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Traffic sign detection is a useful application for driving assistance systems, and it is necessary to accu-
rately detect traffic signs before they can be identified. Sometimes, however, it is difficult to detect traffic
sign, which may be obscured by other objects or affected by illumination or lightning reflections. Most
previous work on this topic has been based on region of interest analysis using the color information
of traffic signs. Although this provides a simple way to segment signs, this approach is weak when a sign
is affected by illumination or its own color information is distorted. To overcome this, this paper intro-
duces a robust traffic detection framework for cluttered scenes or complex city views that does not
use color information. Moreover, the proposed method can detect traffic sign in the night. We establish
an edge-adaptive Gabor function, which is derived from human visual perception. It is an enhanced ver-
sion of the original Gabor filter, and filters out unnecessary information to provide robust recognition. It
decomposes the directional information of objects and reflects specific shapes of traffic signs. Once the
extracted feature is obtained, a support vector machine detects the traffic sign. Applying scale-space the-
ory, it is possible to resolve the scaling problem of the objects that we want to find. Our system shows
robust performance in traffic sign detection, and experiments on real-world scenes confirmed its
properties.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, driving assistant systems that incorporate traffic sign
detection, pedestrian detection (Gerónimo, López, Saa, & Graf,
2010; Lie, Ge, Zhang, Li, & Zhang, 2011), traffic lane tracking (Cheng
et al., 2010; Huang & Teller, 2011; McCall & Trivedi, 2006), and/or
night vision features (Lim, Tsimhoni, & Liu, 2010) have been widely
developed to improve safety. Traffic sign recognition has largely
been studied using color models to obtain a region of interest
(ROI) because color information can be readily obtained from cam-
eras (Gomez-More, Maldonado-Bascon, Gil-Jimenez, & Lafuente-
Arroyo, 2010; Tsai et al., 2008). However, this strategy is uncom-
mon in practice, due to the high sensitivity of color to car lighting
or natural illumination effects. In the real-world, unexpected noise
may change the pixels of objects, resulting in the loss of function-
ality of color-based models.

With recent advances in the required hardware, it is possible to
mobilize computing devices in vehicles. However, there remains
the crucial problem of conditions that complicate detection in nat-
ural scenes. Several computer vision techniques have shown poor
ll rights reserved.
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performance when operating in real-world conditions. The ROI col-
or-based approach mentioned above is a pioneer method in the
field of object detection, and it allows for easy and effective seg-
mentation. There are several ways to choose an ROI using color
information. In Nguwi & Cho, 2010, an eigen map was introduced,
produced by a radial basis function (RBF) neural network to accu-
rately obtain the ROI. Similarly, Le et al. (2010) proposed a method
for obtaining the color of interest of traffic signs using the block
feature and a support vector machine (SVM). Another related
method using color pixels and modeling was proposed in Nguwi
and Cho (2010), which used hue saturation value (HSV) color
space, and in Maldonado-Bascon, Lafuente-Arroyo, Gil-Jimenez,
Gomez-More, and Lopez-Ferreras (2008), the achromatic decom-
position method was used to overcome the effects of illumination
on hue and saturation components. Although these approaches can
determine changes in the pixels of traffic signs, they still underper-
form under unexpected real-world conditions. It makes other pre-
processing methods or segmentation problems additionally.

In computer vision, a sliding window method that moves within
a whole image to find the object is typically used, and it can detect
characters in natural scenes quite accurately (Kim et al. 2003). For
face detection, a convolution neural network with a sliding win-
dow is a successful scheme (Garcia & Delakis, 2004). Recently, in
Peemen and Corporaal H. (2011), speed sign detection was
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Fig. 1. Overview of the suggested traffic sign detection method.
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introduced, using a convolution neural network and CUDA (Com-
pute Unified Device Architecture). In that study, CUDA markedly
reduced computation time and displayed high-definition images
at 35 frames per second.

In this paper, we introduce a method for robust traffic sign
detection that does not use color information. The method is based
on a model of mammalian retina responses and machine-learning
techniques. It partially segments an input image via a sliding win-
dow at every location using a Gabor filter. Jones and Palmer (1987)
discovered that simple cells in the visual cortex of the brain of
mammals can be modeled by Gabor filters. In our method, we ex-
tract robust features from images using a Laplacian operator called
the edge-adaptive Gabor filter. By incorporating this function,
more robust local and directional features than the original Gabor
filter provides can be obtained. Moreover, a power spectrum is
used for feature discrimination. More specifically, the proposed
method consists of three parts: creating a pyramid scale, detecting
objects via the edge-adaptive Gabor filter and verifying them by
SVM, and assembling the prediction results with respect to the
scale using scale-space theory (Tony, 1998). Fig. 1 shows an over-
view of the proposed method with n layers.

Because a single classifier suffers from lack of generalization
(Park and Kim, 2012), our method employs an ensemble predictor
to obtain a generalized classification via machine learning, thereby
improving detection performance. A single predictor composed of
a number of predictors would be expected to improve detection
performance and reduce false positives. Indeed, in the present
study, using bias-variance analysis for classification, we found that
ensemble methods produce more accurate detection by increasing
the number of SVMs. We analyzed our system using the machine
learning algorithm Adaboost and tested its performance on images
from Google Street View.

The remainder of this article is organized as follows. Section 2
details the proposed work and Section 3 presents the experimental
results. Section 4 concludes the study and suggests future research
directions.

2. Proposed method

Once an input image is given, the framework scans for traffic
signs using an n � n pixel sliding window at each pixel. This is done
with scale-space to overcome the scale of traffic signs. The scan-
ning requires exhaustive trials to verify the segmented image
and determine the traffic sign category to which it belongs.

To improve the generalization of the verification, the proposed
filters discriminate local directional features and then machine
learning is used to establish the detection model based on each
feature.

2.1. Edge-adaptive Gabor filtering for traffic sign detection

In computer vision, the shape of an object contains useful infor-
mation for visual perception. Our method focuses on the edges of
input images to remove unnecessary information.

The edge-adaptive Gabor filter convolves the input image as
follows:

IG;hk
ðx; yÞ ¼ Iðx; yÞ �Ghk

ðx;yÞ ð1Þ

where � is the convolution operator and IG;hk
is the feature image

extracted by the filter as follows:

Ghk
ðx;yÞ ¼ Ghk

ðx;yÞ � Lðx;yÞ ð2Þ

where Ghk
ðx;yÞ represents the edge-adaptive Gabor filter proposed

in Daugman (1985), expressed as:
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in which x0 and y0 are the same as xhk
and yhk

in Eq. (3), respectively;
k denotes the strength of the wavelet; / is the value that specifies
the phase offset of the cosine factor of the function; c affects the
ellipticity of the Gaussian function; and r is calculated using the
additional variable, denoting the bandwidth of the filter. Features
are extracted using four Gabor filters at the different orientation
angles of 0�, 45�, 90�, and 135� to yield local directional information.
It is possible to roughly approximate traffic signs using these
four directions. The Laplacian operator L(x,y) in Eq. (2) is obtained
from:

Lðx; yÞ ¼ @
2Iðx; yÞ
@x2 þ @

2Iðx; yÞ
@y2 ð5Þ

and we can derive the feature image IG;hk
. This is approximated to

the 3-dimensional [1,�2,1] mask with respect to horizontal and
vertical direction.

In machine learning, there have been efforts to reduce large fea-
ture dimensions to preserve useful information while eliminating



Fig. 2. Examples of the proposed feature of traffic sign images. The first column shows input image scaled to 32 by 32, second is for Laplace image, next images describe the
four Gabor images and the corresponding subsampled images.
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Fig. 3. Filtering illustration. The first row and the second row represent the original Gabor filter and the proposed filter, respectively. The first column represents filters, the
second shows original signals and the third are filtered signals.
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unnecessary dimensions. With feature dimension reduction, the
detection system becomes more discriminative. Hence, our system
obtains local information using a simple and low-computation
subsampling method that reduces the noise of local information.
The filtered image is subsampled as follows:

SG;hk
ðx; yÞ ¼ 1

b2

Xb
2

i¼�b
2

Xb
2

j¼�b
2

IG;hk
ðxþ i; yþ jÞ ð6Þ

where SG;hk
ðx; yÞ denotes a subsample image from the filtered

images IG;hk
and is the input for SVM, and b represents the length

of the subsampling interval. Fig. 2 shows examples of a subsampled
image with b = 8 and Fig. 3 illustrates the proposed edge-adaptive
filter and the original Gabor filter.

2.2. Power spectrum feature

To make the system more discriminative, discrete Fourier trans-
form (DFT) is used to create a power spectrum from the input
image. DFT converts the signal from a spatial domain into a fre-
quency domain, and is expressed as follows:

Fðk; lÞ ¼
XN�1

x¼0

XN�1

y¼0

f ðx; yÞe�j2p kx
Nþ

ly
Nð Þ ð7Þ

where N denotes both the height and width of the input image and
f(x,y) = I(x,y) � L(x,y), which represents the Laplace image in the
spatial domain. The exponential term is the basis function, corre-
sponding to each point F(k, l) in the Fourier space. This can be inter-
preted as the value of each point F(k, l) obtained by multiplying the
spatial image by the corresponding base function and summing the
results. The spectrum image is also subsampled by:

SFðx; yÞ ¼
1
b2

Xb
2

i¼�b
2
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2

j¼�b
2

Fðxþ i; yþ jÞ ð8Þ

For fast Fourier transform, let k be the feature vector
k ¼ fk1; k2; k3; . . .g obtained via the edge-adaptive Gabor filter as
follows:



Table 1
Numbers and types of traffic signs for SVM training.

Type # of
images

Singapore
dataset

Google
images

Sum

Inverted
triangle

Yield 80 8 88

Circle No entry 80 680 103 783
No left turn 50
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ki ¼ SG;kðx; yÞ where i ¼ kðxH þ yÞ ð9Þ

The feature vector of the power spectrum is computed from:

ki ¼ SFðx; yÞ i ¼ xH þ y ð10Þ

where i is the vector index and H denotes the height of the subsam-
pled image.
No right turn 50
Speed 10 50
Speed 20 50
Speed 30 50
Speed 40 50
Speed 50 50
Speed 60 50
Speed 70 50
Speed 80 50
Speed 90 50
Speed 100 50

Octagon Stop sign 80 20 100
Sum 840 131 971
2.3. Learning examples

The previous subsections dealt with the Edge Adaptive Gabor
filter and power spectrum features as feature extraction part in
machine learning. Machine learning mimics the biological learning
scheme that experiences a condition and cope with the corre-
sponding appropriate action. This scheme has been studied due
to the fact that flexible fitting of their property on a given situation.
It provides promising solutions with mathematic properties. SVM
(Christopher, 1998) has the outstanding generalization ability in
learning technique of discriminative method. Since SVM yields
the large margin decision and convergences to global solutions,
there are studies that show better performance comparing with
other learning methods. In this study, SVM is used to verify the
segmented image via the sliding window and entirely predicts an
input scene at every scale. SVM provides the best solution for bin-
ary problem and ensures the optimal hyper plane with a large mar-
gin. The designed framework employs the detection problem into
binary problem in which the observation belongs in the one of
the categories of the traffic signs or other objects. Thus, the training
dataset should include the traffic sign image and the non traffic
sign image. We can crop the non traffic sign image with random
sizes and locations from the scene where the traffic sign does not
exist. To crop traffic sign image, Singapore’s traffic sign dataset
(Nguwi & Cho, 2010) is employed and external our work collects
additional traffic sign images. Fig. 4 shows the cropped example
image of the collection from real-world scenes. The real-world
scenes to make non traffic sign image are collected from the Google
Fig. 4. Training images for support vector machine. First three rows represent
traffic sign images and next three rows show non traffic sign images, (a) and (b)
depict positive class and negative class for learning SVM, respectively.

Fig. 5. Validation dataset images and original images, (a) and (b) show white noise
effects and illumination changes, respectively. Each first row represents original
image (training set) and second row illustrates their distortion (validation set).
website. Table 1 summarizes the training images into the three
types of traffic signs.

2.4. Decision on prediction map

The final detection is achieved by interpolating each prediction
into one scale, which is the same as the input image. Each predic-
tion map at each scale is obtained via SVM, represented as follows:

Pkðx; yÞ ¼ Fðkx;yÞ ð11Þ

where k is the Gaussian pyramid level, x, y are the coordinates of the
prediction map, Pk is the prediction map at the k level, Fð:Þ repre-
sents the SVM, and kx;y denotes the feature vector from the kth pyr-
amid image at x, y. While the prediction runs over all scales, we can
mark a black pixel, which represents a positive class as a candidate
detection point in the initial white (negative class) map if SVM pre-
dicts that there is a traffic sign. The next step is to interpolate all
candidate points to the input image scale. The prediction points
(pixels) are rescaled via nearest-neighbor interpolation. The pre-
dicted marks at the interpolated scale are clustered by the con-
nected components labeling method with eight neighborhoods
(Shapiro, 2001). The candidate traffic sign locations are represented



Table 2
SVM classifier performance of validation data using 5-fold cross validation of Edge
Adaptive Gabor Filter with respect to strength of Wavelet (row) and ellipticity of
Gabor function (column). Bold represents the best accuracy.

2 3 4 5 6

0.2 91.52 ± 0.20 95.62 ± 0.27 94.57 ± 0.38 95.75 ± 0.27 96.96 ± 0.37
0.3 92.40 ± 0.28 96.05 ± 0.32 96.12 ± 0.36 96.00 ± 0.26 97.13 ± 0.30
0.4 92.94 ± 0.28 96.27 ± 0.24 97.06 ± 0.36 96.66 ± 0.19 97.41 ± 0.33
0.5 92.94 ± 0.27 96.41 ± 0.27 97.30 ± 0.26 97.29 ± 0.18 97.62 ± 0.34
0.6 92.69 ± 0.39 96.49 ± 0.24 97.32 ± 0.25 97.60 ± 0.23 97.69 ± 0.47
0.7 92.42 ± 0.37 96.53 ± 0.18 97.36 ± 0.25 97.71 ± 0.25 97.76 ± 0.36
0.8 92.09 ± 0.35 96.60 ± 0.22 97.43 ± 0.22 97.91 ± 0.25 97.86 ± 0.38
0.9 91.61 ± 0.41 96.68 ± 0.26 97.46 ± 0.22 98.04 ± 0.27 97.93 ± 0.44

Fig. 6. Proposed Feature analysis with Adaboost result for training data. (a) Represents 1/0 bias analysis. (b) Shows 1/0 variance analysis. (c) Shows Classification accuracy.

Fig. 7. Proposed Feature analysis with Adaboost result for validation data. (a) Represents 1/0 bias analysis. (b) 1/0 shows variance analysis. (c) Shows classification accuracy.
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by the positive prediction of SVM. The final detection rectangle is
obtained using the average of the clustered candidates and the cor-
responding coarsest scale within the cluster (the terms ‘fine’ and
‘coarse’ are from scale-space theory). Thus, we can obtain the detec-
tion rectangle, which encompasses the shape of the traffic sign
when the candidate points are predicted on the coarse scale.

3. Experimental results

We analyzed our system using the ensemble method (Freund &
Schapire, 1999), which aims to improve classification accuracy. A
total of 9521 sample images were used for training the SVM, and
971 of these were related to traffic signs. The number of training
images of non-traffic sign should be larger than traffic sign class be-
cause there are a number of non-traffic sign images in real-world
scenes. All images were normalized to 32 � 32 pixels and all images
that were categorized as being part of a traffic sign were assigned a
value of 1 (positive class); otherwise, a value of 0 (negative class)
was assigned. This experiment used gray-scale images and LIBSVM
(Chang & Lin, 2011). All images used in this paper appear at http://
cilab.sejong.ac.kr/home/doku.php?id=public:traffic_signdb.

3.1. Ensemble predictor

Adaboost is widely used as an ensemble predictor. It resamples
training data in a sophisticated fashion, but tends to overfit train-
ing data. Hence, we used a validation dataset to evaluate ensemble
performance by measuring the generalized error of the ensemble
predictor. The dataset included white noise and the addition or
deletion of raw pixels to create distortions. White noise follows a
normal distribution N(0,1) and its magnitude was set at five steps
(±2.5,±5,±10,±15,±25). Pixel changes, which were made to simu-
late illumination effects, were also added at five steps
(±25,±50,±75,±100,±150) without white noise. This resulted in
9710 modified traffic sign images (10 variants of each of the 971
training images). Fig. 5 illustrates examples of the validation image
set of traffic signs. The rest of the validation dataset consisted of
45,000 non-traffic sign images. These were randomly extracted
from various natural scenes that were not used in the training
set. To evaluate the results of Adaboost, Domingos (2000)’ bias
and a variance analysis for classification were used. Parameters
of Gabor filter are set according to Table 2.

Figs. 6 and 7 compare two feature extraction methods, the
edge-adaptive Gabor filter alone and this filter with the additive
power spectrum feature. Column (a)’s in these Figures show the
analysis of bias and variances of the effects of Adaboost on the
training dataset. The variances were gradually reduced and the
biases were decreased by adding base classifiers. As shown in
Figs. 6 and 7(b), the bias of both the training set and the validation
set of the edge-adaptive Gabor method alone were lower than that
of the Gabor method incorporating the additional power spectrum
feature. As shown in column (c)’s, Adaboost yielded a more accu-
rate classification of the validation set than the adaptive-edge Ga-
bor filter with or without the additional power spectrum feature.
Note that the true accuracy was measured via the synthesis deci-
sion of the Adaboosted SVMs, and is not the Domingo’s error term.
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Fig. 8. Performance comparison over the (a) original Gabor filter, (b) Edge Adaptive Gabor filter and (c) additional power spectrum feature.

Fig. 9. Result of color model ROI causing segmentation problems.
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Fig. 10. Experimental results on Google Street View.

Fig. 11. Processing time of this study.

Fig. 12. False detection of the proposed method.
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3.2. Traffic sign detection in real-world scenes

We applied our system to real-world scenes in Nguwi (2010)
and Google Street View ICMLA (2011). The pyramid scale parame-
ter was set to 1.2 and scanning runs of two pixels were conducted
to verify the segmented image of the sliding window. The sliding
window size was 32 � 32 pixels. Base Gabor filter is chosen with
5 strength of Wavelet and 0.9 ellipticity of Gabor function. Table 2
shows SVM classifier accuracy of our Edge Adaptive Gabor filter
with respect to strength of Wavelet and elliptcity of Gabor filter.
Fig. 8 compares the original Gabor filter, the edge-adaptive Gabor
filter, and the filter incorporating the power spectrum feature.
The latter filter significantly reduced false positives and yielded
accurate detections. To examine color model for ROI extraction,
Fig. 9 shows the results of ROI extraction. These suffer from gener-
alization to color space in illumination effect and make another
research topic to group objects in a given scene image.

Fig. 10 shows the resulting scenes extracted from Google Street
View provided by ICMLA (International Conference on Machine
Learning (2011). These reflect real driving conditions, and the pro-
posed method exhibited reliable performance.

Fig. 11 shows the processing time of our system tested under
various conditions. The tests were conducted on an Intel Core i5
CPU 750, 2.67 GHz, and 3 GB RAM, and there was no use of code
optimization or parallel processing methods. For each prediction,
the edge-adaptive Gabor filter and spectrum feature took
1.9 � 10�3 s and SVM took 2.7583 � 10�4 s. In the experiments
testing the ensemble and real-world scenes, the optimized param-
eters of SVM had a polynomial kernel with the parameters ĉ ¼ 1
and C ¼ 1=N that retrain generalization, where N denotes the fea-
ture dimension. Our proposed system did have some limitations
arising from blurring and affine transformations; these are shown
in Fig. 12. Fig. 13 indicates the detection of scale invariance for traf-
fic signs. Fig. 14 shows that the proposed framework detected traf-
fic signs not only under bad weather conditions, but also under
illumination effects.

Table 3 shows the receiver operating characteristic (ROC) anal-
ysis for the proposed method applied to 159 realworld scenes that



Fig. 13. Experimental results of the proposed method yielding scale invariant
property.

Fig. 14. Experimental results of the proposed method with illumination effects or
different weather conditions.

Table 3
ROC analysis of the proposed method. The dataset of test scenes contains 168 traffic
signs (sensitivity = TP/P, P: The number of traffic signs, TP: Correct predictions of SVM
to traffic signs).

Traffic
sign types

True positive rate
(sensitivity)

False positive rate per
image (false alarm)

False negative
rate (miss)

Total 90.41% 8.98% 9.58%

Table 4
ROC analysis of the proposed method on 387 images from Google Street View.

True positive rate
(sensitivity)

False positive rate per
Image

False negative rate
(miss)

85.93% 11.62% 14.06%
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should include certain signs in Table 1. The proposed framework
and the SVM showed good performance. Table 4 shows the results
on the images from Google Street View.
4. Discussion and future research

Unlike other approaches to traffic sign detection, the system
proposed herein does not depend on color information, but rather
uses machine learning and an ensemble method to overcome illu-
mination effects and improve traffic sign detection accuracy.

Although sliding window-based scanning requires many at-
tempts to verify a segmented image, the proposed framework
yields reliable classification and robust traffic sign detection under
various illumination and weather conditions. Moreover, a rela-
tively small number of traffic sign images are sufficient to train
the SVM due to the discriminative edge-adaptive Gabor filter
feature.

In our experiments, machine learning played an important
role in making good generalizations and classifying traffic signs.
For example, a false positive in one step could be rejected in the
next step of identification, decreasing the overall rate of false
identifications. The problems shown in Fig. 12 could be solved
by adding various training samples that cause false detections.
Fig. 14 shows segmentation problems with a color-based ROI
model. Without segmentation using an ROI method, our method
yielded robust traffic sign detection. Compared to a convolution
neural network, our system, which incorporates an edge-adap-
tive Gabor filter and SVM, has the advantage of a single architec-
ture. In contrast, the convolution neural network which yields
reliable performance for object detection has a bipyramidal
architecture and involves higher computational costs. It also con-
sists of trainable weights for the feature map of both convolu-
tion layers and subsampling layers, whereas our system uses
simple fixed weights that are identical in the convolution and
subsampling layers. In the learning phase, the convolution neural
network uses back-propagation for training weights and iterative
boosting (Peemen & Corporaal, 2011) learning, which is essential
to reduce false positives. In contrast, our system retains high
performance without iterative boosting. Another issue is the
computation cost for online processing. However, recently, re-
search on CUDA (Nasse, Thurau, & Fink, 2009; Uetz & Behnke,
2009) has revealed outstanding processing time reduction with
parallel computation through graphics processing units. Indeed,
using CUDA for SVM, it is possible to decrease the processing
time by as much as 22–172 times versus not using CUDA (Car-
penter, 2009), and our method can be implemented via CUDA
for real-time processing.
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