals 
into the model in explicit or implicit manner. Behavior 
network, one of ASM’s, can contain goals of robot in im- 
plicit manner and propagates activation of behavior in 
two directions (forward and backward) through the uet- 
work for dynamic selection [3]. The network is adopted 
for TA because the ASM is situated between traditional 
artificial inteUigence approach and pure behavior-bawd 
approach, and allows incorporation of intelligent prop  
erties naturally. 

To deal with many issues mentioned before, behavior 
network needs improvements in inferencing, learning, 
and planning capability. Behavior network can have 
many goals that need to activate in different environ- 
ments and status. User can insert prior knowledge of 
goal activation into behavior network in the design stage 
of behavior network but it is difficult to capture and r e p  
resent the knowledge. There are some computational 
methodologies to represent knowledge into graph model 
with inference capability such as Bayesian network, 
fuzzy concept network and fuzzy cognitive map 14, 5,6]. 
Above all, Bayesian network is used practically to infer- 
ence goals of software users in Microsoft Excel [q. Maes 
and Mataric proposed learning algorithm of behavior 
network respectively hut their methods are based on 
statistical or temporal learning [S, 91. These algorithms 
need user’s prior knowledge but learning classifier sys- 
tem (LCS) evolves structure of behavior network with- 
out expert. Bagchi proposed modified behavior network 
with planning capability but their method inserts plan- 
ning in implicit manner [lo]. Explicit planning with 
behavior search tree is adopted in this paper. 

Behavior selection architecture for TA is composed of 
three components such as inference using Bayesian net- 
work, structure learning using LCS, and explicit plan- 
ning using tree search. lkaditional behavior-based a p  
proach has realized animal level intelligence with re- 
activity. However, the animal can recognize their sta- 
tus, learn new capability, and plan how to capture prey 
with reactive behavior. We attempt to implement bet- 
ter agent with animal level intelligence that has reactive 
and cognitive properties. Experiments on Khepera mo- 
bile robot show the possibility of the proposed BSA for 
TA. 

2 Behavior Selection Architecture 
Behavior-based approach is to realize intelligence with- 
out internal representation. This property makes robot 
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react immediately to unexpected situation such as "nav- 
igation on unknown planet." Robot does not have com- 
plex internal representation to process input signal and 
it is possible to be reactive. For the higher behavior, it is 
essential to combine the reactive behaviors using ASM. Aaa = f (aa 1 (3) 
Using inference, learning and planning algorithms, it is 
passible to implement animal level intelligence for TA. 
Designing ASM is not an easy task hecause there are 
many variables to consider and knowledge about en- 
vironment is not enough. Inference module uses com- 
putational model such as Bayesian network, fuzzy con- 

activated. n means the number of goals. ag is the 
activation level of the goal. 

n 

;=I 

(4) 7 x agi , g; E positive link 
f(agi ) = { -6 x agi , g; E negative Link 

Apt network and fuzzy cognitive map to represent prior 
knowledge and estimate unknown variables. ASM is not 
adequate to insert howledge for inference and cannot 
select behaviors properly when the problem contains un- 
certainty. Learning module can determine structure of 
ASM automatically and change the part of structure 
adaptively to the environments. Planning optimizes the 
sequence of behaviors for solving the task. Figure 1 is 
an overview of the proposed method. Intelligent he- 
havior is generated using behavior network with infer- 
ence, learning and planning capability and it is used for 
TA including humanoid, mobile robot, and artificial life 
character. 

Figure 1: Overview of the proposed method. 

2.1 Behavior Network 
Competition of behaviors is the basic characteristics of 
behavior network. Each behavior attempts to get higher 
activation level than other behaviors from activation 
spreading in forward and backward. Among candidate 
behaviors, one that has the highest activation level is 
selected and has control of robot. Activation level a of 
behavior is calculated s follcrws. 

Forward propagation: Activation a is updated as the 
value added by environmental sensors that are p r e  
condition of the behavior. Precondition is the sensor 
that is likely to he true when the behavior is executed. 
n means the number of sensors. a8 is the activation 
level of the sensor. 

Internal spreading: Activation a is updated as the 
value added by other behaviors that are directly con- 
nected. If the execution of behavior B is desirable for 
behavior A, predeceswr link from A to B and succes 
sor link f" B to A are active. If the execution of 
behavior B is not desirable for behavior A, conflictor 
link from A to B is active. Here, n is the number of 
behaviors, and ab is the activation level of the behav- 
ior. 

(5) 

predecessor link from bi 
successor link from 6; 
confiictor link from b; 
otherwise 

417 x abi, 
-617 x Obi, 

(6) 

f ( a b :  ) = 

Finally, the activation of a is updated as follows. 

a' = a +  Aal + A m  + Aas (7) 
If the activation level a' is larger than threshold B 

and precondition of the behavior is true, the behavior 
becomes candidate to he selected. Among candidate 
behaviors, the highest activation behavior is selected for 
execution, threshold B is reduced by 10% and the acti- 
vation update procedure is repeated until there are can- 
didate behaviors. 

2.2 Inference 
Consider a domain U of n discrete variables 21,'. .,zn, 
where each z; has a finite number of states. A Bayesian 
network for U represents a joint probability distribution 
over U by encoding (1) assertions of conditional indepen- 
dence and (2) a collection of probability distributions. 
Specifically, a Bayesian network B can he selected as the 
pair ( B s , ~ ) ,  where Bs is the structure of the network, 
and 8 is a set of parameters that encode local proha- 
bilitv distributions 1111. The joint probability for any 

n desued assignment of d u e s  (&, ...,in) to the tuple of 
network variables (YI, ..., Yn) can be computed by the 

An1 = f (aai ) (1) equation 
;=I 

(2) 4 x nail  si E precondition 
si  4 precondition f (as4 ) = 

Backward propagation: A&v&jon is updated as 
the value added by goals that are directly connected 
to the behavior. If the execution of the behavior is 
desirable for the goal, positive goal-beha,+or l i d  is 
activated. otherwise, negative go&behavior is 

where Parents(Yi) denote the set of immediate prede- 
cessors of in the network. 

Behavior network has one or more goals to achieve in 
the environments. Coordination of their activation can 
not be k e d  in design stage of behavior network because 
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there is uncertainty. Bayesian network is adopted to in- 
fer activation of goal from some observations from the 
environments. Structure of Bayesian network is auto- 
matically learned from the data that are collected from 
random navigation. Obsaved variables are sensor in- 
formation that can be collected from the robot sensors 
including distance, light and velocity. Elom these data, 
it is possible to estimate unknown variables including 
area information, emergency level and cooperation with 
other agents. Equation (3) is modified as follows. 

” *  
An2 = f(no.) x r,J x P(u,(obsenmtion) (9) 

,=I J=1 

m is the number of unknown variables. r,,, is the 
relevance of goal I with respect to variable j .  This value 
is determined manually. P(u,lobservation) is calculated 
using Bayesian network and equation (8). 

2.3 Learning 
LCS, a kind of machine learning technique, was intro- 
duced by Holland and Reitman in 1978 [12]. LCS has 
two different learning procedures. One is to learn via 
mixing given rules (credit assignment system) and the 
other is to  learn via creating useful rules as possible (rule 
discovery system). It is very appropriate to be adapted 
to a changing environment. Classifier system consists of 
several rules, so-called classifiers. One classifier has one 
or more condition parts and one action part. The con- 
dition of a classifier consists of ternary elements {0, 1, 
#} and the action part consists of { O ,  1). The character 
‘#’ means “don’t care” and can take either ‘0’ or ‘1’. 

In thecompetitiou ofclassifiers, thevalue of strength 
gives a measure of the rule’s past performance. That 
is, the higher a classifier’s strength the better it has 
performed. In addition, each classifier has the value of 
specificity, which is the number of non-# symbols in the 
condition part. LCS consists of three modules as shown 
in Figure 2. 

Rule Discovery [El 
AdUDelet 

System 

Figure 2: The structure of LCS. 

Classifier System: The system compares input mes- 
sages with the condition part of all classifiers in the 
classifier list and performs matching. This acts by 
bit-to-bit. The matching classifiers enter competition 
for the right to post their output messages, and only 

the winner of the competition actually posts messages. 
The measure of each classifier is the value of bid as 
follows: 

bid = c x specificity x strength 

where e: constant less than 1, specificity: specificity 
of theclassifier condition, condition’s length minus the 
number of ‘#’ symbols, and strength: the measure 
of confidence in a classifier. When feedback comes 
from its environment, the strength of the winner is 
recomputed. 

Rule Discovery System: The system uses genetic al- 
gorithm to discover new rules. Genetic algorithm is 
stochastic algorithm that has been used both as opti- 
mization and as rule discovery mechanism. They work 
modifymg a population of solut,ions (in LCS, solution 
is a classifier). Solutions are properly coded and a 
fitness function is defined to  relate solutions to per- 
formance. The value from this function is a measure 
of the solution’s quality. The fitness of a classifier is 
set by its usefulness calculated with a credit appor- 
tionment system instead of a fitness function. 

In general, while classifier system and credit appor- 
tionment system are interested in the classifiers with 
better performances, rule discovev system is interested 
in the classifiers with worse performances. If the only 
classifiers with high scores survive, the system cannot 
discover new classifiers. 
Our goal is to improve the robot’s ability to solve 

problems using LCS in the behavior network. Firstly the 
rules of LCS, the basic elements, are defined for learning 
links in the network. The rules include the state nodes, 
the extent of the problems, and h k s  between the nodes. 
Each action node is not included in the rules. When the 
rule is fixed, or the network structure is decided, it cal- 
culates the activation level and selects the action node 
with the highest activation value. Figure 3 shows the 
structure of the rule defined. The extent of the problems 
and state nodes are determined through the robot’s cur- 
rent s t a t e  from environment. 

Figure 3: The structure of a rule. 

While behavior network includes three kinds of links 
between the nodes, we redefine the excitatory links for 
LCS. Excitatory links indicate predecessor links and suc- 
cessor links because they have similar meaning. In addi- 
tion, the classifier lists are initialized in accordance with 
the purpose of tasks, not randomly. That is, the initial 
structure of network is converted into rules. 

2.4 Planning 
The behavior network selects behaviors to achieve goals 
of robot and planning module constructs behavior search 
tree to  find optimal behavior sequence for a specific 
task. Optimality of behavior sequence is measured by 
the prior knowledge of the environment and problem. 
We have to choose an appropriate level to search behav- 
ior sequences and decides the measure of optimal be- 
havior sequence. Construction of behavior search tree is 
repeated until robot achieves goals. 

In 



Figure 4: Behavior search tree selects at most n behav- 
iors at each level and expands its structure untii the k-th 
level. Finally, maximum number of behavior sequences 
is nk. 

Area 1 

Figure 4 shows the behavior search tree that can find 
an optimal behavior sequence by expanding its structure 
until the appropriate level. In figure 4 the optimal b e  
havior sequences are BI B u  * 8 2 2  + ’ ’  . + B L ~ .  
By repeating this procedure until the goals are achieved, 
we can get optimal behavior sequence step by step. Fig- 
uie 5 shows the flowchart to find the globally optimal 
sequences of behaviors after making the behavior search 
tree selecting locally appropriate behaviors in behavior 
network. 

d Make_Behavior_Squences ’> 

Area 4 

Reach me goals ? 

I 1  I I  

f Finish \ 

Figure 5 :  Flow chart making the behavior sequences. 

This flowchart is terminated if a mobile robot attains 
the goals. The selection of behaviors follows Maes’s ac- 
tion selection mechanism using the activation value of 
behaviors in behavior network. Therefore, the selected 
behaviors have to satisfy the preconditions of that b e  
havior as well as large activation value. The behaviors 
selected by these procedures must be put in the behav- 
ior search tree. Finally, planning module processes the 
behaviors in the behavior search tree and finds optimal 
behavior in the last level of behavior search tree. Be- 

1 Area2 . 1 Area 3 I 

Figure 7: Experimental environments for behavior net- 
work with inference. 

havior sequences are made by linking parent behaviors 
(nodes) of optimal behavior. 

3 Experimental Results 

Khepera was originally designed for research and edu- 
cation in the framework of a Swiss Research Priority 
Program (see Figure 6). It allows confrontation to the 
real world of algorithms developed in simulation for tra- 
jectory execution, obstacle avoidance, preprocessing of 
sensory information, and hypothesis test on behavior 
processing. Khepera robot has two wheels. Eight in- 
frared prmdmity sensors are placed around the robot. 

3.1 Inference 

There are four Werent areas in Figure 7 (Areal, Are&, 
Area3, Areal). Areal is start position that has many 
small obstacles. Area2 contains two light sources and 
Area3 contains one light source. Area 4 has simple ob- 
stacles. If robot can classify area using observed in- 
formation, behavior network can generate more appro- 
priate behavior sequences. Robot uses three behavinrs 
evolved on CAM-Brain. They are “Avoiding obstacles,” 
“Going straight” and “Following light.” Figure 8 shows 
behavior network for this experiment. There are two 
different links among behaviors. Predecessor lid is rep- 
resented with solid line and succe~sor link is represented 
with dashed line. There are five Merent environmen- 
tal sensors that can be inferred from original raw sensor 
data. Structure of Bayesian network is learned from the 
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Figure 8: Behavior network with inference.. 

data that are collected from the environment to discrim- 
inate area information. Figure 9 shows experimental re- 
sults in the environment. In (a), robot navigates area 
with the behavior sequence that is determined using the 
behavior network. The network selects one behavior at 
one time and executes it. In (c), robot navigates area 
with the combination of behavior network and B a p i a n  
network learned. Bayesian network determines the con- 
ditional probability of areal, are&, a r e d ,  and area4 
with observed sensors. In (a) robot does not pass a r e d  
but in (c), robot passes area3. 

Figure 9: Experimental results of behavior network with 
inference: (a) behavior network. (b) behavior network 
witb inference. 

3.2 Learning 
Before learning, the robot always begin to move by going 
straight as shown in Figure 10. Therefore, it is impassi- 
ble to reach the goal in the shortest path whenever the 
initial position of the robot changes. The goal of robot 
is the left upper corner and robot’s initial position is set 
randomly in the experiments. Figure 10 shows the re- 
sults of learning when the initial position of robot is the 

(a) Belore l”lW Ib) Aner l m i q  

Figure 10: Results of action selection in initial network 
(left) and learned network (right). 

Figure 11 shows the average number of correct responses 
at every epoch. It proves that the robot can select ap- 
propriate behaviors via learning. 

5 1.2 
E 1  

CJ e: 0 . 4  

E o  

c 0 8 0.8 p 0.6 
8 0.2 

E 1 5 9 13 1 7  21 25 29 33 37 4 1  4 5  

Epoch 

Figure 11: The average rate of correct responses with 
respect to epochs. 

3.3 Planning 
We compare behavior sequences in behavior network 
with behavior network with planning capability. Fig- 
ure 12 (a) shows a simulation result of behavior net- 
work. Robot in this environment executes 2586 times 
of behaviors selection up to recharge battery. Robot’s 
goal is to reach the battery recharge area that is colored 
as black to recharge battery. The behavior sequences 
defined such as 1 is “Recharging battery,” 2 is “Follow- 
ing light,” 3 is “Avoiding obstacles,” and 4 is “Going 
straight,” are shown in figure 13 (a). Figure 12 (b) shows 
the simulation result in the behavior network with plan- 
ning capability. Planning is up to 8 levels locally and 
the behavior of the greatest light value in each level 8 
is selected. This occurs total 1376 times of behavior se- 
lection up to reach the goal, reach battery area. The 
behavior sequences of figure 12 (b) are shown in 6gure 
13 (b). 

4 Conclusion and Future Works 
The learning mode performance measures In this paper, we have proposed a framework to design 

intelligent behavior for tangible agent, Recently, re- 
searchers attempt to realize tangible agent for seamless 
interface with digital space, but the generation of intel- 
ligent behavior is not solved properly. We attempt to 
attack these problems with hybrid of reactive behavior- 

the Lcs is learning to Perform the Correct behavior in 
an environment. In order to evaluate, we use the sim- 
ple measure of learning performance, the ratio of the 
number Of correct responses during ‘pod to the ‘POch 
length, as follows [13]: 

Nvmbcrofeorreetreapon.e.dvringepoeh 
Epoch length 

based approach and other in<elligent tools including in- 
ference, learning, and planning. Our goal is to show the 
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Figure 12: The simulation result using behavior net- 
work. (a) Behavior network, (b) Behavior network with 
planning 

usefulness of our approach in many different tangible 
agent including humanoid, software agent, artificial life 
character, and mobile robot. In experiment with mobile 
robot, we can prove that our approach can be used for 
improvement of behavior-based system. 
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