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Abstract. Clustering for the analysis of the gene expression profiles has been 
used for identifying the functions of the genes and of unknown genes. Since the 
genes usually belong to multiple functional families, fuzzy clustering methods 
are more appropriate than the conventional hard clustering methods. However, 
it is still required to devise natural way to measure the quality of the cluster 
partitions that are obtained by fuzzy clustering. In this paper, a Bayesian 
validation method of selecting a fuzzy partition with the largest posterior prob-
ability given the dataset is proposed to evaluate the fuzzy partitions effectively. 
Analysis of yeast cell-cycle data follows to show the usefulness of the proposed 
method. 

1   Introduction 

Clustering groups thousands of genes by their similarity of expression levels and 
helps to analyze gene expression profiles. This organizes the patterns of genes into 
groups by the similarity of the dataset and has been used for identifying the functions 
of the genes in the cluster and analyzing the functions of unknown genes. Hard clus-
tering, a hard partitioning method, assigns a sample to only one group. But the real 
world data like gene expression profiles do not have clear boundaries and they cannot 
be easily partitioned by hard clustering. Since some genes also belong to multiple 
functional families, analyzing the genes by hard clustering method has limitations. 
Fuzzy clustering, unlike the hard clustering, assigns a sample to multiple groups by 
their grade of membership values [1]. 

The most important matters that need to be addressed in any clustering method are 
how many clusters are actually in the dataset and how good the clusters are. Thus, it is 
necessary to validate each of the fuzzy partition and this evaluation is called cluster 
validity. Various investigations about these matters have been conducted. Partition 
coefficient (PC) and partition entropy (CE) were first proposed by Bezdeck [2]. These 
two cluster validity indexes produce optimal partition at maximum validity measures. 
Xie-Beni's index (XB) [3] and Fukuyama Sugeno index (FS) [4] are popular in the 
field of fuzzy clustering. The Xie-Beni index is a ratio of the within cluster sum of 
squared distances to the product of the number of elements and the minimum between 
cluster separations, and the Fukuyama Sugeno index measures the compactness and 
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separation of the resulting fuzzy partition after a dataset has been separated into sev-
eral clusters. However, since the conventional validity indexes are based on the dis-
tance between the clusters, we cannot fully represent the structure of the dataset [5]. 

In this paper, we propose a Bayesian validation method, which evaluates the result 
of clustering by posterior probability of the fuzzy partitions of given dataset. Unlike 
the conventional validity indexes, Bayesian validation method never uses the distance 
between the clusters. It selects the partition with the largest posterior probability in a 
given dataset. Yeast cell-cycle data is analyzed by the proposed method. 

2   Backgrounds 

Studies about cluster analysis of the DNA microarray data are summarized in Table 1. 
Yeung analyzed yeast cell-cycle data by k-means and single-linkage algorithm [6]. 
Bolshakova and Azuaje used SOM and hard k-means algorithm for clustering and 
Silhouette index for cluster validation [7]. Also, Eisen analyzed yeast cell-cycle data 
by fuzzy k-means algorithm and k-means algorithm [8]. Dembele and Kastner used 
fuzzy c-means algorithm to analyze serum and yeast cell-cycle data [9]. Most of va-
lidity indexes used in these researches is all based on the distance between the clusters 
or between the samples in a cluster: intra-cluster distance and inter-cluster distance. 

Table 1. Related works on DNA microarray data 

Author Algorithm Validity index Data 

Yeung et al. (2001) K-means  
Single-linkage Figure of Merits Yeast cell-cycle 

Bolshakova and  
Azuaje (2002) 

SOM  
K-means 

Dunn's based Index Silhouette 
Index 

Leukemia 
Lymphoma 

Gasch and Eisen  
(2002) Fuzzy k-means N/A Yeast cell-cycle 

Dembele and Kastner  
(2003) Fuzzy c-means Silhouette index Serum Yeast cell-cycle  

Human cancer 

3   Bayesian Validation Method 
All the previous indexes including PC, CE, FS and XB focused on only the compact-
ness and the variation within cluster. However, those indexes lack to provide a correct 
representation of fuzzy partition in the data since the separation is simply computed 
by considering only the distance between cluster centroids.  
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As shown in Eq (1), if the number of clusters c approaches to the number of sam-
ples n, the distance between the cluster centroid and a sample becomes 0. Thus, the 
traditional indexes lose their ability to validate fuzzy partition for large values of c 
[5]. Bayesian validation method is a probability-based approach, selecting a fuzzy 
partition with the largest posterior probability given the dataset. It chooses a partition 
which has maximum posterior probability given the dataset as an optimal cluster 
partition. Using Bayes's theorem, the posterior probability given the Dataset={d1, 
d2, �, dN}, could be obtained by multiplication rule and independence rule as fol-
lows: 
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The sum of P(Cluster|Dataset) for all c is calculated using Eq (4) and Eq (5) and 
this value is defined as Bayesian Score (BS). This score indicates how well the fuzzy 
partition represents the dataset by the posterior probability. Larger value of BS means 
better cluster partition.  

{ } )n(  ,1  ,|         ,
)(/)|()(

     

)|()...|()|(),...,,|()|(

1 1

1
21

1
21

1

iiijiji

c

i

N

j
ijiiji

c

i
iNiiiii

c

i
iNiii

c

i
ii

DNnjudD
c

dPCdPCP

c

dCPdCPdCP

c

dddCP

c

DCP
BS

i

=≤≤>==

===

∑∏

∑∑∑

= =

===

α

 
(4) 

In Eq (4), dij is the jth sample which belongs to the ith cluster. n(Di) is the number 
of Di's and we select only a sample which has larger membership value (uij) than cer-
tain threshold α for calculation. Since the fuzzy clustering aims mainly to analyze the 
samples which belong to multiple classes, evaluating the partition with samples 
whose membership values are larger than certain threshold is more appropriate to 
group samples by fuzzy clustering method. This threshold is defined as α-cut. Since 
each membership value uij represents the belongness of a data xi to certain cluster c, uij 
can be substituted for P(dij|Ci). P(Ci) and P(dij) are calculated as follows: 
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Figure 1 shows the outline of the proposed method. D1 includes the samples in 
cluster C1 whose membership values are larger than α. Finally, BS is obtained and 
used to select the optimal fuzzy partition. 
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clusters which has maximum value of BS  

Fig. 1. Process of Bayesian validation 

The algorithm of Bayesian validation method is as follow: 

! Step 1: Compute the membership matrix uij  
! Step 2: Construct Di by selecting samples (uij > α) in each cluster 

! Step 3: Compute P(DjǀCj), P(Dj), and P(Cj) of Di 
! Step 4: Compute Bayesian Score using the calculated values at step 2 
! Step 5: Evaluate the fuzzy partition with the maximum value of BS as optimal one 
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4   Experimental Results 

Yeast cell-cycle data is analyzed with the proposed method. This set contains time-
course expression profiles for more than 6000 genes, with 17 time points for each 
gene taken at 10-min intervals covering nearly two yeast cell cycles (160min). This 
dataset is very attractive because a large number of genes contained in it are biologi-
cally characterized and have been assigned to different phases of the cell cycle. 421 
genes are extracted and used for experiments because they are known as informative 
genes in clustering [10]. 

Figure 2 shows the results of all the validation methods including the proposed 
one, where x axis represents the number of clusters and y axis represents the evalua-
tion value of each validation method. PC and CE have determined the optimal fuzzy 
partition at c=5, FS at c=35, XB at c=13, and DI at c=7 respectively. Unlike the other 
methods, BS leads to the optimal value at c=29. All validity measures show different 
results and we analyzed biological functions of the cluster partition and its members 
(genes) which belong to multiple clusters. 

We have compared the result of BS which produces the optimal fuzzy partition at 
c=29 with biological knowledge of yeast cell-cycle data [11]. Yeast cell-cycle data 
represents expression levels of the genes in each of the five cell cycles (Early G1 � 
Late G1 - S - G2 - M). Each cell cycle includes the genes that show higher expression 
levels at that cycle time than other cycle times. 

By finding clusters that show high peak point in expression levels at certain time in 
the cycle, we have assigned the cluster to that cycle. Table 2 shows the assigned clus-
ter number and the cycles which they belong to. Clusters that have high expression 
levels at certain cycle time show low expression level at the other cycle times. Genes 
assigned between the cycles (intercourse) play a role in regulating the genes that lie in 
the next cell cycle. 

The next step of the analysis is to verify known biological information that the 
proposed method is indeed able to extract correct information that corresponds to 
different phases of the yeast cell-cycle data. 

Table 3 arranges the genes whose biological functions are known and their cluster 
number in bracket. Each cycle includes the detailed function groups like DNA 
replication, biosynthesis, mating pathway and so on. We have confirmed that the 
results produced by the proposed method are reliable according to the biological 
knowledge of the genes. 

We have chosen special genes whose 1st membership values lie between 0.35 and 
0.7, and 2nd membership values are larger than 0.3. These fuzzy genes are belonged 
to multiple clusters and they provide useful information in gene analysis. Figure 3 
shows these fuzzy genes and their biological descriptions with cluster numbers which 
they belong to. We have classified 4 categories of genes by using the discovered 
knowledge from Table 7. The genes in cluster 3, cluster 10, cluster 20, and cluster 21 
are related to Early G1 phase. For example, YNL078W belongs to cluster 3 (0.4316) 
and cluster 19 (0.313888) simultaneously. Actually cluster 3 is related to mating 
pathway and cluster 19 is related to glycolysis respiration in the same Early G1 cycle. 
YNL078W plays multiple roles in Early G1 cycle. YPR019W, YHR113W, and 
YHR038W are also fuzzy genes that have multiple functions in cell's life.  
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Fig. 2. Preferable values of c for yeast cell-cycle data by each cluster validity measure 

Table 2. Analysis of cell cycle and clusters 

Time 
(×10 min) Cell-cycle Cluster showing peak expression levels on corresponding  

cycle 
0-3 G1 phase Cluster5, Cluster6, Cluster4, Cluster24 

 intercourse Cluster2, Cluster12, Cluster26, Cluster28 
3-5 S phase Cluster8, Cluster13, Cluster14, Cluster16 

 intercourse Cluster11 
5-7 G2 phase Cluster13 

 intercourse Cluster18 
7-9 M phase Cluster7, Cluster17 

 intercourse Cluster10, Cluster21, Cluster3, Cluster20, Cluster19 
9-11 G1 phase Cluster5, Cluster6, Cluster4, Cluster24 

 intercourse Cluster2, Cluster12, Cluster26, Cluster28 
11-13 S phase Cluster8, Cluster13 

 intercourse Cluster11 
13-15 G2 phase Cluster0, Cluster13 

 intercourse Cluster18 
15-17 M phase Cluster7, Cluster17 

Other fuzzy genes in second category (cluster 12, cluster 24, and cluster 26) are re-
lated to Late G1 phase. Gene like YBR160W, belongs to cluster 12 (0.3982) and clus-
ter 6 (0.3464) simultaneously. Cluster 12 is related to cell cycle regulation and cluster 
6 is related to chromosome segregation. Cluster 9, cluster 11, and cluster 13 are re-
lated to G2 phase and cluster 7 and cluster 18 are related to M phase in cell cycle rota-
tion as shown in Figure 3. 

We have plotted the fuzzy genes which are analyzed in Figure 3 and their relations 
are shown in Figure 4. We have used PCA (Principal Component Analysis) to reduce 
the dimensions of the genes to three and displayed all genes in 3-dimensional space). 
Fuzzy genes are represented as black cross (X) and rests of genes are represented as 
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different shapes (diamonds, rectangle, triangle, and circle) according to their belonged 
clusters. As shown in Figure 4, it is clear to see that YHR113W and YHR038W are 
located between cluster 20 and cluster 21 which are related to Early G1 phase. Also 
YHR023 and YOR315W which belong to cluster 7 and cluster 18, are located be-
tween these two clusters. These two clusters are related to M phase in cell cycle rota-
tion. Between the other clusters related to Late G1 phase and G2 phase, there exist 
fuzzy genes, providing useful information for further research about unknown genes. 
Fuzzy genes which have multiple functional families do not have clear boundaries 
and belong to multiple clusters simultaneously. 

Table 3. Analysis of cell cycle and functional groups 

Cell-cycle Functional groups Genes 
DNA replication YBL023C(10) YEL032W(10) YPR019W(10) 
Mating pathway YJL157C(3) YKL185W(3) 

Glycolysis, Respiration YCR005C(20) YCL040W(20) YLR258W(20) 
Early G1 phase 

Biosynthesis YIL009W(21) YLL040C(21) 

Cell cycle regulation YBR160W(12) YDL127W(12) 
YGR109C(12) YPR120C(12) 

Chromosome segregation 
YDL003W(26) YFL008W(26) YJL074C(26) 

YKL042W(26) YMR076C(26) 
YMR078C(26) 

Late G1 phase 

DNA replication YBR278W(24) YKL045W(24) YLR103C(24) 
YPR018W(24) 

Chromosome segregation YDR113C(16) YGR140W(16) 
YHR172W(16) 

DNA replication YBL002W(8) YBL003C(8) S phase 

Miscellaneous YCR035C(14) YER016W(14) YJR137C(14) 

Directional growth YJL099W(11) YJR076C(11) G2 phase 
DNA replication YDR224C(27) YDR225W(27) 

Cell cycle regulation YGL116W(7) YPR119W(7) 
Transcriptional factor YDR146C(18) YLR131C(18) M phase 

Directional growth YCL037C(17) 

member of the Cdc46p/Mcm2p/Mcm3p family
similarity to vacuolar aminopeptidase Ape1p
killed in mutagen
hypothetical protein
"g1,g2" CDC28 cyclin-dependent kinase
homothallic switching endonuclease
ribonucleoside-diphosphate reductase, large subunit
similarity to YFR013w
regulates spliceosome components
hypothetical protein
hypothetical protein
kinase involved in late nuclear division
cyclin like protein interacting with Pho85p
myosin-1 isoform heavy chain
hypothetical protein

Gene description Clusters
10, 3
20, 21
20, 21
3, 19, 25
6, 12, 24
5, 12, 26

12, 24, 26
12, 26
9 ,11
9 ,11
9 ,11
9 ,13

11, 13
7, 18
7, 18

10

YPR019W
YHR113W
YHR038W
YNL078W
YBR160W
YDL227C
YER070W
YOL017W
YDR464W
YCR086W
YKL052C
YPR111W
YIL050W
YHR023W
YOR315W

Gene

 
Fig. 3. Analysis of fuzzy genes (gene description and cluster number) 
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Fig. 4. 3D plot display of fuzzy genes 

5   Concluding Remarks 

In this paper, a new cluster validation method for the fuzzy partition has been pro-
posed. Bayesian validation method evaluates the fuzzy partition by the posterior 
probability for the dataset at hand. The best fuzzy partition is obtained by finding the 
maximum BS value with respect to the number of clusters. We have established α-cut 
as threshold in computing the value of BS to evaluate various kinds of cluster parti-
tions. We have analyzed the yeast cell-cycle data with the proposed method. To con-
firm the superiority of the proposed method, the results are verified with biological 
knowledge. 
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