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Abstract 
 

CAM-Brain is a neural network based on cellular 
automata, which model complex phenomenon by simple 
rules, and optimized by genetic algorithm. Like many 
evolutionary approaches to robot control such as neural 
network evolved by genetic algorithm and fuzzy controller 
optimized by genetic algorithm, CAM-Brain can be applied 
to robot control. Behavior modules such as avoiding 
obstacles and following light are evolved on CAM-Brain. 
They are evolved incrementally by starting with simpler 
environment needed simple behavior and gradually making 
it more complex and general for complex behaviors. 
Because evolving higher behaviors directly is difficult, we 
combine several basic behaviors by action selection 
mechanism. Robot selects one of the basic behavior modules 
evolved or programmed at each time. We evaluate the 
performance of robot using Khepera simulator and modify 
simulator interface for visualization of the action selection 
procedure. Simulation results show the possibility of the 
action selection method for higher behaviors with CAM-
Brain modules. 

 
1. Introduction 

 
There are many studies of constructing mobile robot 

controller with different approaches such as evolving neural 
network by genetic algorithm [1], using genetic 
programming, combining fuzzy controller with genetic 
algorithm [2] and programming. In previous work [3], we 
presented CAM-Brain, evolved neural networks based on 
cellular automata [3,4], and applied it to controlling a 
mobile robot. 

However, the controller composed of one module has a 
difficulty to make the robot to perform complex behavior. 
To overcome this shortcoming, some researchers combine 
several modules evolved or programmed to do a simple 
behavior such as “going straight,” “avoiding obstacles,” 
“seeking object,” and so on. They expect the controller 
combined with several modules can do complex behaviors 
[5,6,7]. 

In this paper, we also attempt to combine several neural 
networks for solving this problem. Each neural network can 
be evolved or programmed. Evolved neural network is based 

on CAM-Brain model, and a programmed module controls 
the robot directly. We apply Pattie Maes’s Action Selection 
Mechanism (MASM) [5,6,7] to combine modules and 
control a mobile robot in simulated environments. The rest 
of this paper introduces CAM-Brain model and basic 
behaviors, and presents the integration method in detail. The 
detailed description of simulation follows, and the results of 
simulation are given. 
 
2. CAM-Brain 

 
CAM-Brain is a neural network based on cellular 

automata which model complex phenomenon by simple 
rules, and optimized by genetic algorithm. Figure 1 shows 
the evolution of CAM-Brain.  

 

 
Figure 1: Evolution of CAM-Brain. 

2.1. Neural Networks based on CA 
 

CA are population of interacting cells, each of which is 
itself a computer (automaton) and can represent many kinds 
of complex behavior by building appropriate rules into it. 
CA forms either a 1-dimensional string of cells, a 2-D grid 
or a 3-D solid. Mostly the cells are arranged as a simple 



rectangular grid. CA has the three essential features of state, 
neighborhood, and program. Its state is a variable that takes 
a different separate for each cell. The state can be either a 
number or a property. Its neighborhood is the set of cells that 
it interacts with. In a grid these are normally the cells 
physically closest to the cell. Its program is the set of rules 
that define how its state changes in response to its current 
state, and that of its neighborhood. 

CAM-Brain’s neural network structure composed of 
blank, neuron, axon and dendrite are grown inside 2-D or 3-
D CA-Space by state, neighborhoods and rules encoded by 
chromosome. Roles of each cell are as follows. 

 
�� Blank: If cell state is blank, it represents empty space 

and cannot transmit any signals. 
�� Neuron: It collects signals from surrounding dendrite 

cells which are accumulated. If the sum of collected 
signals is greater than threshold, neuron cells send them 
to surrounding axon cells.  

�� Axon: It sends signals received from neurons to the 
neighborhood cells. 

�� Dendrite: It collects signals from neighborhood cells 
and passes them to the connected neuron in the end. 

 
Neighborhood cells of one cell mean surrounding cells 

(North, South, West, and East in 2-D CA space and Top and 
Bottom added to them in 3-D CA space).  

The information encoded in a chromosome determines a 
neural network architecture. To represent the whole structure 
of a neural network, a chromosome has the same number of 
segments with the cells in CA-space and each segment has 
information of each cell. A segment can change blank cell to 
neuron cell (NS bit) and decides the directions of sending 
received signals to neighborhood cells (N, S, E, W, T and B 
bits). The signals can be only sent to the direction in which 
the bit corresponds to 1. Figure 2 shows the chromosome of 
CAM-Brain. 

 

 
Figure 2: Chromosome of CAM-Brain. 

Signaling phase transmits the signal from input to output 
cells continuously. The trails of signaling are transmitted 
with evolved structure at the growth phase. Each cell plays a 

different role according to the type of cells. If the cell type is 
neuron, it gets the signal from connected dendrite cells and 
gives the signal to neighborhood axon cells when the sum of 
signals is greater than threshold. If the cell type is dendrite, 
it collects data from the faced cells and eventually passes 
them to the neuron body. The position of input and output 
cells in CA-space is decided in advance. At first, if input 
cells produce the signal, it is sent to the faced axon cells, 
which distribute that signal. Then, neighborhood dendrite 
cells belonged to other neurons collect and send this signal 
to the connected neurons. The neurons that have received 
the signal from dendrite cells send it to axon cells. Finally, 
dendrite cells of output neuron receive and send this signal 
to the output neurons. Output value can be obtained from 
output neurons. During signaling phase, the fitness is 
evaluated by the output in this process. Figure 3 shows the 
process of signaling after neuron, axon and dendrite have 
been made. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Signaling phase. 

2.2. Incremental Evolution 
 

Evaluation tasks {t1, t2, t3, …, tn} are derived by 
transforming a goal task in incremental evolution, where n is 
the number of tasks and tn is the goal task. In this set, ti is 
easier task than ti+1 for all i: .0 ni ≤<  Thus, population is 
evaluated in task ti and then task ti+1 and it does in goal task, 
tn, finally [8]. It is expected to produce complex and general 
behaviors which can adapt in changing environment. Figure 
4 shows the procedure of the incremental evolution with 
CAM-Brain. 

The robot controller is evolved incrementally by starting 
with simpler environments and gradually evolving the 
controller with more general and complex environments. 
The environments get more sophisticated from straight 
movement to left and right turn movements. Consequently, 
the robot controller that can move straight and turn left and 
right can be obtained.  

After the CAM-Brain module is evolved in the 
environment intended to go straight, successful 
chromosomes are copied to the next population. Then it is 
evolved in the environment intended to go straight and turn 
right. Progressing this process the controller evolves to go 
straight and turn left and right. Efficient evolution is 



expected because of the reduced search space by 
incremental evolution. Figure 5 shows the trajectories of the 
successful robot in each environment. 

 
3. Action Selection Mechanism 
 

In behavior-based robotics the control of a robot is 
shared between a set of purposive perception-action units, 
called behaviors. Based on selective sensory information, 
each behavior produces immediate reactions to control the 
robot with respect to a particular objective, i.e., a narrow 
aspect of the robot’s overall task such as obstacle avoidance 
or wall following. Behaviors with different and possibly 
incommensurable objectives may produce conflicting 
actions that are seemingly irreconcilable. Thus a major issue 
in the design of behavior-based control systems is the 
formulation of effective mechanisms for coordination of the 
behaviors’ activities into strategies for rational and coherent 
behavior. This is known as the action selection problem 
(also refereed to as the behavior coordination problem) [7]. 
We use activation networks proposed by Pattie Maes to 
combine basic behavior modules evolved on CAM-Brain for 
controlling a mobile robot. 
 

 
 

Figure 4: Incremental evolution of CAM-Brain. 
 

 
 

Figure 5: Trajectories of the successful robot in each 
environment. 

3.1. Activation Networks  
 

An activation network is composed of nodes, internal 
links and external links. Each node has a set of 
preconditions. The preconditions are logical conditions 
about the environment that are required to be true in order 
for the node to be executable. The add list consists of 
conditions about the environment that the node is likely to 
make true. The delete list consists of conditions that are 
likely to be made false by the execution of the node. The 
final two components of the node are the activation level 
and the code that gets run if the node is executed. The 
internal links are specified in Table 1. The external links 
providing input to the network are specified in Table 2. 
Table 1 and 2 describe the links.  

Table 1: Internal links. 

Predecessor 
link 

If proposition X is false, proposition X 
is a precondition of node A, and 
proposition X is in the add list of node 
B, then there is an active predecessor 
link from A to B. 

Successor link If proposition X is false, proposition X 
is in the add list of node A, proposition 
X is a precondition of node B, and the 
node A is executable, then there is an 
active successor link from A to B. 

Conflictor link If proposition X is true, proposition X is 
a precondition of node A, and 
proposition X is in the delete list of 
node B, then there is an active conflictor 
link from A to B. 

Table 2: External links. 

From sensors 
of the 

environment 

If proposition X about the environment 
is true, and proposition X is a 
precondition of node A, then there is an 
active link from the sensor of the 
proposition X to node A. 

From goals If goal Y has an activation greater than 
zero, and goal Y is in the add list of 
node A, then there is an active link from 
the goal Y to node A. 

From protected 
goals 

If goal Y has an activation greater than 
zero, and goal Y is in the delete list of 
node A, then there is an active link from 
the goal Y to node A. 

 
3.2. Procedure of Action Selection 

 
Action selection procedure of an activation network is as 

follows.  



1. Calculate the excitation coming in from the environment 
and the motivations. 

2. Spread excitation along the predecessor, successor, and 
conflictor links. 

3. Normalize the node activations so that the average 
activation becomes equal to the constant π. 

4. Check to see whether any nodes are executable and, if so, 
choose the one with the highest activation, execute it, 
and finish. 

5. If no node is executable, reduce the global threshold and 
repeat the cycle. 

 
4. Experimental Results 
 
We evaluate the performance of robot using Khepera 
simulator and modify simulator interface for visualization of 
the action selection procedure. At first, the battery level of 
robot is 2500. Because robot uses battery to go around the 
environment, robot has to recharge battery at low battery 
level. Recharging battery behavior is conducted only when 
robot is inside battery recharge area. To solve this problem, 
we combine several basic behaviors evolved on CAM-Brain 
or programmed by activation network. Figure 6 shows the 
simulation environment. 
 

 
Figure 6: Simulation environment. 

4.1. Experimental Environment 
 

In this paper, four basic behaviors are defined as follows. 
 

�� Recharging Battery : If a robot arrives at battery  
recharge area, battery is recharged. This module 
enables the robot to operate as long as possible. 

�� Following Light : The robot goes to stronger light. This 
module must be operated to go to the battery recharge 
area because the light source exists in that area. 

�� Avoiding Obstacle : If the obstacles exist around the 
robot, it avoids them without bumping against them.  

�� Going Straight : If there is nothing around the robot, it 
goes ahead. This module takes it to move continuously 
without stopping. 

 

Basic behaviors are programmed or evolved on CAM-Brain. 
Recharging Battery and Going Straight modules are 
programmed. Avoiding Obstacle and Following Light are 
incrementally evolved on CAM-Brain.  

 
4.2. Action Selection Model 
 

In this section we apply the action selection mechanism 
to the robot control. Our environment requires 5 states, such 
as “In battery recharge area,” “Obstacles are close,” “Near 
battery recharge area,” “Light is low,” and “Nothing around 
the robot.” They are set as follows. 

 
�� “In battery recharge area” : Check if robot is in battery 

recharge area. 
�� “Obstacles are close” : Check if the maximum value of 

distance sensors is larger than 700. 
�� “Near battery recharge area” : Check if the distance 

from robot to light source is less than 800. 
�� “Light is low”: Check if the minimum value of light 

sensors is larger than 400. 
�� “Nothing around the robot” : Check if the maximum 

value of distance sensors is less than 700. 
 

We set 2 goals such as “Full battery,” and “Not zero 
battery.” Because robot’s battery decreases while robot 
moves, the robot attempts to maintain high battery value to 
operate long. They are set as follows. 

 
�� “Full battery” :  

c : Value of “Full battery” 
m: Maximum battery 
n : Robot’s battery 

�� “Not zero battery” : Check if battery is less than half of 
the maximum battery.  

 
5 states are binary-valued and 2 goals are continuous 

values. Our MASM model is composed of 4 nodes, 5 states, 
2 goals and their relationships. Figure 7 shows our action 
selection model. Each node has preconditions, and must 
fulfill all preconditions to be executed. Table 3 describes 
preconditions of the nodes. Each node has one or two 
preconditions.  

Table 3: Preconditions of nodes. 

Node Preconditions 
Recharging 

Battery 
In battery recharge area 

Following 
Light 

Light is low,  
Near battery recharge area 

Avoiding 
Obstacle 

Obstacles are close 

Going 
Straight 

Nothing around the robot 

m
nmc −=



Table 4: Add lists of nodes. 

Node Add lists 
Recharging 

Battery 
Full Battery,  

Not zero battery 
Following 

Light 
In battery recharge area 

Avoiding 
Obstacle 

Nothing around the robot 

Going 
Straight 

Obstacles are close, In battery recharge 
area, Near battery recharge area 

Table 5: Relationships between nodes. 

Predecessor link 
Recharging Battery → Following Light 
Recharging Battery → Going Straight 

Following Light → Going Straight 
Going Straight → Avoiding Obstacles 
Avoiding Obstacles → Going Straight 

Successor link 
Following Light→ Recharging Battery 

Going Straight → Following Light 
Going Straight → Recharging Battery 
Going Straight → Avoiding Obstacles 
Avoiding Obstacles → Going Straight 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 7: Action selection model. Solid lines denote goal or 

predecessor connections, and dashed lines denote sensor or 
successor connections. 

 
 
The relationships among nodes are decided by successor 

links or predecessor links. If predecessor link is from A 
node to B node, successor link from B node to A node 
exists. If node A and node B are connected, they exchange 
their activation values while activation spreads. Table 4 
describes add lists of nodes and Table 5 describes the 
relationships between nodes. 

 
 

4.3. Simulation Results 
 

We use the Khepera robot simulator to evaluate the 
performance of the proposed action selection model. We 
modify original Khepera robot simulator to display which 
behavior is selected and how the activation is exchanged. 
Figure 8 shows the interface of the simulation system.  

 

 
Figure 8: Action selection model in simulator. 

Figure 9 shows the simulation result in simulation 
environment. Robot selects one behavior at each time and 
executes that module to achieve goals. Robot moves 4690 
times while recharging battery behavior is executed 13 times. 
Because robot has 2500 level of battery at first, robot must 
recharge battery to live long period. To solve this problem, 
we assign two goals of activation network: “Full battery”, 
and “Not zero battery.” Activation network helps robot to 
select battery recharge behavior when robot is inside battery 
recharge area. Figure 10 shows the action selection of robot 
for 4690 times and the change of battery levels. This shows 
how the robot can survive when robot’s battery level is very 
low. Robot selects avoiding obstacle and going straight for 
the most part.  

 

 
Figure 9: Robot's trajectory. 
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Figure 10: Action selection of robot (a) selected action at each 
time (1=Recharging battery, 2=Following light, 3=Avoiding 

Obstacle, 4=Going Straight) (b) battery level change (1 means 
1000 battery level). 

Figure 11 shows the action sequence of robot when it is 
in left-bottom corner of simulation environment. Before the 
obstacle is close to the robot, robot chooses going straight. 
To avoid the obstacle, robot chooses avoiding obstacle 
mainly. After that, robot chooses going straight and 
following light for the most part. Because another obstacle 
comes, robot chooses avoiding obstacle and following light 
for the most part. The reason that robot chooses following 
light is the increase of light. After avoiding the first obstacle, 
robot has no obstacle with light source.  
 
5. Conclusions and Future Works 

 
We have developed several behavior modules that 

conduct complicated action using neural networks based on 
cellular automata. To find optimal behavior module, we use 
incremental evolution approach. This helps to find optimal 
solution in the effective way. To achieve higher behaviors, 
we combine several behavior modules evolved or 
programmed by using activation networks which coordinate 
behavior modules. Simulation results and some analyses 

show the usefulness of this approach. For the complex 
higher behaviors, we will have to use more behavior 
modules than four and combine them using activation 
network.  
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Figure 11: Action sequence of robot in left-bottom corner of 

simulation environment. 
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