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a  b  s  t  r  a  c  t

Analog  circuits  are  one  of  the  most  important  parts  of  modern  electronic  systems  and  the  failure of
electronic  hardware  presents  a critical  threat  to the  completion  of  modern  aircraft,  spacecraft,  and
robot missions.  Compared  to  digital  circuits,  designing  fault-tolerant  analog  circuits  is a difficult  and
knowledge-intensive  task.  A simple  but powerful  method  for robustness  is  a  redundancy  approach  to
use multiple  circuits  instead  of single  one.  For  example,  if  component  failures  occur,  other  redundant
components  can  replace  the  functions  of  broken  parts  and  the system  can  still work.  However,  there  are
several research  issues  to make  the  redundant  system  automatically.  In this  paper,  we  used  evolution-
ary  computation  to generate  multiple  analog  circuits  automatically  and  then  we combined  the solutions
to generate  robust  outputs.  Evolutionary  computation  is  a  natural  way  to  produce  multiple  redundant
solutions  because  it is  a population-based  search.  Experimental  results  on  the  evolution  of  the  low-pass,
high-pass  and  band-stop  filters  show  that  the combination  of  multiple  evolved  analog  circuits  produces
results  that are more  robust  than  those  of  the  best  single  circuit.

©  2011  Elsevier  B.V.  All rights  reserved.

1. Introduction

The robustness of the system is one of the important issues
in knowledge-based systems [1] and there are several ways to
make them to be fault-tolerant [2].  First of all, the most widely
used method is to prepare redundant modules which replace the
original one in case of failure [3].  Although this is simple to be
implemented, the same redundant modules can be weak to the
same problem which gives damage to the original one. Also, they
need additional modules to detect the malfunction of each mod-
ule and switch them. Secondly, if the faults are known a priori, we
can attempt to design specialized systems robust to the problems
[4]. However, this often requires much expert knowledge and com-
putational power to design them because of its high complexity of
the design problems. Also, they are weak to the unknown problems.
Finally, unlike the two passive approaches, researchers try to build
active fault-tolerant systems which reconfigure themselves when
faults occur [5].  Although this is a promising approach, they are in
the early stage of development.

Analog circuits are one of the fundamental parts of modern
electro-mechanic systems. Although many analog electronic func-
tions have been replaced with digital equivalents, there still exists
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a need to use analog circuits [6]. Analog circuit is still used to con-
vert speech signals to digital signals, sensor signals are inputted to
microprocessors, and digital outputs are converted to analog sig-
nals. Moreover, although we call it as digital systems, all electronic
circuits are ultimately analog circuits [14].

The presence of robustness is vital when working with analog
circuits because there is usually a possibility of component failure
[6]. Physical damage, manufacturing faults, aging, radiation, tem-
perature changes and power surges are possible reasons for such
failures. If the system is not fault-tolerant, there is a high possibil-
ity of radical performance degradation. Even worse, analog circuits
have been widely used for the autonomous systems working with-
out the intervention of human operators in remote and hazardous
environments. In those cases, the failure of components results in
the significant loss of systems. The purpose of fault-tolerant ana-
log circuits is to maintain functioning even when these kinds of
component failures are experienced.

Because designing analog circuits is a difficult, knowledge-
oriented process which is not possible without training or
experience, there have been a lot of works about the automation of
the process, especially with evolutionary computation [7–9]. Evo-
lutionary computation includes a set of methodologies mimicking
the natural evolution phenomena: genetic programming [10,11],
genetic algorithm [12], and evolution strategies [13]. Koza et al.
attempted to evolve analog circuits using genetic programming
(GP) based on minimal information about problems such as the
number of inputs and outputs [14]. Lohn and Colombano used
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linear representation with a genetic algorithm to evolve filter cir-
cuits which is relatively simpler than GP [18].

Although there have been several works on designing fault-
tolerant analog circuits with evolutionary computation, they have
focused on making a robust single circuit instead of exploiting
redundancy. Recently, Hu et al. evolved fault-tolerant filters using
genetic programming. These filters are robust to the changing
parameters of each component [16]. Hollinger and Gwaltney also
evolved fault-tolerant circuits for controlling robots using a genetic
algorithm (GA) [19]. In this work, they evolved a circuit that is
robust to component removal. Kim et al. evolved analog circuits
robust to partial short or disconnection damage to the components
and tested them physically [4].

In this paper, we argue that the evolutionary computation can
be useful to make robust analog circuits with redundancy. Redun-
dancy is the key concept of fault-tolerant analog circuits because,
in general, redundant parts can replace or complement original
damaged parts. Evolutionary computation is a population-based
search method and maintains multiple redundant solutions. Since
it is possible to arrange redundant parts with different architectures
with evolutionary computation before system manufacturing, it is
expected that the original parts and redundant parts not fail simul-
taneously.

The redundancy is not a new method but, there are several
research topics to be solved for the use of the redundancy in analog
circuits. Is it possible to design redundant analog circuits automat-
ically? If possible, how can you choose some of them and combine
them? To the best of our knowledge, there is no work addressing
those issues in the field of analog circuits.

Evolutionary computation finds multiple redundant analog cir-
cuits and they are combined using weighted summing circuits
(averaging the outputs of multiple circuits) having an output which
is the average of the outputs of each circuit. Because of these redun-
dant circuits, a fault in one circuit can be recovered from the other
circuits’ normal outputs. In this method, the key point is to pre-
pare multiple redundant circuits with different properties. If the
members of the combined circuits are identical, they can suffer
from similar failures and the system cannot realize the benefits
of synergism. The easiest way to maintain diversity in the popula-
tion is to use tournament-based selection [20] which prevents few
individuals from dominating. In this paper, we used the tourna-
ment selection method with mutation-only evolution which allows
only one offspring per parent. In addition to the single population
approach (increasing the diversity within single population), we
propose a method to use multiple populations expecting higher
diversity than the single one.

Fig. 1. Overview of the proposed method. At first, the evolutionary algorithm
searches for multiple redundant analog circuits. The next step is to find the best
ensemble of the circuits in terms of fault-tolerant property.

Following the recent work [4],  we have used evolutionary com-
putation to evolve filters, and multiple circuits are combined for
robustness (Fig. 1). The fault-tolerance levels of both evolved and
combined circuits are also tested by removing each component.
At each time, only one component is removed from the analog
circuits.

The rest of this paper is organized as follows. Section 2
describes the background including the research on evolving
normal and fault-tolerant analog circuits. Section 3 applies the
selective ensemble approach to the evolution process and presents
the multi-population approach. Section 4 describes the experimen-
tal results and analysis.

2. Related works

2.1. Fault-tolerant evolved digital circuits

Hartmann and Haddow show that the artificial evolution is able
to automatically generate digital circuit designs robust to noise
and faults [36]. They report that the evolved multiplier and adder
circuits show a graceful degradation to noise and failures. In the
work, they address the possibility to combine the evolved circuits
with traditional fault-tolerant schemes (classical redundancy tech-
niques). The evolved circuits also provide valuable insight on the
design of fault-tolerant digital circuits.

Schnier and Yao propose a method to evolve diverse fault-
tolerant digital circuits using fitness sharing method [31]. In their
work, they used negative correlation approach to make individuals

Table 1
Summary of related works on fault-tolerant analog circuits designed by evolutionary computation.

Reference Fault types Methods Tasks

Kim et al. [4] Partial short and disconnection
of one component

ES Low-pass, high-pass,
band-pass, band-stop filters

Kim  and Cho [23] One component removal ES Low-pass filter
Hu  et al. [16] Parameter variation GP Low-pass, high-pass filters
Keymeulen et al. [24] Open/close switch GA Analog multiplier, xnor gate
Zebulum et al. [25] One component removal GA Compensator
Hollinger and Gwaltney [19] One component removal,

actuator failure
GA Controller for piezoelectric

pipe-crawling robot
Zebulum et al. [26] Extreme low temperature GA Half-wave rectifier, nor gate,

controllable oscillator
Ando  and Iba [27] Parameter variation GA Band elimination
Layzell and Thompson [28] One transistor removal GA Inverter, amplifier, oscillator
Liu  and He [34] Resistor stuck open capacitor

stuck short
GA Low-pass filter

The  proposed One component removal ES Low-pass filter, high-pass filter

ES, evolution strategy; GP, genetic programming.



Author's personal copy

K.-J. Kim, S.-B. Cho / Applied Soft Computing 12 (2012) 1309–1321 1311

of population as diverse as possible. After then, they try to combine
multiple digital circuits evolved to build fault-tolerant circuits. In
the digital circuit evolution, each circuit is represented as a grid
(7 × 7) of basic node functions (and, or, xor, nand and nor). They
used majority voting mechanism to combine the output of multiple
circuits.

Greenwood and Joshi compare the population-based and
correlation-based methods to evolve fault-tolerant digital circuitry
[35]. In their work, the test case is a 2 × 3 binary multiplier cir-
cuit. The two methods are evaluated by inserting stuck-at faults
at selected locations. A gate output is always one (stuck-at one) or
zero (stuck-at zero). They report that the correlation-based method
produces the small-size ensemble.

2.2. Fault-tolerant evolved analog circuits

Evolutionary computation can be used to design fault-tolerant
analog circuits automatically but requires high computational cost
(Table 1). It starts from randomly generated analog circuits and
tests the fitness of each circuit based on the robustness to known
faults or damages. Based on the survival of the fittest in natural
evolution, the circuits with high fitness allow to producing more
offspring than others. In addition to the selection operation, there
are crossover and mutation operations to generate new offspring.
It continues this process until they converge or predefined number
of generations. Although this is a feasible approach, its computa-
tional cost is very high. In the fitness evaluation, it requires multiple
simulations of candidate circuits removing one component each
time.

There are several types of faults simulated in evolutionary fault-
tolerant analog circuit research. They can be classified into two
groups: Internal and external faults. In case of internal faults, there
are parameter variation, component removal, and switching prob-
lems. Although more than one component can be failed at the
same time, most works assumed that only one component can be
removed from the circuit at each time because of computational
cost. Unlike other works, Kim et al. deal with partial short and dis-
connection damage to components [4].  External faults are related
to the problems outside of the analog circuits. It includes damage
to the system (sensor, actuator and interface) and environmental
conditions (temperature and air pressure).

Hu et al. compared three representative approaches to evolve
fault-tolerant analog circuits using genetic programming [16]. They
are evolving analog filters using GP without incorporating a robust-
ness criterion in the fitness function, applying real parameter
genetic algorithm to tune the parameters of evolved filters for
robustness, and incorporating robustness criteria in the fitness
function. They report that open-ended topology search by GP with
robustness criterion in the fitness function is stronger to parameter
perturbations than that with parameter tuning alone. Hollinger and
Gwaltney evolved fault-tolerant analog circuits for a piezoelectric
pipe-crawling robot [19]. The goodness of the circuit with respect
to the robustness is measured by each circuit simulated with one
component removal. The fitness value is the average of the multiple
simulations.

Compared to the digital circuit evolution, the analog circuit evo-
lution is quite different. Unlike the basic node of digital circuit, the
analog component outputs real values (voltage level). Also, it is not
common to represent analog circuit in a grid. The negative correla-
tion idea is possible because they defined their circuit in the grid. In
this representation, it is possible to map  one component in circuit
A to another component in circuit B if they are placed in the sample
coordination. Based on this assumption, it is possible to define the
dissimilarity between two analog circuits. In the context of analog
circuits, it is not trivial to map  components in different circuits. Liu
and He apply the negative correlation approach to the evolution of

Fig. 2. Overview of the proposed method.

fault-tolerant analog circuit ensemble [34]. In their work, they eval-
uate the correlation-penalty term based on the outputs of analog
circuits. Table 2 summarizes the difference between the work and
our proposed method. For example, they use different algorithm to

Table 2
The comparison with Liu and He [34].

Liu and He [34] The proposed

Evolutionary algorithm Genetic
algorithm + negative
correlation

Evolution strategy

Single/multi-population Multi-population Single and
multi-population

Ensemble formation The combination of the
best circuit from each
run

Searching for the best
fault-tolerant
ensemble (selective
ensemble)

Combination Analog redundancy
model

A weighted summing
circuit

Fault types Resistor stuck open,
capacitor stuck short

Component removal
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Fig. 3. Illustration of evolutionary process (initialization, mutation, evaluation and selection).

generate basic analog circuits, adopt differnent strategy to choose
members for the ensemble and combine them in a different way.

Recently, Kim et al. introduced the concept to use evolutionary
computation to generate multiple redundant analog circuits and
combine them to increase fault-tolerance [23]. In their work, they
did not incorporate the robustness of circuits in their fitness func-
tion of evolution. This enables the quick convergence of evolution
and the discovery of high-quality analog circuits. After the evolu-
tion, the next step is to find the best ensemble of evolved circuits
that is robust to faults. In this paper, we extended the previous work
by applying our method to several other tasks and improving the
ensemble search process.

3. Proposed method

The basic idea of the proposed method involved using multiple
redundant circuits with the summing circuit. Each circuit per-
formed the same function and all are active. The circuits are evolved
using evolutionary computation and it is assumed that they all had
different architectures. Fig. 2 shows an overview of the proposed
method. Important issues included the number of evolved circuits
for the ensemble system, the way of evolving each member circuit,
and the implementation of the summing circuit.

Among all possible ensembles of the P circuits (P is popula-
tion size), the one with the highest fault-tolerance is selected. The
summing circuit is implemented by using an operational amplifier
component. In this paper, there are 20 evolved circuits in the last
generation of the evolution. If we  choose 3 circuits from them for
the ensemble, there are 20C3 (1140) possibilities. The best ensem-
ble is chosen from the exhaustive search of the 1140 possibilities
based on the fault-tolerance level of each ensemble.

3.1. Evolving analog circuits

Because the analog circuits have numerous topologies with real-
valued parameters, it is not a trivial task to evolve them. Genetic
programming has been widely used to evolve analog circuits for
computational circuits [14], CMOS amplifier [15], and filters [16].
Because of the complexity of GP, there are several researchers to
evolve analog circuits using genetic algorithm [17–19].  Especially,
Kim et al. and Gho and Li considered the practical implementa-
tion of evolved circuits from the simulation [4,17].  Recently, there
are new algorithms to design analog circuits by two-layer genetic
programming [21] and immune programming [22].

Genetic programming encodes the operations that are applied
to the embryonic circuits which is a starting point of the circuit
development. Although GP has been successful to evolve analog



Author's personal copy

K.-J. Kim, S.-B. Cho / Applied Soft Computing 12 (2012) 1309–1321 1313

Fig. 4. An embryonic circuit for filter evolution (Z0 and Z1 are modifiable wire).

circuits for many different tasks, they require large population size
(for example, 32,000) and implementation is not easy. There are
many approaches to use genetic algorithm to evolve analog circuits
[18]. Because they use linear representation of analog circuit, it is
relatively simple to implement. However, the population size is still
large (18,000).

In this work, we adopted the evolution strategy approach that
uses only mutation to produce offspring with relatively small pop-
ulation size (20) [4]. It has been successfully used to evolve analog
circuits that are fault-tolerable to partial short and disconnection
damage. Also, they can generate analog circuits that are transfer-
able to physical circuits with real components. Unlike GA with
roulette wheel selection, it adopts tournament-based selection
methods to increase the diversity of population. Because it uses
only mutations, it is relatively easy to implement and the repre-
sentation of circuit is simple (see Fig. 3).

Step (1): Initialization: Initially, P analog circuits are randomly
generated. P is a population size. The embryonic circuit refers to the
starting point of the circuit development and it has voltage source
and fixed resistors (Fig. 4). Each modifiable wire is replaced with
one new component. There are two types of components: inductor
(L) and capacitor (C). Their type and parameter values are randomly
determined. Fig. 5 shows an example of variable length represen-
tation of the analog circuit.

Step (2): Mutations (new P offspring): One component is ran-
domly selected and one of eight different mutations is applied to
the component. The mutations are parameter change, type change,
parallel addition of a different type component, serial addition of
a different type component, component deletion, ground setting,
replacement, and adding a component. Mutations are as follows
(see Fig. 6).

• Parameter change: The component’s value is assigned as a new
randomly chosen value.

• Type change: The component type is swapped to a different one
randomly.

• Parallel addition of a different type component: A new compo-
nent (with a different type) is added in parallel configuration to
the component. The type and value of the new component is
randomly chosen.

• Serial addition of a different type component: Same as above
except the addition in serial configuration.

• Component deletion: The component is removed from the circuit.
• Ground setting: The component is connected to the ground.
• Replacement: The component is replaced with a new component

(possibly of the same type).
• Adding a component: A new component bridges between two

randomly chosen wires (not identical wire).

Fig. 5. Representation of individual (analog circuit) in evolution strategy (numbers
assigned to the wire are node number).

Step (3): Circuit simplification: It combines identical compo-
nents in a serial or parallel configuration into a single component.
It maintains the circuit size as small as possible.

Step (4): Fitness evaluation with a spice simulator [29] (fitness
is defined based on the similarity between actual and desired out-
puts). From 1 Hz to 100 kHz, the SPICE simulator performed an AC
small signal analysis. The frequency area is divided into five decades
and each decade is further divided into 20 parts (on a logarithmic
scale). Finally, the simulator checked the voltage of 101 points (61
points below 1 kHz, 5 points between 1 kHz and 2 kHz, and 35 points
above 2 kHz). The fitness is calculated as follows.

Fitness = 1
Error

Error =
100∑
i=0

W(d(fi), fi) × d(fi)

The fitness value is summed over 101 points. In the above equa-
tion, fi represents the frequency of the ith point, d represents the
difference between the target and observed values at the frequency
fi, and W represents the weight for the difference at the frequency
fi (based on [14]). If circuits could not be simulated in the SPICE
program, the fitness of these circuits is 0.

Step (5):  Selection (P individuals from 2P pool): The best P cir-
cuits are selected from 2P individuals (parents + offspring).

Step (6): Termination: It stops when the number of generation
is larger than the maximum number of generation.

3.2. Ensemble search for fault-tolerance

The circuits are combined using weighted summing circuits.
Fig. 7 shows a weighted summing circuit [30]. Input voltages are
defined as v1, v2, . . .,  vn. The output voltage v0 is defined as follows.

�0 = −
(

Rf

R1
�1 + Rf

R2
�2 + ... + Rf

Rn
�n

)
The weights of each input voltage are adjusted using the resis-

tors. If the resistor for each input voltage is the same as Rf, the
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Fig. 6. Mutation examples (PC, parameter change; PA, parallel addition; CD, component deletion; RM,  replacement; TC, type change, SA, serial addition; GS, ground setting,
and  AC, adding a component).
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Fig. 7. A weighted summing circuit.

weight is 1. If the weight is 1 for all input voltages, it is the average
of the input voltages. In this work, the average method is used.

It searches for the best fault-tolerant ensembles of circuits from
the last generation. Among the P circuits, we choose 3 circuits for
an ensemble and there are PC3 possibilities. The exhaustive search
is used to find the best fault-tolerant ensemble from them. The
fault-tolerance level of each ensemble circuit is represented by ft.
The number of components (except the fixed resistors and voltage
source) of the ensemble circuit is defined as M.  The error of the cir-
cuit by removing the ith component is defined as error(i). Removing
a component results in an open circuit.

ft avg = 1

(1/M)
∑M

i=1error(i)
× 100

Although the fault-tolerance measure is reasonable, it requires
huge number of simulations to find the best ensemble. For example,
if the average number of components of ensemble is M,  we need
nC3M simulations (see Fig. 8).

In this paper, we  proposed new definition of fault-tolerance
based on worst case analysis to accelerate the ensemble search
(Fig. 9). The fault-tolerance is defined only based on the worst
performance of the ensemble circuit.

ft worst = 1
maxi=1,...,M(error(i))

× 100

Instead of simulating all component failure cases, if there is
no possibility that the ensemble can defeat the current best one,
it skips the remaining testing. In this way, we  can speed up the
ensemble search process.

In this paper, we proposed multi-population approach to use
the results of multiple runs as a source of the fault-tolerant ensem-
ble search (Fig. 10). It is expected that the circuits from multiple
runs are structurally more different than those from the single run.
First of all, we repeat the evolutionary run multiple times. From the
results of the evolution, we choose one best circuit from each run
based on their fitness. For example, if the number of runs is thirty,

Fig. 8. An example of fault-tolerance evaluation of an ensemble (at each time, one component is removed from the ensemble and performance is measured. After testing all
removals, the fault-tolerance of the ensemble is measured based on the average (ft avg) or worst (ft worst) case analysis.).
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// Find an  ensemble with the hi ghest ft_wors t

// ft_ worst_glo bal : The curr ent  ma ximum ft_wo rst 

0__ =globalworstft

For each nC3 possible  ense mble circuits { 

   if(identic al cir cuits  in the ensemble  exist) cont inue;   
0_ =worstft

    For eac h component  from  the circuits in  th e ens emble{ 

       Remove ith  Compo nent  and Do Simu lati on Using  Spic e 

       if 100
)(

1_)100
)(

1_( ×=×<
ierror

worstft
ierror

worstft

   if  UpSpeed       // LoopBreak )___( globalworstftworstft <

} 

if worstftglobalworstftglobalworstftworstft  ___)___( => } 

Fig. 9. A pseudo code of the accelerated ensemble search.

there are thirty analog circuits. From the thirty analog circuits, the
ensemble search algorithm finds the best fault-tolerant ensemble.

4. Experimental results and discussion

4.1. Evolving analog circuits

The initial circuits are generated randomly and their structures
are dependent on the architecture of the embryonic circuit. In this
paper, the embryonic circuit contained two modifiable wires and
fitness is evaluated using a SPICE simulator. The developed circuit is
converted into NETLIST, an input file for the SPICE program (Fig. 11).
The targets of evolution are low-pass, and high-pass filters with an
one-input, one-output circuit composed of capacitors and induc-
tors. Table 3 summarizes the desired outputs for the three different
tasks. There are several parameters for these experiments (Table 4).

In this work, we have used WinSpice 1.05.07 by OuseTech
(downloadable as a binary executable from their website). Our
program generated an input file for the WinSpice and executed it

Table 3
Desired output response of three different filters.

Desired outputs

From To Output

Low-pass filter 0 1 kHz 1 V
1  kHz 2 kHz Don’t care
2  kHz ∞ 0 V

High-pass filter 0 1 kHz 0 V
1  kHz 2 kHz Don’t care
2  kHz ∞ 1 V

Band-stop filter 0 100 Hz 1 V
100 Hz 10 KHz 0 V
10  KHz ∞ 1 V

Table 4
Parameters of experimentations (node means any point on a circuit where two or
more circuit elements meet).

Embryonic circuit Fixed: VSOURCE, RSOURCE,
RLOAD modifiable: Z0 and Z1
wires

Voltage source 2 V
RSOURCE and RLOAD 1 k�
SPICE simulator WinSpice (1.05.07) by

OuseTech [29] file I/O
interface in C++

Population size 20
Maximum generation 300
Node number 0–10
Component value Inductor: 0.1–105, capacitor:

1–105

# of runs 30

using a “system” function in C language. Each input file describes
circuit’s topology and component’s values together with analysis
commands for the SPICE. As a result, the SPICE produced an out-
put file containing the output voltage of an analog circuit over
several different input frequencies ranged from 1 Hz to 100 kHz.
If the output response of the circuit is similar to the one that we
are looking for, it gets high fitness value (reward) from the search
algorithm. For example, if the purpose of our work is to find a low-
pass filter circuit, the desired output might be 1 V in low frequency

Fig. 10. Multi-population approach.
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Fig. 11. An example of analog circuit represented as NETLIST and its output response (in the NETLIST, “R1 1 2 1.0K” means that the component R1 is located between node
1  and node 2 with 1.0 K value).

area and 0 V in high frequency area. The desired output is a tar-
get/ideal response which we are expecting from our analog circuits
automatically designed.

For comparison, fault-tolerant evolution (FT evolution) is used.
In the evolution, the fitness function is ft worst. Because it requires
many simulations for each circuit to get the fitness value, it is much
more time consuming than the normal evolution. Unlike the normal
evolution, the FT evolution can be trapped into local optima in the
early stage of evolution if it uses the same embryonic circuit. For
example, if a component in Z1 wire is removed (Fig. 4), the ft worst
might be the lowest one. This is the same situation for all circuits in
the early stage of evolution because it starts from an empty circuit
and growing the circuit continuously. To solve this problem, a new
embryonic circuit is proposed for the FT evolution (Fig. 12). It has
two parallel wires between the R0 and the R1.

Fig. 12. An embryonic circuit for FT evolution.

The results of the evolution are as follows. Fig. 13 shows the
progress of the evolution showing the error of the best circuit over
generations. Although the high-pass filter’s desired output is just
opposite to that of low-pass filter. The progress pattern is a bit dif-
ferent for the two tasks. For low-pass filter, it gradually improved
but the high-pass filter showed a bit radical improvement. Fig. 14
shows the best circuit’s diagram and output response. They have
relatively small number of components (8–10 components) to do
their tasks.

4.2. Ensemble search for fault-tolerance

The most important thing in our approach is to maintain dif-
ferent analog circuits in the last generation. This minimizes the
probability that one or more circuits fail simultaneously in the
ensemble. Fig. 15 shows the change of diversity (the number of
unique analog circuit in the population) over generation. It is
natural that the diversity of population goes down because of
the domination of successful solutions. The tournament selec-
tion prohibits quick dominance of the most successful one unlike
roulette-wheel selection. By ignoring the ensemble with identical
members, its search space can be reduced. We  compared NETLIST
of two  circuits to decide whether they are the same circuit or not.

Table 5 summarizes the error and fault-tolerance of both
approaches. The ensemble showed an acceptable fitness per-
formance and the best for the fault-tolerance measure. The
fault-tolerance level showed significant improvement compared
to the single circuit. With regard to the fault-tolerance level, every
ensemble with four circuits performed better than the single cir-
cuit. In the fault-tolerance evolution, the fault-tolerance level of
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Table 5
Summary of statistics (average of 30 runs, standard error).

Single best circuit Ensemble (4 circuits) Multi-population ensemble
(4 circuits)

FT evolutiona

Low-pass filter
Error (↓) 4.896 ± 0.445 4.877 ± 0.448 3.401 113.352 ± 9.301
ft  avg (↑) 0.949 ± 0.088 5.935 ± 0.698 11.982 1.174 ± 0.075
ft  worst (↑) 0.136 ± 0.011 0.532 ± 0.044 0.642 0.932 ± 0.043

High-pass filter
Error (↓) 5.376 ± 0.923 5.403 ± 0.924 1.368 80.634 ± 8.733
ft avg (↑) 1.357 ± 0.140 6.776 ± 0.728 9.408 1.641 ± 0.044
ft worst (↑) 0.324 ± 0.049 1.263 ± 0.147 1.118 1.620 ± 0.046

Band-stop filter
Error (↓) 122.109 ± 2.892 122.589 ± 2.834 99.992 226.771 ± 12.083
ft  avg (↑) 0.322 ± 0.028 0.649 ± 0.022 0.924 0.437 ± 0.020
ft  worst (↑) 0.171 ± 0.014 0.468 ± 0.009 0.538 0.388 ± 0.018

The best obtained result for each measure is highlighted in bold font.
a The fitness function in the FT evolution is similar to the one used in [19]. It simulates each circuit once with each circuit component removed. Worst case analysis is used

to  measure the robustness of the circuit from these runs.

Fig. 13. The error of the best circuits over generation (averaged over 30 runs, stan-
dard error bar is included).

each circuit is used as a fitness function. It showed that the fault-
tolerance evolution fails to produce successful analog circuits.

In case of error and ft avg, multi-population ensemble is the
best among several alternatives. The ensemble approach always
outperforms the single best circuit. FT evolution produces the best
ft worst circuits for low-pass and high-pass filters. However, the
circuits from the FT evolution show poor performance if there is no
damage.

Table 6 shows the acceleration of exhaustive ensemble search.
By ignoring the ensembles with the identical analog circuits, it sig-
nificantly reduces the search space. Also, it is possible to minimize
the number of evaluations by introducing the ft worst measure.
Gain ratio is about 15–30. In case of ensembles with 2 members
(low-pass filter), the new acceleration method needs 40 s to find
the best ensemble, however, the method without the acceleration
records 382 s. The new method is about 10 times faster than the
previous one.

Table 7 shows the comparison with negatively correlated
ensemble of evolved analog circuits proposed by Liu and He [34].
In their approach, the original fitness of each circuit is modified
by adding the negatively correlated penalty (the � = 0.5). The best
circuit from each run of negatively correlated evolution is com-
bined to produce the final outcome. The evolved circuits from the
approach are good when there is no fault. However, their averaged
fault-tolerance value is smaller than the one from our approach.

4.3. Discussion

Digital circuit’s output is binary and it is possible to combine
their outputs using majority voting method. However, this is not

Table 6
Comparison of computational cost.

# of SPICE simulation
without acceleration (A)

# of SPICE simulation
with acceleration (B)

Gain (A/B)

Low-pass filter 23,402 ± 9467 1604 ± 416 14.58
High-pass filter 36,438 ± 10,257 2431 ± 778 14.98
Band-stop filter 93,574 ± 27,606 2778 ± 703 33.68

Table 7
Comparison with previous work [34] (low-pass filter).

Ensemble (4
circuits)

Multi-population
ensemble (4
circuits)

Negatively correlated
ensemble [34] (4
circuits)

Error (↓) 4.877 ± 0.448 3.401 3.608
ft avg (↑) 5.935 ± 0.698 11.982 3.396
ft  worst (↑) 0.532 ± 0.044 0.642 0.642

The best obtained result for each measure is highlighted in bold font.
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Fig. 14. Circuit diagram and output response of the best circuits.
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Fig. 15. The diversity of population goes down over generation.

easy for analog circuits. It is the reason that we choose the weighted
sum method to combine multiple analog circuits.

In this work, we use the evolutionary algorithm with eight
mutations and tournament selection. Although this mechanism can
generate different analog circuits, the difference between their par-
ents and the children is not big because only mutation operator
is used. It is interesting to invent crossover operations for analog
circuits.

The size of ensemble is one of the important parameters in our
experimentations. In our work, we use four members for ensem-
bles. It is based on the initial investigation on low-pass filters
(Fig. 16). If possible, it is better to minimize the ensemble size
because the number of components in the ensemble is proportion-
ate to the size of ensemble.

Optimizing analog circuit is not a trivial problem because it
has to optimize both topology and values of components. Because

Fig. 16. The relationship between the ensemble size and the fault-tolerance (low-
pass filter).

the genetic algorithm maintains multiple candidates at the same
time, it has strong global search capability. For comparison, we
implemented a simple greedy-style optimization algorithm using
the eight mutation operators proposed in this paper. At first, one
random circuit is generated. If the number of components in the
random circuit is two, there are total 16 possible mutations (two
components × eight mutations). Among them, we choose the muta-
tion which improves the performance best. This process continues
until the maximum number of SPICE simulation reaches. For com-
parison, we  ran the greedy-style algorithm for the low-pass filter
with the same computational constraints. The error rate of the final
circuit by the greedy algorithm is 19.565914 and about five times
worse than the evolutionary algorithms used in this paper.

5. Conclusions and future works

In this work, we have proposed an ensemble of evolved circuits
with a weighted summing circuit. It is shown that the combina-
tion of the analog circuits evolved performed well when removing
components. Furthermore, the ensemble also performed quite well
when there is no component failure. In general, this will allow
designers to make fault-tolerant redundant circuits automatically.
For diversity, tournament selection is used [32]. Because we use
the exhaustive search for ensemble optimization, time complex-
ity is one of the important issues. In this paper, we  enhanced the
search speed by ignoring ensembles with identical members and
adopting fault-tolerance based on the worst case analysis.

Although we  can generate different analog circuits with the
tournament selection and mutation operators, their difference is
not big as expected. It is more convenient and natural to use speci-
ation and niching methods for evolution [33]. For this purpose, in
future work we will devise a method for measuring the similarities
between two  circuits in the phenotype and genotype levels. Also,
the weights of each redundant circuit can be adjusted according to
characteristic of the circuit.
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