
Proceedings of the 32nd ISR(International Symposium on Robotics), 19-21 April 2001

Robot Action Selection for Higher Behaviors with CAM-Brain Modules

Kyong-Joong Kim and Sung-Bae Cho
Department of Computer Science

Yonsei University
134 Shinchon-dong Sudaemoon-ku, Seoul 120-749, Korea

E-mail : uribyul@candy.yonsei.ac.kr, sbcho@csai.yonsei.ac.kr

Abstract

CAM-Brain is a neural network based on cellular
automata, which model complex phenomenon by simple
rules, and optimized by genetic algorithm. Like many
evolutionary approaches to robot control such as neural
network evolved by genetic algorithm and fuzzy controller
optimized by genetic algorithm, CAM-Brain can be applied
to robot control. Behavior modules such as avoiding
obstacles and following light are evolved on CAM-Brain.
They are evolved incrementally by starting with simpler
environment needed simple behavior and gradually making
it more complex and general for complex behaviors.
Because evolving higher behaviors directly is difficult, we
combine several basic behaviors by action selection
mechanism. Robot selects one of the basic behavior modules
evolved or programmed at each time. We evaluate the
performance of robot using Khepera simulator and modify
simulator interface for visualization of the action selection
procedure. Simulation results show the possibility of the
action selection method for higher behaviors with CAM-
Brain modules.

1. Introduction

There are many studies of constructing mobile robot

controller with different approaches such as evolving neural
network by genetic algorithm [1], using genetic
programming, combining fuzzy controller with genetic
algorithm [2] and programming. In previous work [3], we
presented CAM-Brain, evolved neural networks based on
cellular automata [3,4], and applied it to controlling a
mobile robot.

However, the controller composed of one module has a
difficulty to make the robot to perform complex behavior.
To overcome this shortcoming, some researchers combine
several modules evolved or programmed to do a simple
behavior such as “going straight,” “avoiding obstacles,”
“seeking object,” and so on. They expect the controller
combined with several modules can do complex behaviors
[5,6,7].

In this paper, we also attempt to combine several neural
networks for solving this problem. Each neural network can
be evolved or programmed. Evolved neural network is based

on CAM-Brain model, and a programmed module controls
the robot directly. We apply Pattie Maes’s Action Selection
Mechanism (MASM) [5,6,7] to combine modules and
control a mobile robot in simulated environments. The rest
of this paper introduces CAM-Brain model and basic
behaviors, and presents the integration method in detail. The
detailed description of simulation follows, and the results of
simulation are given.

2. CAM-Brain

CAM-Brain is a neural network based on cellular

automata which model complex phenomenon by simple
rules, and optimized by genetic algorithm. Figure 1 shows
the evolution of CAM-Brain.

Figure 1: Evolution of CAM-Brain.

2.1. Neural Networks based on CA

CA are population of interacting cells, each of which is
itself a computer (automaton) and can represent many kinds
of complex behavior by building appropriate rules into it.
CA forms either a 1-dimensional string of cells, a 2-D grid
or a 3-D solid. Mostly the cells are arranged as a simple

rectangular grid. CA has the three essential features of state,
neighborhood, and program. Its state is a variable that takes
a different separate for each cell. The state can be either a
number or a property. Its neighborhood is the set of cells that
it interacts with. In a grid these are normally the cells
physically closest to the cell. Its program is the set of rules
that define how its state changes in response to its current
state, and that of its neighborhood.

CAM-Brain’s neural network structure composed of
blank, neuron, axon and dendrite are grown inside 2-D or 3-
D CA-Space by state, neighborhoods and rules encoded by
chromosome. Roles of each cell are as follows.

�� Blank: If cell state is blank, it represents empty space

and cannot transmit any signals.
�� Neuron: It collects signals from surrounding dendrite

cells which are accumulated. If the sum of collected
signals is greater than threshold, neuron cells send them
to surrounding axon cells.

�� Axon: It sends signals received from neurons to the
neighborhood cells.

�� Dendrite: It collects signals from neighborhood cells
and passes them to the connected neuron in the end.

Neighborhood cells of one cell mean surrounding cells

(North, South, West, and East in 2-D CA space and Top and
Bottom added to them in 3-D CA space).

The information encoded in a chromosome determines a
neural network architecture. To represent the whole structure
of a neural network, a chromosome has the same number of
segments with the cells in CA-space and each segment has
information of each cell. A segment can change blank cell to
neuron cell (NS bit) and decides the directions of sending
received signals to neighborhood cells (N, S, E, W, T and B
bits). The signals can be only sent to the direction in which
the bit corresponds to 1. Figure 2 shows the chromosome of
CAM-Brain.

Figure 2: Chromosome of CAM-Brain.

Signaling phase transmits the signal from input to output
cells continuously. The trails of signaling are transmitted
with evolved structure at the growth phase. Each cell plays a

different role according to the type of cells. If the cell type is
neuron, it gets the signal from connected dendrite cells and
gives the signal to neighborhood axon cells when the sum of
signals is greater than threshold. If the cell type is dendrite,
it collects data from the faced cells and eventually passes
them to the neuron body. The position of input and output
cells in CA-space is decided in advance. At first, if input
cells produce the signal, it is sent to the faced axon cells,
which distribute that signal. Then, neighborhood dendrite
cells belonged to other neurons collect and send this signal
to the connected neurons. The neurons that have received
the signal from dendrite cells send it to axon cells. Finally,
dendrite cells of output neuron receive and send this signal
to the output neurons. Output value can be obtained from
output neurons. During signaling phase, the fitness is
evaluated by the output in this process. Figure 3 shows the
process of signaling after neuron, axon and dendrite have
been made.

Figure 3: Signaling phase.

2.2. Incremental Evolution

Evaluation tasks {t1, t2, t3, …, tn} are derived by
transforming a goal task in incremental evolution, where n is
the number of tasks and tn is the goal task. In this set, ti is
easier task than ti+1 for all i: .0 ni ≤< Thus, population is
evaluated in task ti and then task ti+1 and it does in goal task,
tn, finally [8]. It is expected to produce complex and general
behaviors which can adapt in changing environment. Figure
4 shows the procedure of the incremental evolution with
CAM-Brain.

The robot controller is evolved incrementally by starting
with simpler environments and gradually evolving the
controller with more general and complex environments.
The environments get more sophisticated from straight
movement to left and right turn movements. Consequently,
the robot controller that can move straight and turn left and
right can be obtained.

After the CAM-Brain module is evolved in the
environment intended to go straight, successful
chromosomes are copied to the next population. Then it is
evolved in the environment intended to go straight and turn
right. Progressing this process the controller evolves to go
straight and turn left and right. Efficient evolution is

expected because of the reduced search space by
incremental evolution. Figure 5 shows the trajectories of the
successful robot in each environment.

3. Action Selection Mechanism

In behavior-based robotics the control of a robot is
shared between a set of purposive perception-action units,
called behaviors. Based on selective sensory information,
each behavior produces immediate reactions to control the
robot with respect to a particular objective, i.e., a narrow
aspect of the robot’s overall task such as obstacle avoidance
or wall following. Behaviors with different and possibly
incommensurable objectives may produce conflicting
actions that are seemingly irreconcilable. Thus a major issue
in the design of behavior-based control systems is the
formulation of effective mechanisms for coordination of the
behaviors’ activities into strategies for rational and coherent
behavior. This is known as the action selection problem
(also refereed to as the behavior coordination problem) [7].
We use activation networks proposed by Pattie Maes to
combine basic behavior modules evolved on CAM-Brain for
controlling a mobile robot.

Figure 4: Incremental evolution of CAM-Brain.

Figure 5: Trajectories of the successful robot in each
environment.

3.1. Activation Networks

An activation network is composed of nodes, internal
links and external links. Each node has a set of
preconditions. The preconditions are logical conditions
about the environment that are required to be true in order
for the node to be executable. The add list consists of
conditions about the environment that the node is likely to
make true. The delete list consists of conditions that are
likely to be made false by the execution of the node. The
final two components of the node are the activation level
and the code that gets run if the node is executed. The
internal links are specified in Table 1. The external links
providing input to the network are specified in Table 2.
Table 1 and 2 describe the links.

Table 1: Internal links.

Predecessor
link

If proposition X is false, proposition X
is a precondition of node A, and
proposition X is in the add list of node
B, then there is an active predecessor
link from A to B.

Successor link If proposition X is false, proposition X
is in the add list of node A, proposition
X is a precondition of node B, and the
node A is executable, then there is an
active successor link from A to B.

Conflictor link If proposition X is true, proposition X is
a precondition of node A, and
proposition X is in the delete list of
node B, then there is an active conflictor
link from A to B.

Table 2: External links.

From sensors
of the

environment

If proposition X about the environment
is true, and proposition X is a
precondition of node A, then there is an
active link from the sensor of the
proposition X to node A.

From goals If goal Y has an activation greater than
zero, and goal Y is in the add list of
node A, then there is an active link from
the goal Y to node A.

From protected
goals

If goal Y has an activation greater than
zero, and goal Y is in the delete list of
node A, then there is an active link from
the goal Y to node A.

3.2. Procedure of Action Selection

Action selection procedure of an activation network is as

follows.

1. Calculate the excitation coming in from the environment
and the motivations.

2. Spread excitation along the predecessor, successor, and
conflictor links.

3. Normalize the node activations so that the average
activation becomes equal to the constant π.

4. Check to see whether any nodes are executable and, if so,
choose the one with the highest activation, execute it,
and finish.

5. If no node is executable, reduce the global threshold and
repeat the cycle.

4. Experimental Results

We evaluate the performance of robot using Khepera
simulator and modify simulator interface for visualization of
the action selection procedure. At first, the battery level of
robot is 2500. Because robot uses battery to go around the
environment, robot has to recharge battery at low battery
level. Recharging battery behavior is conducted only when
robot is inside battery recharge area. To solve this problem,
we combine several basic behaviors evolved on CAM-Brain
or programmed by activation network. Figure 6 shows the
simulation environment.

Figure 6: Simulation environment.

4.1. Experimental Environment

In this paper, four basic behaviors are defined as follows.

�� Recharging Battery : If a robot arrives at battery
recharge area, battery is recharged. This module
enables the robot to operate as long as possible.

�� Following Light : The robot goes to stronger light. This
module must be operated to go to the battery recharge
area because the light source exists in that area.

�� Avoiding Obstacle : If the obstacles exist around the
robot, it avoids them without bumping against them.

�� Going Straight : If there is nothing around the robot, it
goes ahead. This module takes it to move continuously
without stopping.

Basic behaviors are programmed or evolved on CAM-Brain.
Recharging Battery and Going Straight modules are
programmed. Avoiding Obstacle and Following Light are
incrementally evolved on CAM-Brain.

4.2. Action Selection Model

In this section we apply the action selection mechanism
to the robot control. Our environment requires 5 states, such
as “In battery recharge area,” “Obstacles are close,” “Near
battery recharge area,” “Light is low,” and “Nothing around
the robot.” They are set as follows.

�� “In battery recharge area” : Check if robot is in battery

recharge area.
�� “Obstacles are close” : Check if the maximum value of

distance sensors is larger than 700.
�� “Near battery recharge area” : Check if the distance

from robot to light source is less than 800.
�� “Light is low”: Check if the minimum value of light

sensors is larger than 400.
�� “Nothing around the robot” : Check if the maximum

value of distance sensors is less than 700.

We set 2 goals such as “Full battery,” and “Not zero
battery.” Because robot’s battery decreases while robot
moves, the robot attempts to maintain high battery value to
operate long. They are set as follows.

�� “Full battery” :

c : Value of “Full battery”
m: Maximum battery
n : Robot’s battery

�� “Not zero battery” : Check if battery is less than half of
the maximum battery.

5 states are binary-valued and 2 goals are continuous

values. Our MASM model is composed of 4 nodes, 5 states,
2 goals and their relationships. Figure 7 shows our action
selection model. Each node has preconditions, and must
fulfill all preconditions to be executed. Table 3 describes
preconditions of the nodes. Each node has one or two
preconditions.

Table 3: Preconditions of nodes.

Node Preconditions
Recharging

Battery
In battery recharge area

Following
Light

Light is low,
Near battery recharge area

Avoiding
Obstacle

Obstacles are close

Going
Straight

Nothing around the robot

m
nmc −=

Table 4: Add lists of nodes.

Node Add lists
Recharging

Battery
Full Battery,

Not zero battery
Following

Light
In battery recharge area

Avoiding
Obstacle

Nothing around the robot

Going
Straight

Obstacles are close, In battery recharge
area, Near battery recharge area

Table 5: Relationships between nodes.

Predecessor link
Recharging Battery → Following Light
Recharging Battery → Going Straight

Following Light → Going Straight
Going Straight → Avoiding Obstacles
Avoiding Obstacles → Going Straight

Successor link
Following Light→ Recharging Battery

Going Straight → Following Light
Going Straight → Recharging Battery
Going Straight → Avoiding Obstacles
Avoiding Obstacles → Going Straight

Figure 7: Action selection model. Solid lines denote goal or

predecessor connections, and dashed lines denote sensor or
successor connections.

The relationships among nodes are decided by successor

links or predecessor links. If predecessor link is from A
node to B node, successor link from B node to A node
exists. If node A and node B are connected, they exchange
their activation values while activation spreads. Table 4
describes add lists of nodes and Table 5 describes the
relationships between nodes.

4.3. Simulation Results

We use the Khepera robot simulator to evaluate the
performance of the proposed action selection model. We
modify original Khepera robot simulator to display which
behavior is selected and how the activation is exchanged.
Figure 8 shows the interface of the simulation system.

Figure 8: Action selection model in simulator.

Figure 9 shows the simulation result in simulation
environment. Robot selects one behavior at each time and
executes that module to achieve goals. Robot moves 4690
times while recharging battery behavior is executed 13 times.
Because robot has 2500 level of battery at first, robot must
recharge battery to live long period. To solve this problem,
we assign two goals of activation network: “Full battery”,
and “Not zero battery.” Activation network helps robot to
select battery recharge behavior when robot is inside battery
recharge area. Figure 10 shows the action selection of robot
for 4690 times and the change of battery levels. This shows
how the robot can survive when robot’s battery level is very
low. Robot selects avoiding obstacle and going straight for
the most part.

Figure 9: Robot's trajectory.

0

1

2

3

4

5

1 1001 2001 3001 4001

(a)

0

1

2

3

1 1001 2001 3001 4001

(b)

Figure 10: Action selection of robot (a) selected action at each
time (1=Recharging battery, 2=Following light, 3=Avoiding

Obstacle, 4=Going Straight) (b) battery level change (1 means
1000 battery level).

Figure 11 shows the action sequence of robot when it is
in left-bottom corner of simulation environment. Before the
obstacle is close to the robot, robot chooses going straight.
To avoid the obstacle, robot chooses avoiding obstacle
mainly. After that, robot chooses going straight and
following light for the most part. Because another obstacle
comes, robot chooses avoiding obstacle and following light
for the most part. The reason that robot chooses following
light is the increase of light. After avoiding the first obstacle,
robot has no obstacle with light source.

5. Conclusions and Future Works

We have developed several behavior modules that

conduct complicated action using neural networks based on
cellular automata. To find optimal behavior module, we use
incremental evolution approach. This helps to find optimal
solution in the effective way. To achieve higher behaviors,
we combine several behavior modules evolved or
programmed by using activation networks which coordinate
behavior modules. Simulation results and some analyses

show the usefulness of this approach. For the complex
higher behaviors, we will have to use more behavior
modules than four and combine them using activation
network.

0

1

2

3

4

5

1 51 101 151

Figure 11: Action sequence of robot in left-bottom corner of

simulation environment.

6. References

[1] D. Floreano and F. Mondana, “Evolution of homing

navigation in a real mobile robot,” IEEE Trans. Systems,
Man, and Cybernetics, vol. 26, no. 3, pp. 396-407, June,
1996.

[2] S.-B. Cho and S.-I. Lee, “Evolutionary learning of fuzzy
controller for a mobile robot,” Proc. Int. Conf. on Soft
Computing, vol. 2, pp. 745-748, Oct, 1996.

[3] S.-B. Cho and G.-B. Song, “Evolving CAM-Brain to
control a mobile robot,” Applied Mathematics and
Computation, vol. 111, pp. 147-162, May, 2000.

[4] F. Gers, H. de Garis and M. Korkin, “CoDi-1Bit: A
simplified cellular automata based neural model,” Proc.
Conf. on Artificial Evolution, Nimes, France, October,
1997.

[5] T. Tyrrell, “An evaluation of Maes’s bottom-up
mechanism for behavior selection,” Adaptive Behavior,
vol. 2, pp. 307-348, 1994.

[6] P. Maes, “How to do the right thing,” Connection
Science Journal, vol 1, no. 3, pp. 291-323, 1989.

[7] P. Pirjanian, “Behavior coordination mechanism–state-
of-the-art,” Tech-report IRIS-99-375, Institute for
Robotics and Intelligent Systems, School of Engineering,
University of Southern California, Oct, 1999.

[8] F. Gomez and R. Miikkulainen, “Incremental evolution
of complex general behavior,” Adaptive Behavior, vol. 5,
pp. 317-342, 1997.

