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Abstract

Since accurate classification of DNA microarray is a very important issue for the treatment of cancer, it is more desirable to make a
decision by combining the results of various expert classifiers rather than by depending on the result of only one classifier. In spite of the
many advantages of mutually error-correlated ensemble classifiers, they are limited in performance. It is difficult to create an optimal
ensemble for DNA analysis that deals with few samples with large features. Usually, different feature sets are provided to learn the
components of the ensemble expecting the improvement of classifiers. If the feature sets provide similar information, the combination of
the classifiers trained from them cannot improve the performance because they will make the same error and there is no possibility of
compensation. In this paper, we adopt correlation analysis of feature selection methods as a guideline of the separation of features to
learn the components of ensemble. We propose two different correlation methods for the generation of feature sets to learn ensemble
classifiers. Each ensemble classifier combines several other classifiers learned from different features and based on correlation analysis to
classify cancer precisely. In this way, it is possible to systematically evaluate the performance of the proposed method with three
benchmark datasets. Experimental results show that two ensemble classifiers whose components are learned from different feature sets
that are negatively or complementarily correlated with each other produce the best recognition rates on the three benchmark datasets.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

DNA microarray technology has advanced so much that
we can simultaneously measure the expression levels of
thousands of genes under particular experimental environ-
ments and conditions [15]. This enables us to generate
massive gene expression data. However, it has also led to
many statistical and analytical challenges (due to the large
number of genes but relatively few samples). We can
analyze gene information rapidly and precisely by mana-
ging all this information at one time using several statistical
methods and machine learning [10].

Cancer classification in practice (which relies on clinical
and histopathological information) can be often incom-
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plete or misleading. For this reason, DNA microarray
technology has been applied to the field of accurate
prediction and diagnosis of cancer. Molecular-level diag-
nostics with gene expression profiles can offer precise,
objective and systematic cancer classification. Especially,
accurate classification is a very important issue for the
treatment of cancer. Since gene expression data usually
consist of a huge number of genes, several researchers have
been studying the problems of cancer classification using
data mining methods, machine learning algorithms and
statistical methods [1,9]. However, most researchers have
evaluated only the performance of the feature selection
method and the classifier in classifying gene expression data.

Many researchers have worked on the ensemble of
multiple classifiers to improve the performance of classifi-
cation in data mining or machine learning. The ensemble
classifier increases not only the accuracy of the classifica-
tion, but also leads to greater confidence in the results.
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Theoretically, the performance of the ensemble classifier
improves when the combined classifiers are mutually
independent. Representative ensemble methods such as
average combination, voting, weighted voting, the Baye-
sian approach and neural networks have been applied to
many fields. However, these methods do not assure
independent combined classifiers. On the other hand,
methods such as boosting (bootstrap resampling), bagging
(bootstrap aggregating) and arcing (adaptively resampling
and combining) produce diverse sample data, train
heterogeneous classifiers with the data and combine the
classifiers [1,8].

Usually, the classification of gene expression data
requires two steps: feature selection and classification.
There are many different kinds of feature selection and
classification methods. The most important problem is
their proper selection because the classification accuracy is
highly sensitive to the choice. Because it is difficult to test
all combinations (feature selection + classifier), making a
robust classifier given various gene expression datasets is
crucial. Recently, an ensemble of classifiers has gain
popularity because of their improved generalization cap-
ability compared to the single classifier. In this paper, we
attempt to propose a framework to construct an ensemble
for high-performance classification of gene expression data.
We argue that correlation analysis of various feature
selection methods is useful for forming an ensemble.

This research aims to form an effective ensemble
composed of classifiers based on correlation analysis of
feature selection methods. This is so that we can classify
gene expression datasets that are very different from the
usual datasets. We attempted to use several methods for
extracting informative features and combining classifiers
learned from the negatively or complementarily correlated
features, respectively. We adopted seven feature selection
methods. These feature selection methods included the
Pearson’s and Spearman’s correlation coefficients, the
Euclidean distance, the cosine coefficient, information gain,
mutual information and signal-to-noise ratio. Optimal
feature—classifier pairs were chosen with correlation analysis.
We adopted four types of classifiers to show the effectiveness
of the proposed ensemble creation methods based on
correlation analysis of feature selections. The classification
methods included multi-layer perceptron (MLP), k-nearest
neighbor (KNN), the support vector machine (SVM) and
the structure adaptive self-organizing map system (SA-
SOM). The methods for combining the classifiers were
majority voting, weighted voting, the neural network
approach and the Bayesian approach. We test the proposed
method in three benchmark cancer datasets, and system-
atically analyze the usefulness of the ensemble classifiers on
the basis of the correlation analysis given various settings.

2. DNA microarrays

Uncovering broad patterns of genetic activity, providing
new understanding of gene functions and generating

unexpected insights into biological mechanisms are the
goals of microarray-based studies [15]. With the develop-
ment and application of DNA microarrays, the expression
of almost all human genes can now be systematically
examined in human malignancies [14]. DNA sequences are
initially transcribed into mRNA sequences. These mRNA
sequences are translated into the amino acid sequences of
the proteins that perform various functions. Measuring
mRNA levels can provide a detailed molecular view of the
genes. Measuring gene expression levels under different
conditions is important for expanding our knowledge of
gene functions. Gene expression data can help provide
better understanding of cancer. It can also allow for the
classification of individual tumors by their gene expression
patterns, which may also describe and predict therapeutic
resistance and sensitivity patterns [30].

DNA arrays consist of a large number of DNA
molecules spotted in a systemic order on a solid substrate.
Depending on the size of each DNA spot on the array,
DNA arrays can be categorized as microarrays when the
diameter of the DNA spot is less than 250 um, and
macroarrays when the diameter is bigger than 300 pm. The
arrays with small solid substrates are also referred to as
DNA chips. Gene information can be investigated in a
short time, because so many genes can be put on the DNA
microarray to be analyzed.

There are two representative DNA microarray technol-
ogies: cDNA microarray technology and oligonucleotide
microarray technology. cDNA microarrays are composed
of thousands of individual DNA sequences printed in a
high-density array on a glass microscope slide using a
robotic arrayer. High-density oligonucleotide microarrays
[15,21,31] are made using spatially patterned, light-directed
combinatorial chemical synthesis and contain hundreds of
thousands of different oligonucleotides on a small glass
surface.

DNA microarrays are composed of thousands of
individual DNA sequences printed in a high-density array
on a glass microscope slide using a robotic arrayer, as
shown in Fig. 1. For mRNA samples, the two samples are
reverse-transcribed into Cdna and labeled using different
mixed fluorescent dyes (red-fluorescent dye Cy5 and green-
fluorescent dye Cy3). After the hybridization of these
samples with the arrayed DNA probes, the slides are
captured as images using a scanner that makes fluorescence
measurements for each dye. The log ratio between the
two intensities of each dye is used as the gene expression
data [7,11]

Int(Cy5)
Int(Cy3)’

where Int(Cy5) and Int(Cy3) are the intensities of the red
and green colors. Since so many genes are put on the DNA
microarray, we can investigate the genome-wide informa-
tion in a short time.

The complexity of microarray data calls for data analysis
tools that will effectively aid in biological data mining.

(1)

gene_expression = log,
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Fig. 1. General process of acquiring the gene expression data from DNA microarray. (This is an example of Leukemia cancer and there are two types of
cancers including acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). A sample comes from patient.)

Since Golub’s pioneering work [13], many researchers have
been working on the classification of gene expression
profiles. They have used various feature selection methods
to select informative genes and several classifiers to classify
the samples accurately. Golub’s group used neighborhood
analysis and weighted voting to classify acute leukemia
samples [13]. They used 50 genes (the most closely
correlated with the AML-ALL distinction) in the
known (training) samples to compute the prediction
strength. The classifier made strong predictions for 29 of
34 test samples.

In 2001, [18] proposed a classification scheme based on
artificial neural networks (ANN). They first filtered genes
expressed under minimal levels, and applied principal
component analysis to reduce the dimensionality. They
used 3-fold cross-validation, so that 2/3 of the data were
used to train ANN and the remaining data were used to
test the proposed system. This method was applied to small
round blue cell tumor (SRBCT) data composed of four
classes, and the sensitivities of the ANN model for
diagnostic classification was 93% for Ewing family of
tumors (EWS), 96% for rhabdomyosarcoma, and 100%
for neuroblastoma and Burkitt lymphomas. They also
revealed that 96 genes are the optimal number of genes for
classifying SRBCT data.

In other experiments, Li used GA and KNN for
gene selection and classification, respectively [19]. The
GA/KNN method was applied to the systematical analysis
of sensitivity, reproducibility and stability of the experi-

ments. In the case of Nguyen’s work, partial least squares
were used for gene selection, and logistic discriminant and
quadratic discriminant methods were used for the classi-
fication of expression profiles [29]. Ovarian, leukemia,
lymphoma, colon and NCI60 datasets were used to verify
the proposed method. The related works are summarized
in Table 1.

The classification of gene expression data is an active
research area and there are many approaches. An ensemble
that uses multiple classifiers has shown better performance
than other methods. Many researchers have been working
on the ensemble of multiple classifiers to improve
classification performance. [34] attempted to generate an
ensemble of diverse base classifiers, building each base
classifier using different subsets of features to obtain
high accuracy of classification. They used several combina-
tions of classifiers and compared the performance
systematically. [33] used bagging and boosting to investi-
gate the performance of ensemble machine learning in
classifying gene expression data on cancer classification
problems. They calculated the accuracy, reliability, sensi-
tivity and specificity to measure the performance and
the bagging recorded superior results to the single classifier
and Adaboost methods. Related works on the ensemble
approach are summarized in Table 2. Our contribution
is a systematic approach for forming effective en-
sembles based on correlation analysis. Most previous
works form ensembles without using the systematic
method.
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Table 1
Related works for classification of DNA microarray data

Researcher Feature selection Classification Data Remark
Golub [16] Neighborhood analysis Weighted votes Leukemia Pioneering study
Ben-Dor [4] TNoM score Nearest neighbor SVM Colon Comparing clustering with
classification
Ovarian
Leukemia
Furey [13] Signal-to-noise ratio SVM Ovarian Applying SVM 70.9-83.9% of
accuracy
Leukemia
Colon
Li[10] GA KNN Lymphoma Several statistical analysis
Colon
Khan [29] PCA ANN SRBCT Applying ANN to multiclass data
Revealing optimal number of genes for
SRBCT
Nguyen [15] PLS PCA Discriminant analysis Ovarian Applying to various datasets
Leukemia
Lymphoma
Colon
NCI60
Cho [30] Pearson correlation MLP Leukemia Using various feature selection
coefficients methods and classifiers
KNN
Cosine coefficients SVM
Information gain Decision tree
Bicciato [31] PCA Soft independent Leukemia Applying modified PCA to the
modeling of class analogy SRBCT multiclass problem

3. Ensemble classifiers based on correlation analysis

Ensemble classifiers consist of two stages: informative
features selection based on correlation analysis and
ensemble classifiers learned from the informative features.
Informative features selection based on correlation analysis
includes three steps:

e defining the ideal feature vector,

e selecting informative genes based on similarity with the
ideal feature vector, and

@ sclecting informative gene subsets for the ensemble
classifiers using correlation analysis.

The basic idea of the ensemble classifier scheme is to
develop several trained classifiers with feature sets selected
by correlation analysis and combine them. Through
correlation analysis, we can select informative features
for the ensemble classifiers. This naturally raises the
question of obtaining a consensus on the results of the
individual classifiers. This section is organized as shown in
Fig. 2.

The idea of this approach is to increase the diversity of
the accurate classifiers for the ensemble. The correlation

analysis of features can make mutually exclusive feature
sets that are critical to generate highly diverse and accurate
classifier sets. In the case of positively correlated features
given correlation among the ranks from the feature
selection methods, the selected features of the two feature
selection methods are very similar because they provides
similar ranks. If one feature gets relatively high ranks in
one method, it gets high ranks in other methods. This is
positively correlated. But in negatively correlated features,
some high ranked features in one method get relatively low
ranks because they use different metrics to evaluate the
relevance of features. Though negatively correlated feature
selection methods cannot provide perfect mutually inde-
pendent feature sets and sometimes there can be over-
lapped genes, there can be relatively high probability of
independent gene sets compared to positively correlated
feature selection methods. The usefulness of negatively
correlated classifiers for the ensemble is frequently ad-
dressed by many publications [5,23,35]. To achieve the
goal, we used negatively correlated features and expected
increased diversity in the ensemble. If the behavioral
characteristics of the input data (features) are positively
correlated, it might generate similar classifiers and there is
only a small performance variation.
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Table 2
Related works on the ensemble classifiers in medical area
Researcher Method Dataset Remark
Ben-Dor [4] Boosting Colon —
Ovarian
Leukemia
Tsymbal [25] Simple Bayesian classifier Small, medium and large acute Ensembles of simple Bayesian
Cross-validation majority abdominal pains classifiers
Weighted voting
Dynamic selection
Dynamic voting
Dynamic voting with selection
Tan [26] C 4.5 (decision tree) Leukemia Systematic comparison of bagging,
Bagging Breast cancer Adaboost and single C 4.5
Adaboost Central nervous system
Lung cancer
Lo [27] Backpropagation-artificial neural Breast microcalcification Combining three sources: image
network processing, BI-RADS and history
Voting
Average
Masulli [28] Random Voronoi resampling Synthetic Applying to both linear and non-linear
Leukemia cases
Informative Features Selection using Ensemble Classifier Learned from
Correlation Analysis I_ Informative Features _I
O Class,
Input Ideal Feature Vector Correlation Analysis Ensemble Classifier
Pattern
O Class,

Fig. 2. The overview of ensemble classifier framework.

3.1. Ideal feature vectors

Among the thousands of genes whose expression levels
are measured, not all are needed for classification.
Microarray data consist of a large number of genes in
small samples. For efficient classification, we need to find
out the informative features from input observation. This
process is referred to as gene selection [19].

Suppose that we have a M x N training set where M is
the number of samples (input vector) and N is the number
of features (dimensionality of the input vector). The ith
feature of samples, g;, can be expressed as

) €M), (2)

where e is the data and i = 1-N. We want to know the
locations of the informative k features out of M. Suppose
Jideal 1s an ideal vector representing class ¢;. If it is possible
to know representative vector gigea for class c;, we can
simply measure the correlation and similarity of g; to the
classes, which tells the feature goodness. Modeling g;qeal,

g; = (er,ez,e3,...

we can use prior knowledge and intuitional experience
about classes. An ideal gene pattern that belongs to the
tumor class is defined by giqea = (1,1,...,1,0,0,...,0), so
that all the elements from the tumor samples are 1 and the
others are 0

€ ). 3)

Measuring the similarity of g; and gjqea Using similarity
measures such as the Pearson’s correlation coefficient (PC),
the Spearman coefficient (SC), the Euclidean distance (ED)
and the coefficient (CC) in Table 1, the most similar 25
genes are used for classification. The most informative 25
genes are selected using information-theoretic feature
selection methods such as information gain (IG), mutual
information (MI) and signal-to-noise ratio in Table 3.
For a gene g; that is continuous-valued, we create a new
Boolean attribute ¢'; that is true if g,<o; and false
otherwise. How to select the best value for the threshold
o is described in a machine learning text book [28]. In IG
formula, P(g/c;) means the relative frequency of samples

/ / /
Jideal = (€'1, €2, €73, ..
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Table 3
Mathematical formula for similarity measure of g; and gjgeal

>~ digiaea—=C 9i D gigea)/ N
(52~ 02 ) (e~ S e/ V)

6 (Dg—Digeal)’
SC(gi i) = | — 2P
D, and D;qe, are the rank matrices of g; and g;qeal
g ¢ g

ED(gi’ gidez\l) =\ E(gx - gidea])2

> didideal

PC(g;, Jidea) = \/

CC(9)> Gidea)) = NN

1G(9,, ) = Plglc)1og gl + PG lei)log osih
MI(g;, ) = log 7555

SN ) = g

(g9;,<0;) given the label is ¢;. In MI formula, P(g;,c;) is the
relative frequency of samples (g, <o;) labeled as c;.

3.2. Correlation analysis

Theoretically, the more features, the more effective the
classifier is to solve problems [5]. But features that have
overlapped in the feature space may cause the redundancy
of irrelevant information and result in the counter-effect of
overfitting. When there are N feature selection methods,
the set of non-linear transformation functions that change
the observation space into the feature space is ¢ = {(pl,
02, P35 ..., P}, and ¢y € 2%, 1(¢;), the amount of classifica-
tion information provided by the set of features ¢, is
defined as follows [5]:

(,ZZAI‘
N/2 Zj]\il,/#idij

where dj; is the dependency of the ith and the jth elements,
A; is the extent of the area which is occupied by the ith
element from the feature space, and a« and b are the
constants. The number of genes is m

I(d)lc) = b’ (4)

m

dyj =" PC(0(9,), 9,(9,)- (5)
p=1

The higher the dependency of a pair of features, the
smaller the amount of classification information I(¢;). As
the extent of the area occupied by the features becomes
larger, the amount of classification information /(¢;) also
increases. If we keep the number of features larger, the
numerator of the equation is larger because the extent of the
area occupied by the features becomes wider. Although the
numerator increases, /(¢;) mainly decreases without keep-
ing d;; small. Therefore, it is more desirable to use a small
number of mutually independent features than to uncondi-
tionally increase the number of features to enlarge 1(¢,),
the amount of classification information provided to the

classifier by the set of features. Negatively correlated feature
sets are a good example of mutually independent features.

The feature sets chosen by the negatively correlated
methods could be very disjointed, and the classifiers with
these feature selection methods are trained in a less
dependent feature space. In positively correlated cases,
there are many common genes between the two feature
sets, and this means that the ensemble classifiers learn from
the highly correlated feature sets. Since the two sets of
classifiers are trained in mutually dependent feature spaces,
it is hard to expect any performance improvement when the
classifiers are combined by the ensemble method. Thus, we
have proposed two different approaches for achieving
greater performance improvement.

In complementarily correlated approaches, two different
feature selection methods are negatively correlated but they
can have simultaneously common features and negatively
correlated features. In negatively correlated approaches,
the correlation between the ideal vector and the individual
gene is considered. There are two feature sets: one is
composed of features correlated with the ideal vector of the
normal sample and another contains features correlated
with the ideal vector of the cancer sample. Genes from the
two sets show completely negative correlations.

o Correlation analysis for complementarily correlated
features: Complementary correlation means partial
correlation (there are negatively correlated genes and
positively correlated genes). Using feature selection, we
get a set of informative features from the data. In order
to choose complementarily correlated features, we
plotted the distribution of g; from two feature selection
methods. If the two features are correlated, the
distribution will be in the (—) direction, otherwise in
the (+) direction. The overlapped genes of the
correlated features can discriminate classes, and the
other genes (not overlapped among the combined
features) can supplement to search the solution spaces
complementarily. For example, with the Colon dataset
found in the experimental results, gene 1659 and gene
550 are high-ranked in terms of both the Pearson’s
correlation coefficient and the cosine coefficient, and
gene 440 is high-ranked in terms of both the Euclidean
distance and the cosine coefficient. This subset of two
features might play an important role in classification.
Experimental results show that the ensemble classifier of
complementarily correlated features works better than
the ensemble of uncorrelated features or base classifiers.

o Correlation analysis for negatively correlated features: To
utilize the informative features to train classifiers, we
attempted to define two ideal feature vectors as the one
high in class 4 and low in class B (1,1,...,1,0,0,...,0),
and the other one low in class A and high in class B
(0,0,...,0,1,1,...,1). We then selected the sets of in-
formative genes with high similarity to each ideal gene
vector. Since the Pearson’s correlation coefficient of two
ideal gene vectors is —1, the two vectors are perfectly
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negatively correlated. The sets of gene vectors are also
highly negatively correlated. The informative features
selected by negative correlation represent two different
aspects of training data. We can search in a much wider
solution space by combining these features. Correlation
analysis and distance measure methods are used in order
to measure the similarity of gene vector g; and ideal gene
vectors A and B. Similarity measures used for negative
correlation are the Pearson correlation coefficient, the
Spearman correlation coefficient, the Euclidean distance
and the cosine coefficient, as shown in Table 3.

3.3. Ensemble classifier

We used the MLP, the self-organizing map (SOM), the
SASOM, the SVM, the decision tree and the KNN systems
as classifiers [5].

We applied complementarily correlated features to a
classification framework. Given k features and » classifiers,
there were k xn feature—classifier combinations. There
were j . ,C,, possible ensemble classifiers when m feature—
classifier combinations were selected as the ensemble
classifiers. We plotted the distribution of g; from the
feature selection methods and used complementarily
correlated features for the ensemble classifiers. Classifiers
were trained using the complementarily correlated features
selected, and finally a combining module was used to find
the outputs. After the classifiers train independently with
some features to produce their own outputs, the final
answer can be judged by a combining module, where the
majority voting, weighted voting or Bayesian combination
can be adopted.

We also combined the neural networks learned from
negatively correlated gene subsets, since combining the
heterogeneous classifiers can help increase the performance
of the classification. We chose the Bayesian approach as
the ensemble classifier. The Bayesian approach can solve
the problem of a tie-break between the ensemble classifiers
by using a priori knowledge of each combined classifier.

® Majority voting: This is a simple ensemble method that
selects the class most favored by the base classifiers.
Majority voting has some advantages in that it does not
require any previous knowledge nor does it require any
additional complex computation to decide. Where ¢; is
the class i (i = 1,...m), and s;(classifier;) is 1 if the output
of the jth classifier classifier; equals the class i otherwise
0, majority voting is defined as follows:

k
Censemble = arg max{Zs[(classifierj)}. (6)
1<i<m =1
® Weighted voting: A poor classifier can affect the result of
the ensemble in majority voting because it gives the same
weight to all classifiers. Weighted voting reduces the
effect of the poor classifier by giving a different weight
to a classifier based on the performance of each

classifier. The weights of the classifiers are determined
from the accuracy on the training dataset. Where w; is
the weight of the jth classifier, weighted voting is defined
as follows:

k
Censemble = arg max{ w,s(classiﬁer,)} ,

1<ism 55
1 -E;
W= =705 7

® Bayesian combination: While the majority voting method
combines classifiers with their results, the Bayesian
combination makes the error possibility of each
classifier affect the final result. The method combines
the classifiers with different weights by using the
previous knowledge of each classifier. Where the &
classifiers are combined, ¢;, i = 1,...,m, is the class of a
sample, c(classifier;) is the class of the jth classifier, and
w; is the a priori possibility of class ¢;, the Bayesian
combination is defined as follows:

k

Censemble = arg max{n H P(c,;lc(classifierj))}. ®)

=1

1<i<m =

4. Experiments
4.1. Environment

We used three well-known gene expression profiles which
were obtained from the Internet: a Leukemia dataset, a
Lymphoma cancer dataset and a Colon cancer dataset.
Microarray samples, while clearly noisy, contain in
addition significant “atypical” sources of variation: across
labs, across people carrying out the experiments, type of
arrays used, etc. It is critical to try to deal with such types
of variations so that the resulting classification scheme can
be generalized in practice. Nowadays, we can download
many sets of gene expression data that deal with different
diseases (brain tumors, breast cancer, colon -cancer,
leukemia Lymphoma cancer, etc). However, only some of
them are frequently used for benchmark purposes. Among
them, the Leukemia, Lymphoma and Colon sets are the
most popular. Lymphoma data from Stanford University
is profiled using a specialized DNA microarray called a
Lympochip and colon cancer data from Princeton Uni-
versity uses a general oligonucleotide DNA microarray.
Each data is profiled using different types of machines and
from different labs.

In our experiments, three representative cancer datasets
were used. The Leukemia dataset consisted of 72 samples:
25 samples of AML and 47 samples of ALL [1]. A total of
38 out of 72 samples were used as training data and the
remaining samples were used as test data. Each sample
contained 7129 gene expression levels. The Colon dataset
consisted of 62 samples of colon epithelial cells taken from
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colon-cancer patients [1]. Each sample contained 2000 gene
expression levels. A total of 31 out of 62 samples were used
as training data and the remaining samples were used as
test data. The Lymphoma dataset consisted of 24 samples
of GC B-like and 23 samples of activated B-like [26]. A
total of 22 out of 47 samples were used as training data and
the remaining samples were used as test data (http://
www.broad.mit.edu/cgi-bin/cancer/publications/pub_paper.
cgi?mode = view&paper_id =43).

B cell diffuse large cell Lymphoma (B-DLCL) is a
heterogeneous group of tumors, based on significant
variations in morphology, clinical presentation and re-
sponse to treatment. Gene expression profiling has revealed
two distinct tumor subtypes of B-DLCL: germinal center B
cell-like DLCL and activated B cell-like DLCL. This
Lymphoma cancer dataset consisted of 24 samples of
GC B-like and 23 samples of activated B-like (http://
www.genome-stanford.edu/lymphoma).

The Colon dataset consisted of 62 samples of Colon
epithelial cells taken from Colon cancer patients. Each
sample was taken from tumors and normal healthy parts of
the Colons of the same patients and measured using high-
density oligonucleotide arrays. Each sample contained
2000 gene expression levels. Although the original data
consisted of 6000 gene expression levels, 4000 out of 6000
were removed based on confidence in the measured
expression levels. A total of 40 of 62 samples were
from Colon cancer samples and the remaining ones were
from normal samples (http://microarray.princeton.edu/
oncology/affydata/index.html). Because the number of
samples is very small, it is not easy to partition the
datasets into three parts (training/validation/test sets).
Many previous works in this field also used the training/
test partition.

For feature selection, each gene was scored based on the
similarity measure, and the 25 top-ranked genes were
chosen as the feature of the input pattern. The feature
selection is based on only training data. There currently are
no reports on the optimal number of genes, but our
previous study indicates that 25 is a reasonable number [5].
For classification, we used a 3-layered MLP with eight
hidden nodes, two output nodes, 0.05 learning rate and 0.9
momentum. The KNN was used with k&= 5. Similarity
measures used in the KNN were the Pearson’s correlation
coefficient and the Euclidean distance. The SASOM system
was used by a 4 x 4 initial map with rectangular topology,
0.05 initial learning rate, 1000 initial maximum iteration,
10 initial radius, 0.02 final learning rate, 10,000 final
maximum iteration and three final radius. The number of
nodes in the SASOM system will increase by dynamically
splitting the nodes. We used SVMs with a linear function
and an RBF function as the kernel function. The input of
each classifier is a vector composed of values of the selected
features and the output is a class label (cancer/normal) of
the sample. Details of the construction of classifiers are
described in [6]. The parameters are derived from many
experiments.

In the complementarily correlated features section, the
size of the ensemble was 7 and the members were chosen
from 42 combinations (six classifiers and seven feature
selection methods) by using correlation analysis. In the
negatively correlated genes section, the size of the ensemble
ranged from 2 to 4. There are relatively small cases of the
negatively correlated feature selection methods because its
condition is more rigorous than complementarily corre-
lated one. For two ideal vectors, there were four different
distance measures for selecting the feature sets. In total,
there were eight different feature sets and eight different
MLPs trained from them. From these, we chose the
members of the ensemble using the proposed correlation
analysis.

4.2. Results of analysis of the ensemble with
complementarily correlated features

Fig. 3 shows the correlation of the Euclidean distance,
the Pearson’s correlation coefficient and the cosine
coefficient on the basis of plotted distribution. As shown
in Fig. 3, they are correlated in the Colon dataset. Table 4
shows the genes ranked by them and the value of the genes
when using each method. There are some overlapped genes
among them. The bold-faced figures mean the overlapped
genes of those features. This indicates that the overlapped
genes of the correlated features can discriminate classes
and the other genes (not overlapped among the combined
features) can supplement to search the solution spaces
complementarily. For example, gene 1659 and gene 550 of
the Colon dataset are high-ranked in both the Pearson’s
correlation coefficient and the cosine coefficient, and gene
440 is high-ranked in both the Euclidean distance and the
cosine coefficient. This subset of two features might play an
important role in classification.

There were six classifiers and seven feature selection
methods used in this paper, which produced 42 feature—
classifier pairs. Because the size of the ensemble is seven,
there were 4, C; candidates possible. Recognition rates by
the 4 C; ensemble classifiers are shown in Table 5. The
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Fig. 3. Correlation of Euclidean distance, Pearson’s correlation coefficient
and cosine coefficient.
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Table 4

Genes ranked by Euclidean distance, Pearson’s correlation coefficient and

cosine coefficient

K.-J. Kim, S.-B. Cho | Neurocomputing 70 (2006) 187199 195

Rank Euclidean Pearson Cosine
1 619 (2.262385) 619 (0.681038) 619 (0.895971)
2 767 (2.335303) 1771 (0.664378) 1772 (0.875472)
3 704 (2.374358) 1659 (0.634084) 767 (0.874914)
4 187 (2.388404) 550 (0.631655) 1771 (0.873892)
5 207 (2.410640) 187 (0.626262) 1659 (0.870115)
6 887 (2.473033) 1772 (0.621581) 187 (0.867285)
7 635 (2.474971) 1730 ( 0.615566) 704 (0.866679)
8 1915 (2.498611) 1648 (0.614949) 1208 (0.866029)
9 1046 (2.506833) 365 (0.614591) 550 (0.864547)
10 1208 (2.512257) 1208 (0.603313) 1546 (0.856904)
11 482 (2.520699) 1042 (0.602160) 251 (0.855841)
12 1771 (2.525080) 1060 (0.601712) 1915 (0.855784)
13 1993 (2.529032) 513 (0.596444) 440 (0.855453)
14 62 (2.546894) 767 (0.594119) 1263 (0.854854)
15 1772 (2.547455) 1263 (0.591725) 1060 (0.854829)
16 1194 (2.549244) 138 (0.587851) 965 (0.854137)
17 1594(2.551892) 1826 (0.584774) 1648 (0.854119)
18 199 (2.557360) 1546 (0.582293) 1942 (0.853586)
19 1867 (2.587469) 141 (0.579073) 513 (0.852270)
20 959 (2.589989) 1227 (0.574537) 1042 (0.851993)
21 440 (2.593881) 704 (0.569022) 1993 (0.851753)
22 480 (2.594514) 1549 (0.562828) 365 (0.851205)
23 1546 (2.604907) 1489 (0.561003) 1400 (0.849531)
24 399 (2.613609) 1724 (0.559919) 207 (0.849084)
25 1060 (2.614100) 1209 (0.559778) 271 (0.848481)
Table 5

The best recognition rate by ensemble classifier (%)

Leukemia Colon Lymphoma
MV Best 97.1 93.5 100.0
Average 85.1 72.9 77.3
wv Best 97.1 93.5 100.0
Average 87.3 73.1 79.1
BC Best 97.1 93.5 100.0
Average 92.8 74.8 85.2

purpose of this exhaustive experiment is to show the
effectiveness of the proposed ensemble creation methods
based on correlation analysis. In the negatively correlated
features, two neural networks were used and they were
trained using negatively correlated features. MV means the
ensemble classifier using the majority voting method, WV
means the ensemble classifier using the weighted voting
method, and BC means the ensemble classifier using the
Bayesian combination. While there is little difference in the
best recognition rate of the ensemble classifier according
to the ensemble method or the number of combined
classifiers, there is a difference in the average recognition
rate of the ensemble classifier.

The best recognition rate of the ensemble classifiers is
97.1% in the Leukemia dataset, 93.5% in the Colon
dataset, and 100.0% in the Lymphoma dataset. Compared
with the best recognition rates of the base classifiers 97.1%,

83.9% and 92.0% for each dataset, the performance of the
ensemble classifiers is superior. The best result of the
Leukemia dataset (97.1%) is obtained by all the basis
classifiers except the SASOM system. In other datasets, the
performance of the ensemble classifiers outperformed the
best classifiers. For all the datasets, the ensemble classifier
with all classifiers produced the worst result. If we observe
the classifiers of the best ensemble classifier, we find
features more important to the result. In other words, in
the ensemble classifiers, there must be classifiers that use
the Euclidean distance and the Pearson’s correlation
coefficient. The other classifier is the one with the cosine
coefficient, mutual information or information gain. This
fact is also prominent in the Lymphoma dataset. Most of
the best ensemble classifiers are classifiers with information
gain, signal-to-noise ratio and the Euclidean distance or
classifiers with information gain, signal-to-noise ratio and
the Pearson’s correlation coefficient.

4.3. Results of analysis of ensemble with negative correlated
features

Fig. 4. shows the expression level of the informative gene
subsets selected on the basis of negative correlation, top-
ranked genes in terms of similarity with ideal vector genes,
chosen by the Pearson’s correlation coefficient method in
the Leukemia dataset. They are the expression levels of the
genes chosen by the Pearson’s correlation coefficient.
About 1-27 samples are the class of ALL and 28-38
samples are the class of AML. As shown in Fig. 4, the
expression levels of 50 genes are clearly distinguishable
between the two classes. The 25 genes are underexpressed
in ALL and overexpressed in AML. In Fig. 3, the other 25
genes are overexpressed in ALL and underexpressed in
AML. The expression levels of 25 genes selected based on
ideal genes (0,0,...,0,1,1,...,1) are more separable between
the ALL and AML classes than those of the other 25 genes
selected based on ideal genes (1,1,...,1,0,0,...,0).

By using correlation analysis, two feature sets that
are negatively correlated are generated and two MLPs
(referred to as MLP I and MLP II) are trained using
each of them. In distance-based gene selection methods
(Euclidean, correlation coefficient, Pearson correlation and
Spearman correlation), the distance between gene expres-
sion data and ideal feature vector is calculated. If there
are N samples, the size of ideal feature vector is N. Its
element can have 0 or 1. If the sample’s class is cancer the
value of element is 1 and vice versa. Let us assume that
the gene expression values of gene 1 are as follows. The
number of sample size is 10. Gene 1 = (0.5,0.4,0.3,0.2,0.6,
0.7,0.8,0.4,0.9,0.3). If the sample from 1 to 5 is cancer
and the others are normal, the ideal feature vector is
1,1,1,1,1,0,0,0,0,0). The distance between the two
vectors is used as a ranking measure. On the other hand,
it is possible to use 1 for normal and 0 for cancer in ideal
vector. In this case, the ideal vector is (0,0,0,0,0,1,1,
1,1,1).
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Based on the ideal feature vectors, the feature selection
measure can choose different feature subsets. If the
ideal vector is (1,1,1,1,1,0,0,0,0,0), the genes which are
expressed highly for cancer sample and are regulated for
normal sample get high rank. However, if the ideal vector
1s(0,0,0,0,0,1,1,1,1, 1), the genes which are expressed low
for cancer sample and high for normal sample get high
rank. This produces two different gene subsets that have
opposite characteristics and we call it as negatively
correlated. MLP I is trained from the gene subsets using
ideal feature vector (1,1,1,1,1,0,0,0,0,0) and MLP 1II is
trained from the gene subsets using ideal feature vector
(0,0,0,0,0,1,1,1,1,1). MLP I and MLP2 are not related to
the pair of feature selection methods. For each feature
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Fig. 4. The informative gene subsets chosen by Pearson’s correlation
coefficient in Leukemia dataset.

Table 6

selection method (only distance-based methods), there are
two gene subsets (each subset has 25 genes).

Table 6 shows the best recognition rate of the basis
classifiers in each dataset. The basis classifier referred the
single classifier (one feature selection method + one classi-
fier). In this case, MLP is used as a classifier. Because the
proposed method can only be considered for the distance-
based methods (PC, SC, ED and CC), other three feature
selection methods (IG, MI and SN) are naturally ignored.
Basis classifier means the combination of the four distance-
based feature selection methods and MLP. We have
identified the single classifier as “‘single classifier in MLP
I’ and “‘single classifier in MLP II.”” The purpose of the
experimentation is the comparison of “single classifier in
MLP I,” “single MLP I1,” “ensemble of MLPs from MLP
I,” “ensemble of MLPs from MLP II,” “ensemble of
MLPs from MLP I and MLP II.” The table shows the
performance of single classifier in MLP I and single
classifier in MLP II.

In the Leukemia dataset, single classifier in MLP I with
the Pearson’s correlation coefficient produces the best
recognition rates, 97.1%, among the feature—classifier
combinations. In the Colon dataset, single classifier in
MLP 1 with the cosine coefficient produces the best
recognition rate, 83.9%. In the Lymphoma dataset, single
classifier in MLP II with Spearman’s correlation coefficient
produces the best recognition rate, 88.0%. While single
classifier in MLP I outperforms single classifier in MLP 11
in the Leukemia dataset and the Colon dataset, single
classifier in MLP II outperforms single classifier in MLP 1
in the Lymphoma dataset.

Fig. 5 shows the average and the best recognition rates of
the ensemble classifiers for the Lymphoma dataset. In case
of the negatively correlated feature set (MLP I+ MLP II),
eight diverse feature sets were produced with two ideal
feature vectors (ideal Gene A and ideal Gene B) and four
similarity measures. The classifiers learned with eight
diverse feature sets were combined using the Bayesian
approach. The average recognition rate means the average
of all possible gC, (k=2, 3 and 4) combinations of
ensemble classifiers.

Compared with the results of MLP I and MLP II, the
negatively correlated features set (MLP I+ MLP II) does
not outperform in the average recognition rate (Figs. 5-7),

Recognition rate with features and classifiers (%) (the best recognition rate for each combination)

Leukemia Colon

Lymphoma

Single classifier in Single classifier in

Single classifier in

Single classifier in Single classifier in Single classifier in

MLP I MLP II MLP I MLP II MLP I MLP II
PC 97.1 79.4 74.2 77.4 64.0 72.0
SC 82.4 79.4 58.1 64.5 60.0 88.0
ED 91.2 61.8 67.8 77.4 56.0 72.0
CcC 94.1 76.5 83.9 77.4 68.0 76.0
Mean 91.2 74.3 71.0 74.2 62.0 77.0
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but outperforms in the best recognition rate (Table 7).
While the best recognition of the ensembles of MLP I and
MLP II decreases as the number of combined classifiers
increases, the best recognition of the ensemble of the
negatively correlated coefficient feature set increases.
Increasing the number of base classifiers dose not always
guarantee the performance improvement [36]. In Fig. 5, the
statistical significance test between MLP I+ MLP II and
MLP II where the ensemble size is 4 shows that the
difference is meaningful (¢ = 2.055~2.09, p = 0.05, the
number of experiments is 10). In Lymphoma, the difference
among the accuracies is clear. In Colon, the difference
between MLP I and others is clear. However, the difference
between MLP II and MLP I+MLP II is near 0. Because
they are relatively clear, we do not use statistical significant
test. The case (member is 4) in Lymphoma is very special
and worth to analyze because the proposed MLP I+ MLP
IT shows the best performance.

4.4. Related works

Table 8 shows relevant works on cancer classification in
three benchmark cancer datasets, the Leukemia, Colon and
Lymphoma datasets. Many researchers have been studying
problems of cancer classification [1,9,12,19,22,29] and

|+ MLPI + MLPII —— MLPI —&— MLPII|

90 T T

80

70

Recognition rate (%)
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The number of combined classifiers

Fig. 5. Recognition rate of the ensemble in Lymphoma dataset (MLP I
means ‘“‘ensemble of MLPs from MLP I,” MLP II means “ensemble of
MLPs from MLP I1,”” and “MLP I+ MLP II”’ means “ensemble of MLPs
from MLP I and MLP II”).
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Fig. 6. Recognition rate of the ensemble in Leukemia.
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Fig. 7. Recognition rate of the ensemble in Colon.

Table 7
Best recognition rate of ensemble classifier learned negatively correlated
feature sets (%)

Generalization Sensitivity Specificity

Leukemia

Ensemble of MLPs 97.1 92.9
from MLP I

Ensemble of MLPs 82.4 64.3 95.0
from MLP II

Ensemble of MLPs 97.1 92.9
from MLP I and

MLP II

100.0

100.0

Colon

Ensemble of MLPs 80.6 95.0 54.5
from MLP I

Ensemble of MLPs  77.4 95.0 45.5
from MLP II

Ensemble of MLPs 87.1 95.0 72.7
from MLP I and

MLP II

Lymphoma

Ensemble of MLPs 64 36.4 85.7
from MLP I

Ensemble of MLPs 76 72.7 78.6
from MLP II

Ensemble of MLPs 92 90.9 92.9
from MLP I and

MLP 11

clustering [2,13,16,32] using gene expression profile data
and attempting to propose optimal classification techni-
ques to work out these problems. Some produce better
results than others, as shown in Table 8. For the Leukemia
dataset, our method produces the best recognition
rate, 97.1%, while other methods produce 84.6-95.8%.
For the Colon dataset, our method produces a result of
83.9-93.5% compared to that of the others (72.6-94.1%.)
For the Lymphoma dataset, our method produces also the
best recognition rate of 92.0-100.0%, compared to that of
the others (90.0-98.1%.) For all datasets, our methods
and the methods in Nguyen and Rocke outperform the
others [29]. The maximum accuracy for leukemia datasets
published by other researchers is 100% in [5,24]. However,
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Table 8

Relevant works on cancer classification (%)

Author Leukemia Colon Lymphoma
Our method 97.1 83.9-93.5 92.0-100.0
Furey et al. [13] 94.1 90.3 —

Li et al. [14] 94.1 — —

Li et al. [10] 84.6~ 94.1~ —
Ben-Dor et al. [4] 91.6-95.8 72.6-80.6 —

Dudoit et al. [3] 95.0~ — 90.0~
Nguyen et al. [15] 94.2-96.4 87.1-93.5 96.9-98.1

that specific dataset is known for the mis-labeling of one
sample. 97.1% is the maximum accuracy that was achieved
if the label correction is taken into account.

5. Concluding remarks

In order to predict the cancer class of patients, we have
illustrated a classification framework that combines sets of
classifiers using correlation information. The results clearly
show that the suggested ensemble classifiers work. We
could also improve classification performance by combin-
ing classifiers from two independent features and by
combining independent sets of classifiers learned from
negatively correlated features, even when we use simple
combination methods of voting and the Bayesian
approach. For all the datasets, the Bayesian combination
is the best among the three ensemble methods.

The experimental results also imply some correlations
between features, which might guide researchers to choose
or devise the best ensemble classifiers for their problems in
bioinformatics. Based on the results, we have developed the
optimal feature—classifier combination to produce the best
performance.

Moreover, the ensemble classifier with negative correla-
tion outperformed the ensemble classifiers without negative
correlation. We confirmed that high correlation and the
negative correlation on the basis of the correlation analysis
enable the ensemble classifier to work better by providing
appropriate information for the classification to classifiers.
Our experimental results showed the possibility of perfor-
mance improvement by using correlation analysis. Though
it showed relatively low performance in averaged accuracy,
it is possible to form the best ensemble. There could be
many strategies to find the best one. Finding the strategy
must be dealt in another paper as a future work.

Feature selection is a very important issue in classifying
gene expression data and there are two basic approaches:
filter and wrapper approaches [17]. Li’s work is a
kind of wrapper approach [20]. In this paper, we have
chosen the filter approach and the adoption of another
feature selection method needs to be investigated in the
future.
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