
Copyright © 2012 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
WASA 2012, Singapore, November 26 – 27, 2012.
© 2012 ACM 978-1-4503-1835-8/12/0011 $15.00

3D Game Model and Texture Generation using Interactive Genetic Algorithm

DuMim Yoon∗

Dept. of Computer Engineering, Sejong University
Kyung-Joong Kim†

Dept. of Computer Engineering, Sejong University

Abstract

Recently, the production of big games usually requires lots of
money but it is very difficult to gain attention from players. Al-
though gamers expectations are very high, game companies re-
source is limited to maximize the quality of the games. Mod (game
contents editing) can be one of the solutions to this problem. It
makes gamers satisfy themselves from creating and sharing their
Mod. It increases gamers playing time and sales. But there are
only few users who have knowledge and special ability to create
Mod. So most gamers just use Mod made by someone else. In
this paper, we propose a method to generate Mod for 3D game ob-
jects and textures. Our method enables the construction of a 3-
dimension object using the grown building footprints by L-system,
and it also provides a web-based interactive genetic algorithm in-
terface to users for changing shape. Furthermore, it also provides a
function to evolve various texture images from an original texture
file. We demonstrated the possibility of our systems using TORCS
(The Open Racing Car Simulator). These results reveal that 3D ob-
jects and textures can be created from our method by amateur users.

CR Categories: I.2.1 [Artificial Intelligence]: Applications and
Expert Systems—Games

Keywords: 3D model, game contents generation, interactive
generic algorithm

1 Introduction

Video game industry has successfully expanded their territory into
personal computer, video game consoles, and mobile devices. It is
common that games include fantastic graphics, multi-modal natu-
ral interface, and social network play. As a result, the expectation
from players is usually very high but development cost for the game
increases rapidly. One of the most expensive parts in the game de-
velopment is contents creation by designers. To reduce the cost,
recently, there have been works on procedural game contents gen-
eration which uses algorithmic procedure to create game contents
[Togelius et al. 2011]. In the line of research, it is important to
personalize game contents in the automatic generation. Recently,
game users have great interest to edit games and company starts to
supports the game modification [Bostan 2010]. It opens door to the
gamers for the creation of their own personal games by changing
shapes, textures and rules of the games. For example, game devel-
opers create only parts of planned contents and admit the gamers
who have dissatisfied on the original contents to create extra con-
tents by themselves. This approach, called game mod, usually re-
quires high-level skills and semi-expert knowledge [Bostan 2010].
Especially, to create 3 dimensional game contents has been a high

∗e-mail:krad@hanmir.com
†e-mail:kimkj@sejong.ac.kr,corresponding author

barrier for amateurs. Therefore, in this paper, we propose 3D game
contents generation based on interactive genetic algorithm (IGA)
which creates novel contents based on users feedback. It evolves
the 3D shapes of buildings and textures for the structure. The tex-
tures are evolved by our photo retouching system [Yoon and Kim
2012]. It allows amateurs to make custom 3D game contents for
editable games.

2 Related Works

In this section, we introduce game content generation works based
on evolutionary computation. The purpose of the game contents
generation using evolution is to find novel and personalized con-
tents automatically. Usually, they adopt the IGA because the eval-
uation of the solution is subjective and human should be involved
in the search process. P. L. Lanzi et al. used the interactive ge-
netic algorithm to generate novel racing tracks for a simulated
car racing game (http://trackgen.pierlucalanzi.net/) [Loiacono et al.
2011]. This method generates novel game tracks based on anony-
mous users evaluation (positive or negative) counts via web. It
is possible to download the evolved tracks and applied them into
the game. K. Stanely et al. evolved a bullet pattern using artifi-
cial neural networks in their shooting games (Galactic Arms Race)
(http://gar.eecs.ucf.edu/) [Hastings and Stanley 2010]. Their results
show that it is possible to create interesting and successful bullet
patterns automatically. It can save the effort for game developers to
design effective and interesting attack patterns.

3 3D Building Model Generation

Although background buildings are minor content than characters,
it definitely needs in urban background games. It is important to in-
crease the diversity of buildings in the background to improve user
experience. In this section, we introduce the automatic building
structure evolution.

Figure 1: Structure of 3D building model.

3.1 Making a building footprint using L-system

In this paper, we generate arbitrary building shape by growing a
footprint of building (Figure 1). Although there are some works

53

on automatic building design system [Müller et al. 2006][Wonka
et al. 2003], we focus on using IGA for game contents. To rep-
resent the footprint, we adopt L-system [Prusinkiewicz and Lin-
denmayer 1990] that is powerful to generate complex shapes us-
ing simple grammars. It generates a randomized result based on a
seed value using a reproducible random number generator. In this
work, we use the random number generator by George Marsaglia
[Marsaglia 2003]. Initially, a square building footprint is generated
and it grows to other shapes by the L-system grammatical rules.
Although the starting shape can be angular, circular and polygonal
shapes, but we test only the square type. The grammatical rule for
the L-system is written with R, L and F. These three characters, R,
L and F, mean clock-wise rotation 90, -90 and forward. The R and
L just change the direction of drawing. The F is actually drawing a
single unit line to the current direction.

(FRFRFRFR)
Production Rule

”F”→ ”LFRFRFL”

An Example (stochastic L-system)
”FRFRFRFR”→ ”FRFRFRLFRFRFLR”

Figure 2: Initial building footprint (top), grammar rule (middle)
and an example (bottom)

The starting point of our stochastic L-system is defined as a string
”FRFRFRFR” which draws a square (Figure 2). The production
rule is F→LFRFRFL defined manually. In the production, for each
F in the string, we get a random value ranged from 0 to 1 and if the
value is smaller than a pre-defined probability threshold (randomly
chosen), the rule is applied. In the example, only one F is replaced
with ”LFRFRFL.”

3.2 Modifying Results

From the grammatical production, we can get a building footprint
represented as a string of the alphabets. It shows that ”FRRF” or
”FLLF” result in a single line instead of polygons. The strings are
removed during the production. Besides the two strings, there are
several redundant information in the string and can be shortened
(Table 1).

Table 1: Modification on string

Original string Replacement
”FLLF” ”LL”
”FRRF” ”RR”
”RRRR” ””
”LLL” ”R”
”RRR” ”L”
”LL” ”RR”
”RL” ””
”LR” ””

”FRFRFRF” ”L”
”FLFLFLF” ”R”

The modification is deterministic and all the substrings matched to

the pattern are replaced with the alternatives.

3.3 Web-based Evolution

Because the building designs are for the games, the evaluation on
them is subjective. The interactive evolutionary computation is a
useful tool to search for solutions based on subjective evaluation.
Usually, it maintains the small size of populations and users are
involved in the evaluation. Based on the scores from users, the ge-
netic algorithm creates a new generation from the parents. Because
of users fatigue, it is important to get reasonable solution with small
number of evaluations. Traditionally, the Interactive Genetic Algo-
rithm is running in a personal computer. However, the new web-
based environments allow user evaluates or evolves solution any-
where and anytime. If users can access the internet from their smart
phone, it is possible to run the evolution with the device. Also,
if the evaluation is open to the public, it can search for solution
with collective intelligence. There are several examples exploiting
votes from anonymous users. For example, users can evolve 3D
objects through webpage and finally they can be printed using 3D
printer (http://endlessforms.com). Our interface is running on web
and anyone can access to the program to evolve building footprints
(http://cilab.sejong.ac.kr/EC)1 . In this work, the chromosome is
consisted of values for a seed for RNG (Random Number Gener-
ator), the iteration number in the L-system production (0∼10), and
the height of the building (0∼15). The population size is 12. After
the initialization of the population, the interface shows 3D build-
ings generated with the default texture. By clicking the building,
user can give scores and get a corresponding 3D file exportable to
3D simulated car racing games (for example, TORCS). The evo-
lution continues by creating a new population based on user eval-
uation and genetic operations. If user selects a building, the score
is one and otherwise zero. It means that the chromosome scored
as zero has no chance to survive in the next generation. Although
the individual is not selected, there is a little chance that the parts
of the individuals chromosome are useful to create novel solutions.
The following equation is used to adjust the original fitness value
(in this paper, K=3).

fi = (Si − Sw) +
Sb − Sw

K − 1
, (K > 1) (1)

fi : i-th fitness
Si : i-th score

Sb : the best score
Sw : the worst score

K : Selection Pressure

The chromosome is presented with 6 bytes (4 bytes for the seed, 1
byte for the number of iterations in the production, and 1 byte for
the height). It adopts a standard one-point crossover. The muta-
tion operator is applied to the chromosome in the byte level. For
each byte of the chromosome is tested whether the mutation is ap-
plied or not with small mutation probability (in this paper, 3%).
In previous works, researchers attempt to creates 2D contents or
a single-colored 3D contents [Clune and Lipson 2011][Cardamone
et al. 2011][Secretan et al. 2008]. In this work, the interface is used
to evolve 3D buildings. Although the texture of the building is not
evolved together with the building structure, we also provide sepa-
rate systems to evolve the texture of the game contents. The system
uses HTML 5 and WEBGL. It allows rendering 3D objects in users
web browsers. The Figure 3 (a) shows a set of successful 3D build-
ing models and their average score. The interface can export the
successful building structure to AC3D format.

1Google Chrome, Mozilla Firefox, Safari, and Opera platforms

54

(a) Evolved contents

4 Texture Retouching by IGA

Using the web-based interface, users can generate 3D structure of
the buildings. The interactive evolution searches for the shape of the
buildings footprint and height. However, in the evolution, the tex-
ture of the building is not changed. At this moment, the evolution of
the 3D model and its texture is not integrated as a single system. In
[Yoon and Kim 2012], authors developed an IGA-based system to
evolve a set of filters to be applied to the input image. The interface
shows twelve new images filtered from the input. It also evolves the
number of filters to be applied to the target. It starts from a single
filter but the genetic operators add or delete filters from the initial
filter sets. Unlike the previous evolution of the 3D model, this evo-
lution assumes that the length of the chromosome is not fixed. The
length is proportionate to the number of filters used. For example,
a solution can be a sequence of filters (for example, filter 1, filter 5,
filter 6 and filter 3). The filters are applied to the original input im-
age and the output image is passed to the next filter. In commercial
photo edit tools, they support a lot of filters (smoothing, sharpen-
ing, special effects and so on). However, theyre not useful for our
filter evolution software because they dont provide interface to au-
tomate the sequential filtering. GIMP (GNU Image Manipulation
Program) supports a script-based interface to process images and
they can be combined with our IGA software. Our system gener-
ates a GIMP script file dictating the sequence of filters to be applied
to the input images and pass it to the GIMP. The program outputs
the results of the sequential filtering. Finally, our program visual-
izes the number of new images filtered and users give scores for the
goodness of the processing. Usually, it is not easy to create novel
images from scratch but the retouching system can generate lots
of interesting figures because it starts from user-created photos or
patterns (Figure 4).

4.1 Script-Fu

GNU Image Manipulation Program (GIMP) is a cross-platform im-
age editor tool. It supports drawing, editing and special effects in-
cluding various filters. Also, it has an interface to do batch pro-
cessing called script-fu. Because of the property, the program has
been used in several research works [Petcu and Iordan 2006][Bu-
cior and Ventures 2007]. For example, GIMP was used to create
artistic image [Valente and Klette 2010], sharpen image [Jaksa and
Takagi 2003], and lighten image [Hara et al. 2009]. In this work, the
script-fu (script-based interface for the GIMP) is used to combine a
set of filters to produce new image from an original one (Figure 5).

(b) A snapshot in the evolution (Green means the selection by a
user)

AC3Db
MATERIAL ”ac3dmat1” rgb 1 1 1 amb 0.2 0.2 0.2
emis 0 0 0 spec 0.5 0.5 0.5 shi 10 trans 0
OBJECT world
kids 20
OBJECT poly
name ”poly”
loc 0 0 0
texture ”building1.rgb”
numvert 4
0 0 0
0 10 0
...

Figure 3: Some snapshots from the interface and the exported 3D
contents for games

4.2 Evolution

Figure 6 shows an interface for the image retouching. Initially, it
generates twelve filtered images and waits for users feedback on
them. For each image, user can express preference as one of ”good”
or ”bad.” For the ”good” decision, the fitness value is one. Other-
wise, the value is zero. It also supports sliding scale input, and five
stars. Filters have their parameters to adjust the result. The chro-
mosome also contains information on the details of parameters for
each filter. The number of parameter is different for each filter type.
However, it ranges from 3 to 5. It should have the order of filters
and their parameters. The chromosome is automatically converted
into a script-fu for GIMP. Because the number of filters cannot be
determined a priori, our evolutionary system uses a variable-length
chromosome. It starts from empty chromosome, but it gradually
increases the length from mutation operations.

For each filter, four bytes are assigned to represent parameters and
filter type. In total, 40 image filters are used (Table 2). Theyre color
balance, copy layer, loop and so on. However, we exclude several
filters and complex functions such as a 3x3 mask because errors
occur. The first byte is used to represent the type of filter (0∼39).
The other three bytes are used to represent parameters of the filter.
If the number of filters for a chromosome is N, the size is 4N bytes.

If the number of parameters for the filter is three, each parameter is
represented with one byte. However, some filters have four or five
parameters. In the case, one or two bytes are divided into smaller

55

Figure 4: An overview of the texture retouching system

(define (custom-filterID srcfilename destfilename)
(let* ((image (car (gimp-file-load RUN-
NONINTERACTIVE srcfilename srcfilename)))
(drawable (car (gimp-image-get-active-layer image))))
(if (not (= RGB (car (gimp-image-base-type image))))
(gimp-image-convert-rgb image))
(gimp-message ”processingID”)
...
(gimp-image-flatten image)
(gimp-file-save RUN-NONINTERACTIVE image (car
(gimp-image-get-active-layer image)) destfilename
destfilename)
(gimp-image-delete image)))

Figure 5: A template of script-fu for the filter evolution. Each filter
set in the population has a unique ID. In the middle of the script-fu
code, a set of codes for filtering is added.

parts to represent more than two parameters (Figure 7). Unlike the
3D model chromosome, the texture evolution uses variable-length
chromosomes. In the initialization, each chromosome assigns one
filter randomly chosen. Because the mutation operator allows ad-
dition and deletion of filters in the chromosome, the length of the
filter sets can be changed. It uses a one-point crossover and muta-
tion operators.

4.3 Interface

The communication between the GIMP and the IGA interface is
done using file I/O. Each chromosome is converted into a script-fu
file and the GIMP outputs one result image file. In the interface,

Figure 6: Image retouching interface

Table 2: GIMP image filters

Blur gblur,mblur,pixelize

Enhance
antialias, deinterlace, destripe, nlfil-
ter, red-eye-removal, sharpen, unsharp-
mask

Distorts

dog, edge, laplace, neon, sobel, dilate,
erode, apply-canvas, cartoon, cubism,
oilify, photocopy, soft-glow, blinds, em-
boss, lens-distortion, polar-coords, rip-
ple, shift, vpropagate, video, waves,
whirlpitch, wind

Etc
color-balance, levels, invert, flip, copy-
layer, loop

Figure 7: An example of chromosome representation (For plug-in-
photocopy, the last byte is divided into four bits to represent two
parameters in a byte.)

users select their own photos or patterns to create new textures for
3D model. The evaluation by user can be converted to the numeric
value. For example, the five star input can be interpreted as 0.0, 0.2,
0.4, 0.6, 0.8, and 1.0. Slide scale represents a real value from 0 to 1.
Figure 8 shows an example images created from the IGA evolution.
It starts from an original image and a set of filters can transform it
to a variety of novel textures.

5 Applying to a Real Game

In this section, we show that the new contents can be used in racing
games (TORCS, The open Racing Car Simulator). Because this
game uses 3D model format (AC3D) and track toolkit, it is an easily
editable game. The web-interface can export the 3D building model
in AC3D format. Users just simply download the converted file and
insert it into the game folder. The texture evolved was used for
the buildings. Because the TORCS only accepts RGB format, we
converted the image with GIMP. Figure 9 shows the final racing
screen shots with the evolved buildings and textures.

6 Conclusions and Future Works

In this paper, we propose a 3D model and texture generating method
that enables amateur to make new contents for games using IGA. In

Figure 8: Some example images from GIMP batch processing

56

Figure 9: Running TORCS games with the created contents

this work, we still have a lot of constraints (for example, fixed initial
building footprint size) to generate complex 3D building models.
But it shows that the IGA is promising to produce 3D models auto-
matically from the feedback by users. The new contents generation
system allows users to create their own game contents and share
them with others. We plan to generate more complex 3D buildings
and extend our system to other types of game objects (such as cars,
characters, and so on). Also, we need to integrate the structure and
texture evolution into a single system.

7 Acknowledgements

This research was supported by Basic Science Research Program
and the Original Technology Research Program for Brain Science
through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education, Science and Technology (2010-
0012876) (2010-0018948)

References

BOSTAN, B. 2010. Explorations in player motivations: virtual
agents. In Proceedings of the 9th international conference on
Entertainment computing, Springer-Verlag, Berlin, Heidelberg,
ICEC’10, 262–269.

BUCIOR, B., AND VENTURES, S., 2007. Using script-fu in the gnu
image manipulation program to automate ”smart” sharpening.

CARDAMONE, L., LOIACONO, D., AND LANZI, P. L. 2011. In-
teractive evolution for the procedural generation of tracks in a
high-end racing game. In Proceedings of the 13th annual con-

ference on Genetic and evolutionary computation, ACM, New
York, NY, USA, GECCO ’11, 395–402.

CLUNE, J., AND LIPSON, H. 2011. Evolving 3d objects
with a generative encoding inspired by developmental biology.
SIGEVOlution 5, 4 (Nov.), 2–12.

HARA, K., MAEDA, A., INAGAKI, H., KOBAYASHI, M., AND
ABE, M. 2009. Preferred color reproduction based on personal
histogram transformation. Consumer Electronics, IEEE Trans-
actions on 55, 2 (may), 855 –863.

HASTINGS, E. J., AND STANLEY, K. O. 2010. Interactive ge-
netic engineering of evolved video game content. In Proceed-
ings of the 2010 Workshop on Procedural Content Generation in
Games, ACM, New York, NY, USA, PCGames ’10, 8:1–8:4.

JAKSA, R. NAKANO, S., AND TAKAGI, H. 2003. Image filter de-
sign with interactive evolutionary computation. In Proceedings
of the IEEE International Conference on Computational Cyber-
netics, 1–6.

LOIACONO, D., CARDAMONE, L., AND LANZI, P. 2011. Au-
tomatic track generation for high-end racing games using evo-
lutionary computation. Computational Intelligence and AI in
Games, IEEE Transactions on 3, 3 (sept.), 245 –259.

MARSAGLIA, G. 2003. Random number generators. Journal of
Modern Applied Statistical Methods 2, 1 (May), 2–13.

MÜLLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND
VAN GOOL, L. 2006. Procedural modeling of buildings. ACM
Trans. Graph. 25, 3 (July), 614–623.

PETCU, D., AND IORDAN, V. 2006. Grid service based on gimp for
processing remote sensing images. In Proceedings of the Eighth
International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, IEEE Computer Society, Washington,
DC, USA, SYNASC ’06, 251–258.

PRUSINKIEWICZ, P., AND LINDENMAYER, A. 1990. The algo-
rithmic beauty of plants. Springer-Verlag New York, Inc., New
York, NY, USA.

SECRETAN, J., BEATO, N., D AMBROSIO, D. B., RODRIGUEZ,
A., CAMPBELL, A., AND STANLEY, K. O. 2008. Picbreeder:
evolving pictures collaboratively online. In Proceedings of the
twenty-sixth annual SIGCHI conference on Human factors in
computing systems, ACM, New York, NY, USA, CHI ’08, 1759–
1768.

TOGELIUS, J., KASTBJERG, E., SCHEDL, D., AND YAN-
NAKAKIS, G. N. 2011. What is procedural content generation?:
Mario on the borderline. In Proceedings of the 2nd International
Workshop on Procedural Content Generation in Games, ACM,
New York, NY, USA, PCGames ’11, 3:1–3:6.

VALENTE, C., AND KLETTE, R. 2010. Artistic emulation - fil-
ter blending for painterly rendering. In Proceedings of the 2010
Fourth Pacific-Rim Symposium on Image and Video Technology,
IEEE Computer Society, Washington, DC, USA, PSIVT ’10,
462–467.

WONKA, P., WIMMER, M., SILLION, F., AND RIBARSKY, W.
2003. Instant architecture. ACM Trans. Graph. 22, 3 (July),
669–677.

YOON, D.-M., AND KIM, K.-J. 2012. Comparison of scoring
methods for interactive evolutionary computation based image
retouching system. In Proceedings of the fourteenth interna-
tional conference on Genetic and evolutionary computation con-

57

ference companion, ACM, New York, NY, USA, GECCO Com-
panion ’12, 617–618.

58

