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Abstract 
There has been extensive research of developing the 
controller for a mobile robot Especially, several 
researchers have consuucted the mobile robot controller 
hat can avoid obstacles, evade predators, or catch 
moving prey by evolutionary algorithms such as genetic 
algorithm and genetic programming. In this line of 
research we have also developed a method of applying 
CAM-Brait& evolved neural networks based on cellular 
automata (CA), to control a mobile robot. However, the 
direct evolution bas adifficulty that the controller cannot 
generalize well to new environments. We attempt to 
solve it by incremental evolution, which starts with 
Simpler environments and gradually develops the 
controller with more general and complex environments. 
We combine several behaviors evolved or programmed 
by dynamic selection mechanism for bigher behaviors. In 
this paper, we evaluate the performance of robot using 
Khepem simulator. Simulation results show the 
possibility of easily developing higher behaviors by 
integrating CAM-Brain behavior modules. 

1. Introduction 

There are many studies of consuucting mobile robot 
controller with different approaches such as evolving 
neural network by genetic algorithm [l], using genetic 
programming [Z], combining fuzzy controller with 
genetic algorithm [3] and programming [4]. In previous 
work [51, we presented CAM-Bmio, evolved neural 
networks based on cellular automata [5,6], and applied it 
to controlling a mobile robot. 

However, the wntroller obtained had a difficulty to adapt 
in changing environment. We attempt to devise a 
sophisticated method based on incremental evolution for 
solving !his problem. Incremental evolution does not 
evolve controller directly to do goal behavior in an 
enviromnt, but starting with simpler environments 
gradually develops the controller with more general and 
complex environments [7,8]. 

The controller composed of one module has a difficulty 
to make the robot to perform complex behavior. To 
overcome this shortcoming, some researchers combine 

several modules evolved or programmed to do a simple 
behavior such as “going straight,” “avoiding obstacles,’’ 
“seeking object,” and so on. They expect the controller 
combined with several modules can do complex 
behaviors [4.9,10]. 

In lh is paper, we also attempt to combine several neural 
networks for solving this problem Each neural network 
can be evolved or programmed. Evolved neural network 
is based on CAM-Brain model, and a programmed 
module controls the robot directly We apply Pattie 
Maes’s Action Selection Mechanism (MASM) [IO] to 
combine modules and control a mobile robot in 
simulated environments. The rest of this paper introduces 
CAM-Brain model, incremental evolution and basic 
behaviors, and presents the integration method in detail. 
The detailed description of simulation follows, and the 
results of simulation are given. 
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Figure 1 : The evolution process ofCAM-Brain 

2. CAM-Brain 

CAM-Brain is a model based on CA which can 
perform complicated behavior by combining simple rules, 
and developed by its own chromosome: One 



chromosome is mapped to exactly one neural network 
module. Therefore. with eenetic aleorithm working on 

signals and sends to the neuron, and the axon distributes 
signals orieinated fromthe neuron. 
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this chromosome, it is possible to evolve and adapt the 
srmcture of the neural network for a specific task. Figure 
1 shows the evolution process of CAM-Brain. One 
chromosome corresponds to one neural network. CAM- 
Brain finds optimal neural network strumre using 
genetic algorithm. It is the basic idea of CAM-Brain that 
brain-like system can be constructed by combining many 
neural network modules of various functions f5.61. This 
section illustrates a design of CA-space for developing a 
neural network module. 

2.1 CoDi Model 

CAM-Brain’s neural network suuchn’e composed of 
blank, neuron, axon and dendrite is grown inside 2-D 01 

3-D CA-space by state, neighbortnmds and d e s  encoded 
by chromosome. If cell state is blank, it represents empty 
space and cannnt transmit any signals. Neuron cell 
collects signals from surrounding axon cells. Axon cell 
sends signals received from neurons to the neighborhood 
cells. Dendrite cell collects signals fmm neighborhood 
cells and passes them to the connected neuron in the end 
t5.61. 

The growth phase organizes neural smchue and makes 
the signal trails among neurons. First, a chromosome is 
randomly made and the states of all cells are initialized 
as blank. At this point some of the cells are specified as 
neuron with some probability. A neuron cell sends axon 
and dendrite growth signals to the direction decided by 
chromosome. Axon growth signal is sent to two 
directions and dendrite growth signal is sent to the other 
remaining directions. Next the blank cell received 
growth signal changes to axon or dendrite cell according 
to the type of growth signal. It sends the signals received 
from other cells to the direction determined by 
chromosome. Finally, repeating rhis process. the neural 
network is obtained when the state of every cell changes 
no longer. 

Signaling phax ~~ansmits the signal from inpnt to output 
cells continuously. The trails of signaling are transmitted 
with evolved structure at the growth phase. Each cell 
plays a different role according to the type of cells. If the 
cell type is neuron, it gets the signal from connected 
dendrite cells and gives the signal to neighborhood axon 
cells when the sum of signals is greater than threshold. If 
the cell type is dendrite, it collects data from the faced 
cells and eventually passes them to the neumn body. The 
position of input and output cells in CA-space is decided 
in advance. At first, if input cells produce the signal, it is 
Sent to the iaced axon cells, which distribute that signal. 
Then, neighborhood dendrite cells belonged to other 
neurons collect and s a d  this signal to the neurons 
connected m e  neumns that have received the signal 
from dendrite cells send it to axon cells. F d y ,  dendrite 
cells of output neuron receive and send this signal to the 
output neurons. Output value can be obtained from 
output neumns. During signaling phase, the fimess is 
evaluated by the output in this process. Figure 3 shows 
the process of signaling after neuron, axon and dendrite 
have been made. 

(a) First step (b) Second step 

Figure 2 shows the growing process in 4 x 4 2-D CA- Figure 2: Gmwth phase: (a) Black m w  represents a space. In this figure, the cell which has oblique lines is neumn located in (XZ. yz). @) The neuron sends growth blank cell, and the blank armws show the direction of 
decided by chromosome, ~i~ 2(a) shows the Signals. (C) m e  cell state is decided according to the type 

process of a neuron in blank =us, a ofgmwth Si@. (d) growth si&% blank 
neuron is located in (XZ, yz). Figure 2(b) shows that the cells become axon or dendrite. 

neumn cell sends growth signal to surrounding cells. 
Fieure 2(c) shows that the cell state is changed by 2.2 Evolution of CAM-Brain 
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operators such as selection, mutation, and crossover. We 
have used the genetic algorithm to search the optimal 
neural network. At h t .  a half of the population that has 
better fitness value is selected to produce new population. 
Two individuals in the new population are randomly 
selected and parts of them are exchanged by one-point 
crossover. The crossover is occurred at the same position 
in the chromosomes to maintain the same length in 
chromosomes. Mutation is operated in the segment of 
chromosome. The genetic algorithm generates a new 
population from the fittest individuals for the given 
problem 

figure 3: Signaling phase. 

3. Incremental Evolution 

Evaluation tasks ( f ir  r2, r,, ..., 1.) are derived by 
transforming a goal task in incremental evolution, where 
n is the number of tasks and f is the goal task. In this xf 
ri is easier task than tj+l for all i O 4 n .  Thus, population 
is evaluated in task rj  and then task and it does in goal 
task, r,,, finally [71. It is expected to produce complex and 
general behaviors which can adapt in changing 
environment. Figure 4 shows the incremental evolution 
of CAM-Brain. In this process, task is changed into more 
difficult one and new populatlon is created from 
successful individuals when satisfied controller for the 
task is found. 

The robot controller is evolved incrementally by starting 
with simpler environments and gradually evolving the 
controller with more general and complex environments. 
The environments get more sophisticated from straight 
movement to lefl and right turn movements. 
Consequently, the robot confmller that can move straight 
and turn left and right can be obtained. 

AAer the CAM-Brain module is evolved in the 
environment intended to go straight, successful 
chromosomes are copied to the next population. Then it 
is evolved in the environment intended to go straight and 
mm right. Progressing this process the controller evolves 

to go straight and turn left and right Efficient evolution 
is expected because of the reduced search space by 
incremental evolution [8]. Figure 5 shows the trajectories 
of the successful robot in each environment. 
Environments aTe gradually bended kom (a) to (0 and 
generality of successful controller are improved step by 
step. 

[ c c n a e u l i w l p o p " U l ~ ~ d ~ * ~ " ) & ~ = O  ] 
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Figure 4: Incremental evolution ofCAM-Brain. 

(d) (e) (0 

figure 5 :  Tmjectones of the successful robot in each 
environment 

4. Action Selection Mechanisn 

Maes's Action Selection Mechamsm (MASM) was 
proposed originally as an improvement over previous 
approaches to action selection in the field of Al. In 
particular, it was proposed as an improvement on 
uaditional planning systems andreactive systems [IO]. 

4.1 Components 

MASM is composed ofnodes, internal links and external 
links. Each node has a set of preconditions. The 
preconditions are logical conditions about the 
environment that are required to be true in order for the 
node to be executable. The add list consists of conditions 
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about the environment that the node is likely to make 
me. The delete list wnsists of conditions that are l ie ly  
to be made false by the execution of the node. The final 
WO wmponents of the node are the activation level and 
the code that gets run if the no& is executed. The 
internal and external links are specified in table 1. 

Table 1: Internal and external links. 

lntemal links 
If (vrooosition X is false) and 

~ 

Predecessor 
link 

successor link 

Conflictor link 

From sensors 
of the 

envxonment 

From goals 

From protected 
goals 

,. . 
(proposition X is a prewndition of 
node A) and (proposition X is in the 
add list of node B), then there is an 
active predecessor link from A to B. 
If (proposition X is false) and 
(proposition X is in the add l i t  of 
node A) and (proposition X is a 
prewndition of node B) and (the 
node A is executable), then there is 
an active successor link from A to B. 
If (proposition X is me)  and 
(proposition X is a precondition of 
node A) and (proposition X is in the 
delete list of node B), then there is an 
active conflictor link fcomA to B. 

External links 
If (proposition X about the 
environment is me)  and @reposition 
X is a precondition of node A), then 
there is an active link fmm the sensor 
of the proposition X to node A. 
If (goal Y has an activation greater 
than- zero) and (goal Y is in &e add 
list of node A), then there is an active 
link from the goal Y to node A. 

If (goal Y has an activation greater 
than zero) and (goal Y is in the delete 
list of node A), then thae is an active 
link from the goal Y to node A. 

4 3  Procedure &Adion Seleciion 

The procedure used to select a ncde to execute at each 
time step is as folluws: 

1. Calculate the excitation wming in from the 
environment and the motivations. 

2. Spread excitation along the predecessor, successor, 
and conflictor links. 

3. Normalize the node activations so that the average 
activation becomes equal to the constant x .  

4. Check to see if there are any executable nodes and, 
choose and execute the one with the hichest - 
activation. 

5. If there is no executable node. reduce the elobal 
I 

threshold and go to step 1 .  

A node is executable if all its preconditions are m e  
and if its activation is greater than the global thresh 
old. If more than one node is executable, the one w 
ith the highest activation is chosen. 

5. ExperimentalResults 

In order to show that higher behaviors can emerge by 
combining lower simple behaviors, we have conducted 
the simulation with Khepera robot 

figure 6: Simulation environment (simple environment). 

5.1 Basic Behaviors 

In this paper, four basic behaviors are defined as follows. 

Recharging Battery : If a robot anives at battery 
recharge area, battery is recharged. This module 
enables the robot to operate as long as possible. 
Following Light : The robot goes to stronger light. 
This module must be operated to go to the battery 
recharge area because the light source exists in that 
area 
Avoiding Obstacle : If the obstacles exist around the 
robot, it avoids them without bumping against them. 
Going Suaight : If there is nohing around h e  robot, 
it goes ahead This module takes it to nmve 
wntinuously without stopping. 

Basic behaviors are programmed or evolved on CAM- 
Brain. Recharging Battery and Going Straight modules 
are programwd. Avoiding Obstacle and Following 
Light are evolved on CAM-Brain. Figure 6 shows the 
simulation environment. In this environment, black fan- 
shaped area represents “Battery Recharge Area” and 
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robot can recharge battery only in t h i s  area Light source 
exists in “Battery Recharge Area” and guides the robot 
to the black area 

53 Module Integration 

In this section we apply the artion selection mechanism 
to the robot wntrol. Our environment requires 5 states. 
such as “In battery recharge area,” “Obstacles are close,” 
‘Near battery recharge area,” “Light is low,” and 
‘Nothing mund the robot.” They are set as follows : 

“In baaery recharge area” : Check if robot is in 
batteryrecharge area 
“Obstacles are close” : Check if the maximum value 
of distance sensors is larger than 700. 
‘Near battery recharge area” : Check if the 
distance fromrobot to light source is less than 800. 
“Light is low”: Check if the minimum value of light 
sensors is larger than 400. 
‘Nothing around the robot” : Check if the maximum 
value of distance sensors is less than 700. 

We set 2 goals such as ‘Full battery,” and ‘Not zero 
battery.” Because robot’s battery deneases while robot 
moves, the robot intends to maintain high battery value 
to live long. They are set as follows : 

“Full battery“ : 
m - n  
rn 

c : Value of “Full battery“ 
m : Maximum battery 
n :Robot’s battery 

f=- 

’Hot zero battery” : Check if battery is less than half of 
the maximum battery. 

5 stat- are binary-valued and 2 goals are of continuous 
values. Our MASM model is composed of 4 nodes, 5 
states 2 goals and their relationships. Figure 7 shows our 
MASM model. In this figure, each circle represents basic 
behavior module and each rectangle represents sensor or 
goal. Lines represent the relationship among components 
ofASM. 

Each no& has preconditions. Node must fulfill all 
preconditions to be executed. Table 2 describes 
preconditions and add lists of the nodes. Each node has 
one or two preconditions. The relationships among nodes 
are decided by successor links or predecessor links. If 
predecessor l i  is from A node to B node, s~ccessor 
link from B node to A node exists. If node A and node B 
are connected, they exchange heir activation values 
while activation spreads. 

Going 
Shaight 

Table 2: Preconditions and add lists of nodes 

Obstacles are close, In battery recharge 
are& Near battery recharge area 

Preconditions 
Recharging I In batteryrecharge area 

Following Light is low, 

Avoiding Obstacles are close 
Obstacle I 
Going I Nothing around the robot 

Add lisb 
Recharging I Full Bauery, 

Battery I Not zero battery 
In battery recharge area Following I - 

Light I 
Avoidine I Nothing around the robot 

Figure 7: MASM model. Solid lines denote goal or 
predecessor wnnections, and dashed lines &note sensor 

M SUCCeSsOI WMectiOnS. 

53 Recult Analysb 

Robot moves during 9329 steps. Figure 8 shows the 
robot tajeaory in simple environment. ?his figure 
shows the robot navigates the environment without 
bumping and recharges battery. When robot is in battery 
recharge area, the state of “In battery recharge area” 
becomes true, and recharging battery module can be 
selected, because “ln battery recharge area” is a 
precondition of recharging battery module. When 
battery is low, the corresponding goals increase and 
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followVg light module is selected more frequently than 
other behavior modules. 

Figure 9: Action selection of robot (O=Recharging 
Banery I=FoUowing Light 2=Avoiding obstacle 

3=Going Straight). 

Robot selects avoiding obstacle and following light 
modules successively before battery recharge area This 
makes robot go banery recharge area without bumping 
obstacles. By selecting lower level behaviors, robot can 
perform higher behavior which we c m o t  make easily. 
Figure 9 shows the sequence of the action selection in 
the environment. Robot selects frequently “Following 
Light,” “Going Straight” and “Avoiding Obstacles.’’ 

6. Condusions 

In this paper, we apply Maes’s Action Selection 
Mechanism to dynamically controlling a robot in simple 

environment Robot selects basic behaviors from 
behavior networks. MASM gets signals from 
environments and internal motivations, and spreads the 
activation among internal links. We have four basic 
behaviors which are evolved on CAM-Brain or 
programmed The robot controller is evolved 
incrementally by starting with simpler environments and 
gradually evolving the controller with more general and 
complex environments. Incremental evolution can evolve 
CAM-Brain module more efficiently than direct 
evolution, and the controller evolved by this method 
adapts to new environments. For higher behavior, several 
basic behavior modules are combined by action selection 
mechanism. Robot achieves goals by selecting basic 
behaviors. Conaibution of this research is applying 
action selection mechanism to combining incrementally 
evolved neural network mobile robot controllers. 
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