INTECH

open science | open minds

ARTICLE

International Journal of Advanced Robotic Systems

Optimization of an Autonomous
Car Controller using a Selt-Adaptive

Evolutionary Strategy

Regular Paper

Tae Seong Kim, Joong Chae Na” and Kyung Joong Kim

Dept. of Computer Science & Engineering, Sejong University, Korea
* Corresponding author E-mail: jcna@sejong.ac.kr

Received 02 May 2012; Accepted 20 Jun 2012

DOI: 10.5772/50848

© 2012 Kim et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract Autonomous cars control the steering wheel,
acceleration and the brake pedal, the gears and the clutch
using sensory information from multiple sources. Like a
human driver, it understands the current situation on the
roads from the live streaming of sensory values. The
decision-making module often suffers from the limited
range of sensors and complexity due to the large number
of sensors and actuators. Because it is tedious and
difficult to design the controller manually from trial-and-
error, it is desirable to use intelligent optimization
algorithms. In this work, we propose optimizing the
parameters of an autonomous car controller using self-
adaptive evolutionary strategies (SAESs) which co-evolve
solutions and mutation steps for each parameter. We also
describe how the most generalized parameter set can be
retrieved from the process of optimization. Open-source
car racing simulation software (TORCS) is used to test the
goodness of the proposed methods on 6 different tracks.
Experimental results show that the SAES is competitive
with the manual design of authors and a simple ES.

Keywords Autonomous Car, Evolutionary Strategy, Self-
Adaptation

www.intechopen.com

1. Introduction

TORCS (The Open Racing Car Simulator) [1] is an open-
source 3D car racing game which has a GNU license and
has been used as a test bed for many Al (Artificial
Intelligence) algorithms. Because of its realistic 3D
simulation, it has been used for research on intelligent
vehicles, robotics and games. For example, the simulator
has been used in laboratory-level experiments with
human drivers monitoring their brain/body signals [2][3],
behavioural patterns [4] and 3D postures [5]. The
simulator has been used for intelligent transportation
research: the coordination of intelligent vehicles [6],
simulated traffic scenarios [7] and digital human driver
modelling [8].

Since 2008, international game AI competitions have
changed their basic platform from 2D car racing to 3D car
simulation, i.e., TORCS [9]. In competitions, a TORCS
server provides each controller with 79 sensory values of
a simulated car (position of the car on a track, angle
between the car and the track axis, 19 track sensors, speed
sensors, and so on). In particular, the 19 track sensors are

Int J Adv Robotic Sy, 2012, Vol. 9, 73:2012

used to measure the distances between the car and the 19
edges of the track. By default, the sensors sample the
space in front of the car for every 10° angle, spanning

clockwise from -7t/2 up to +m/2 with respect to the car axis.

Each controller receives this sensory information from the
server and sends the values of five actuators (steering
wheel, accelerator, brake, gear and clutch). When the
TORCS server receives the decision of each controller, the
next time step is simulated for the car racing
environments. This interactive process is called a ‘game
tick” in which the server (TORCS) and the client
(controller) repeatedly exchange a UDP packet at every
game tick until the race is completed. In this way, TORCS
is able to offer realistic 3D car racing simulation for
multiple players.

However, developing a sophisticated controller is not a
trivial work. The track sensor values in TORCS a have
limited distance (200m) and, thus, it is impossible to get
the whole track data structure at once. Moreover, a client
program is not supposed to do highly complex
computation because the controller should respond to the
server within the current game tick. On the basis of these
difficulties, developing an excellent racing controller has
been considered a challenging task and has received
much attention lately.

In recent years, many kinds of computational intelligence
methods have been used for developing a sophisticated
controller. Onieva et al, the
championships in both 2009 and 2010, proposed a
parameterized modular architecture with a fuzzy system
and a genetic algorithm [10][11]. Butz et al. developed
their own controller named COBOSTAR and won the
2009 competition held by CEC and CIG [12]. Hoorn et al.
proposed an imitative learning controller, adapting a
multi-objective evolutionary algorithm [13]. Munoz et al.
obtained data (trajectory and speed) from humans and
then trained neural networks [14]. Cardamone et al.
suggested a high-level action prediction model with high-
level information about the track [15]. Seo et al.
developed their own heuristic controller, which drives as
safely as possible [16][17]. They used an ANN (Artificial
Neural Network) and a linear regression to predict the
desired speed in different situations. We call their
controller the “BFB3”, the name of the controller used at
the CIG 2011 competition (5* rank) [16]. Quadflieg et al.
developed a human-readable track recognition system
which enables ‘looking into the next curve’, using a
combination of advanced pre-processing steps and a
simple track-type classifier [18].

winners of the

In this paper, we propose optimizing the parameters of an
autonomous car (Evolutionary
Strategies) and describe how the most generalized
parameter set can be retrieved from the process of

controller using ESs

Int J Adv Robotic Sy, 2012, Vol. 9, 73:2012

optimization. For this, we propose a new controller of

TORCS whose detailed behaviour is governed by a number

of parameters. Our contributions in detail are as follows.

e We propose a new controller for TORCS by
combining BFB3 [17] and Quadflieg et al.’s approach
[18] to provide fast and accurate judgments of
circumstantial situations by pre-processing track
sensor values from a TORCS server. To accelerate in
an accurate and aggressive manner, we modify the
acceleration and brake control part and the steering
control part of the BFB3 by introducing 10 new
parameters and using the curvature information of a
track segment, as in [18].

e We propose optimizing the parameters of our
controller using a simple ES and a self-adaptive ES.
To find the optimized values of the parameters and
use 10+10 ESs. We obtained the track-dependent
optimal parameter sets separately for 6 tracks
(Alpinel, ASpeedway, Cgtrack2, Eroad, Wheell and
Wheel2), ie, 12 optimal parameter sets in total.
Experimental results show that our controller
significantly improves the performance of the BFB3
for the 6 tracks. Moreover, the self-adaptive ES is
better than the simple ES on most tracks.

e We derive the most generalized parameter set from
the process of optimization to develop a practical
track-independent controller. We use intermediate
generations as well as the latest generations
produced during the process of finding the track-
dependent optimal parameter sets. Among the
parameter sets of these generations, we choose the
one which minimizes the sum of the differences of
lap times from track-dependent controllers for the 6
tracks. We experimentally compare the generalized
controller and the BFB3 on 12 tracks.

This paper is organized as follows. Section 2 introduces
the BFB3 that our controller is based on and describes the
weaknesses of the BFB3. In Section 3, we present our
modifications to improve performance of it. Specifically,
we introduce new additional parameters and rules to
enhance the controller and describe our learning
approaches (ES) as applied to optimize our new
parameters. In addition, we present how to derive the
most general parameter set from the solutions found.
Section 4 shows our experimental results, where we give
comparative studies analysing two different learning
approaches and compare the performances of the BFB3,
the track-dependent controller and the track-independent
one. In Section 5, we offer our conclusions.

2. Overview of the BFB3
In this section, we give an overview of the BFB3, which

our proposed controller is based on. The BFB3 follows the
philosophy of “modular architecture” proposed by

www.intechopen.com

Onieva et al. [10]. Figure 1 a) shows the modules making
up the controller. Each module controls the acceleration
and the brake, the steering, gears, etc., of the simulated
car. The most important and complex module is the
acceleration and brake control module composed of
several sub-modules, such as the desired speed module,
the ABS and the TCL module. We present a brief
summary of the desired speed module and the steering

control module, which are modified in our new controller.

We keep the other components intact in our new
controller.

[Car state | | Desired speed | w level gas &
¥ ¥ module | brake control
Accel & o
Steering Gear N
brake control control | Speed adjustment | | ABS & TCL |
control
i ‘L Failure handling
| Car control |
a) Modular architecture

Straight

b) Desired speed module

Figure 1. Basic modular components of BFB3 (SAZ=Speed
Adaptation Zone).

2.1 The desired speed module

The desired speed module determines the Desired_Speed,
which the simulated car tries to reach. This module
mainly uses the values of 19 track sensors, denoted by
track[0], track[1], ..., track[18]. Unlike the default setting of
the TORCS controller, the BFB3 has the customized
angles of track sensors in order to obtain more
information of the front side of the car. Thus, there are a
lot of track sensors on front side of the car, such that the
customized angles are -90°, -1°, -45°, -30°, -25°, -20°, -15°, -
10°, -5°, 0°, 5°, 10°, 15°, 20°, 25°, 30°, 45°, 1° and 90°.

The BFB3 uses different strategies according to the
current situation of the car, which is categorized into
three groups by the value of the centre track sensor (CT,
the 9™ track sensor). Figure 1 b) shows a rough flow chart
of the desired speed module. The Desired_Speed
determined in the desired speed module is used to adjust
the acceleration and brake signal in the speed adjustment
module. The acceleration and brake signal, within the
range of -1 (full brake) ~ 1 (full acceleration), is computed
by the difference between the current speed (speedX) and
the desired speed (Desired_Speed), as follows:

2

Accel & Brake signal = :
(1+ exp(speedX — Desired _Speed))—1

www.intechopen.com

If CT = 150m, the car is considered to be on a “straight”
track segment (i.e., there is no obstacle in front of the car
and it is less at risk of being stuck) and thus the
Desired_Speed is set to the pre-defined MAX_SPEED value,
as follows:

Desired _Speed=MAX _SPEED.

If 70m < CT < 150m, the car is considered to be in a speed
adaptation zone (SAZ), which is a zone for reducing the
speed of the car before a corner, whereby the desired
speed is computed as follows:

(a — prob)x (MAX _SPEED — speedX) x
7. — CT|

T —CT|

Desired _Speed =

min

where @ and prob are parameters, T, = max(track[1],

track[17]), T, = min(track[1], track[17]) and speedX is the

current speed.

Seo et al. tried to retrieve the generalized parameter &
because the behaviour of the BFB3 relies upon the
parameter & [16][17]. They chose & from {0.5, 1.0, 1.5,
2.0,2.5, 3.0, 3.5, 4.0, 4.5, 5.0} and exhaustively searched in
order to find the value of & with the minimum sum of
the lap time as the generalized parameter. In addition, for
more precise speed, the BFB3 predicted the chances of
getting stuck (prob) using an ANN trained by standard
back-propagation algorithms. This
computes a constant real number between 0 and 1 using
four sensors (track[1], track[9], track[17] and speedX). If the
car is less likely to be stuck, the value of prob will be near
to 0 and the car will accelerate in proportion to o .

neural network

Otherwise, it will be near to 1 and the car will accelerate
less because prob is subtracted from ¢« . In this way, the
BFB3 can orient the desired speed with the current
situation.

If CT < 70m, the car is considered to be at a “corner” track
segment and a linear regression analysis is used to
determine the Desired_Speed given the environmental
sensors. In this analysis, 19 track sensors (track[0]~track[18])
and 3 speed sensors (speedX, speedY and speedZ) are used
and their weighted sum is the output of the prediction.
They use a least median squared linear regression and
feature selection algorithms to determine the value of
each feature and the number of features involved in it.
The best linear equation found in this linear regression
analysis uses only 6 sensors (track[1], track[8], track[9],
track[10], track[17], speedX), as follows:

Desired _Speed = 0.0639 x track[1]+1.2619 x track[8] — 0.2008 x track[9]

+1.1424 x track[10]+ 0.1808 x track[17] + 0.3701 x speedX '
-7.9175

Tae Seong Kim, Joong Chae Na and Kyung Joong Kim:

Optimization of an Autonomous Car Controller using a Self-Adaptive Evolutionary Strategy

4

2.2 The steering control module

The basic strategy of the BFB3 for the steering control is to
have the car travel the longest free distance. The steering
control module divides the current situation of the car
into two cases.

If the car is in a straight track segment or a SAZ (i.e.,, CT >
70m), the controller steers the car towards the direction of
the track axis. That is, if the car is leaning toward the
right or left side of the track, the controller forces the car
to move towards the centre of the track. In this case, the
target steering value is as follows:

_ 0.5x (angle — trackPos)
steering /4 4

where “angle” is a degree between the car direction and
the track axis, and “trackPos” is the distance between the
car and the track axis.

If the car is in a corner track segment (i.e., CT < 70m), the
BFB3 steers the car towards the direction of the track
sensor with the greatest value, and the target steering
value is as follows:

T eering = Wlindex]—0.3x trackPos,

where index is the index of track sensor with the greatest
value except for the three sensors (the centre, the
rightmost and the leftmost frack sensors) and w is a
vector of weight values for the track sensors tuned
manually.

1,2

1 —

0,8

Probability
o o o
SRR SEEYCN

(=]

2.3 The weaknesses of the BFB3

Despite the modules mentioned above, we found through
a series of observations that the BFB3 is inefficient for two
reasons. First, the probability prob predicted by the neural
network for a SAZ is excessively large and it makes the
BFB3 run the track in an unnecessarily defensive manner.
Figure 2 shows the variation of the prob value which is
“Wheell.”
measured at every game tick during a single lap. As shown
in the figure, the probability is almost always 0 or 1; values
within the middle range rarely appear. It means that the
neural network is not able to handle the current situation
on a minute level. Furthermore, the BFB3 always
decelerates too much for upcoming corners.

estimated at the track The values were

Secondly, the BFB3 forces the car to move towards the
centre of the track if the value of CT is greater than 70m, i.e.,
the car is in a straight track segment and in a SAZ.
However, this strategy does not coincide with a common
cornering strategy witnessed in real world racing. Figure 3
shows a variation of trackPos estimated at the part of
Wheell (573m ~ 688m). The y-axis represents the position
of the car, 1 and -1 mean that the car is on either of the
edges of the track, and 0 means that the car is in the centre
of the track. From 670m, BFB3 considers the track segment
as a corner and starts to steer the car towards the direction
of the track sensor with the greatest value. As can be seen,
the BFB3 maintains the value of trackPos near to 0 up to
670m and changes its trackPos suddenly when it enters
into the corner. This strategy causes great danger because a
sudden change of steering causes the car to skid. In the real-
world racing, it is common knowledge that car drivers
should prepare for an upcoming corner by moving the car in
the same direction as the corner in advance (see Figure 3).

isas

296

863 1359

1825 2324 2927 3430 3907
Distance from starting point

Figure 2. Variation of probability predicted by ANN during a single lap at Wheell.

Int J Adv Robotic Sy, 2012, Vol. 9, 73:2012

www.intechopen.com

trackPos

0.02 4

1
straight SAZ corner

-0.02 -
-0.04 -
-0.06 -
-0.08 -
-0.1 -
-0.12 4
-0.14 -
-0.16 -
-0.18 -

573 587 600 613 625 637 649 662 675 688

Distance from start (m)

Sensor value

a) BFB3 b) Real-world

Figure 3. Variation of trackPos with the steering control module
of the BFB3 and two different cornering strategies.

3. Proposed Methods for a Generalized Controller

In this section, we give a description of our controller
based on curvature and learning. First, we describe the
modules modified from the BFB3 and then present the
learning approach to determine the parameters used in
our modified controller.

3.1 The modified modules

To overcome the weaknesses of the BFB3, we modify the
two modules - the desired speed module and the
steering control module. We improve the desired speed
module using the curvature information of a track
segment. We first describe how to compute the
curvature of the track segment and then present the
desired speed module and the steering control module
of our modified controller.

3.1.1 The curvature computation

Basically, our computation of the curvature is the same as
the one used in [18]. The curvature is computed using the
track sensors. Because the BFB3 customizes the angles of
track sensors to obtain more information about the track
in front of the car, we choose only 17 track sensors
(excluding track[1] and track[17], whose angles are -1° and
1°, respectively) to obtain the curvature information.

First, we vectorize the 17 track sensors on the 2D polar
coordinate. As they are already known, the angle and scalar

www.intechopen.com

(distance) values of each sensor, the i" track vector §;, can

be defined simply as:

T
-cos(O. x —)x track[i
@ 180) [i]

sin(6, x &) x track][i]

where 6, is the angle of the i"" track sensor (e.g., Gy=0°).

After calculating these 17 track vectors, we derive the outline
vectors from subtraction between two adjacent track vectors
(Figure 4 a)) and compute the angle between two adjacent

outline vectors V; and V, using the inner product of two

vectors and the arccosine function, as follows:

ViV,

v, £V, = arccos(———
[%]

).

The curvature of the upcoming corner is represented by
the sum of the angles between two adjacent outline
vectors.

Composition of the vector

“Cap” of the track
outline vectors

Figure 4. Descriptions of the computation for curvature
information.

For more precise computation of the curvature, however,
we have to carefully choose the track vectors used for the
computation, as in [18]. Figure 4 b) illustrates the negative
effect of some track vectors for the computation of the
curvature. In this figure, it is clear that the dotted outline
vector should be excluded for the computation of the
curvature. To exclude vectors forming the shape of a cap -
like in the figure - we first select the two track sensors
track[l] and track[r] with the greatest value among the left
track sensors (track[0], ..., track[9]) and the right track
sensors (track[9], ..., track[18]) respectively. Next, we use
only the track sensors track[0], ..., track[l], and track[r], ...,
track[18] for the computation.

Tae Seong Kim, Joong Chae Na and Kyung Joong Kim:

Optimization of an Autonomous Car Controller using a Self-Adaptive Evolutionary Strategy

50
45
40
35
30
25
20

Curvature

15
10

296 863 1359 1825

2324 2927 3430 3907

Distance from starting point

Figure 5. Variation of curvature information during a single lap at Wheell.

Figure 5 shows the variation of the curvature values
computed by the method above during a single lap at
Wheell. As can be seen, unlike the probability variation
(Figure 2), the curvature information varies more
frequently. For example, when the car is located at
between 2324m and 2927m of the track, the curvature
values do not exceed 30 but prob is always set to 1. This
comparison means that the BFB3 decelerates greatly, even
in a smooth corner or a SAZ, and cannot accelerate
enough along the type of track which would be
considered straight by a human.

3.1.2 The modified desired speed module

We utilized the curvature C of the track segment to
determine the Desired_Speed more minutely. The
curvature information is used even in the “straight” track
segment. We divided the “straight” track segment of the
desired speed module into three cases. The reason for this
is that the controller needs to accelerate more radically in
this part. In addition, we also defined three new rules for
an SAZ to decrease an overrated probability. When the
car is considered to be in a corner track segment, we do
the same thing as with the BFB3.

In the “straight” track segment, two parameters S1 and Sz
play the role of determining whether or not the car will
be able to accelerate more rapidly (see Figure 6). If C is
smaller than Si, the desired speed is set to
MAX_SPEEDxD:1. If C is smaller than S, it is set to
MAX_SPEEDxDa. Otherwise, it is set to MAX SPEED.
These additional rules and parameters make our
controller more aggressive than the BFB3, especially

Int J Adv Robotic Sy, 2012, Vol. 9, 73:2012

where the track is almost straight. For example, if S1is 3
and D1 is 5, our controller will accelerate 5 times faster
than that of the BFB3 when the curvature value C is
smaller than 3.

If (CT >150m) { // the car is considered to be in a
“straight” track segment

If (C<S1)
Desired_Speed = MAX_SPEEDxD1
Else if (C < S2)
Desired_Speed = MAX_SPEEDxD>
Else
Desired_Speed = MAX_SPEED
}

Figure 6. The desired speed computation for a straight track
segment.

In an SAZ, the curvature value C is not used only for
categorizing the cases but also for determining the
Desired_Speed directly by adjusting prob with C. First, we
divide the current situations into four cases using the
values of prob and C and parameters S3, S« and Ss. Then,
we adjust the value of prob using the curvature C and the
parameters Ds and Da: (see Figure 7). The three
parameters Ss3, Sa and Ss estimate how much prob is
overrated, and Ds and Ds are involved in decreasing the
overrated prob. In this way, we can reduce the
overestimated probability value and prevent the car from
decelerating fully.

www.intechopen.com

If (70m < CT < 150m){
prob = ANN(Sensors);
If (probx100 — C = Ss)

prob = 0;

Else if (probx100 — C > S4)
prob = prob — CxDs;
Else if (probx100 — C 2 Ss)
prob = prob — CxDs;

// Artificial neural network

If (prob < 0)
prob =0;
Desired Speed a—probx(MAX _SPEED —speedX)x|T - tmck[9]‘ .
e o= T, — track[9]
I T, = max(track[1], track[17]), T, . = min(track[1],
track[171])

3.2 Learning approach
3.2.1 Evolutionary strategy

Recently, evolutionary computation has been widely
used to optimize robotic systems: for example, parallel
robotic manipulators [19], motion planning for swarm
robots [20] and humanoid motion planning [21]. We
tuned the 10 new parameters Di~Ds, S1~Ss and O1 to find
the optimal parameter set using an ES. Our first approach
is to find the track-dependent parameter sets for 6 tracks,
namely Alpinel, AspeedWay, Cgtrack2, Eroad, Wheell
and Wheel2, as shown in Figure 9. For this work, we
apply two kinds of ES methods.

Figure 7. The desired speed computation for a SAZ.
3.1.3 The modified steering control module

To improve the steering control module of the BFB3, we
deal with the “straight” track segment and the SAZ
separately, which are processed identically in the BFB3. If
the car is considered in the straight track segment, the
controller keeps the car at the centre of the track axis,
which is the same as the original steering control of the
BFB3. Also, if the car is considered in the corner track
segment, we do the same control as with the BFB3.

A different case from the BFB3 is when the car is
considered in a SAZ. We introduce a new parameter O1in
the steering module to prepare for an upcoming corner in
advance. Due to the parameter O;, the controller may not
force the car to move towards the track axis when the
corner is coming and so the car should not skid too much.
If O1 has a negative value, the controller will move the car
in the opposite direction to the upcoming corner. For
example, if the upcoming corner is right-handed, our
steering control will move the car to the left-edge of the
track. Otherwise, if O1 has a positive value, the car will
move in the same direction as the corner.

// steerLock = m/4
Procedure Get_Target_Steer(){
index = argmax(track[2], track[3], ..., track[16]);
If (CT>150) //in a straight track segment
Tsteering = 0.5%(angle — trackPos)/steerLock;
Else If (70<CT<150) //in a SAZ
Tsteering = O1x(angle — trackPos)/steerLock;
Else // in a corner track segment

Tsteering = w[index] — 0.3xtrackPos;

}

Figure 8. The modified steering control module.

www.intechopen.com

Alpinel ASpeedWay Cgtrack2
C
VA
Eroad Wheell Wheel2

Figure 9. Six tracks used to optimize parameter sets.

The first method is a “simple” 10+10 ES. Initially, we
make 10 individuals for the 1st generation. Each
individual consists of the ten parameters and the initial
value of each parameter is randomly chosen within the
range 0~1. Next, we mutate every individual for the next
generation. For each parameter pi of an individual, its
offspring parameter p'i is defined as follows:

i= 1,...,np,

py=p; N0, 1)
where Ni(0,1) is a standard Gaussian random variable for
the i parameter and 1, is the number of parameters (i.e., 10).

At each generation, 10 new individuals generated by the
mutation are evaluated with a single lap completion time.
Among 20 individuals (the prior 10 individuals and the
new 10 individuals), only the top 10 individuals survive
for the next generation (Figure 10). However, the main
drawback of this simple ES is that some parameters may
increase repeatedly during whole generations.

Tae Seong Kim, Joong Chae Na and Kyung Joong Kim:

Optimization of an Autonomous Car Controller using a Self-Adaptive Evolutionary Strategy

8

Simple 10+10 ES

Initial Generation

K . sets

$ix map-dependent
optimized paramefer

Survived Top 10

Self-adaptive 10+10 ES

5
=
E Six map-dependent
g optimized parameter
—_ sets
=
b=
=
Survived Top 10
Figure 10. Overview of the simple and self-adaptive evolutionary strategy.
Alpinel A-SpeedWay CgTrack2 E-Rozd Whesll Wheel2
W W v ¥ v v
| Gathering 30 generations (300 individuals) |
| Simulating or each of six maps |

Recording lap times of 300 individual on every mao

Computing dif'erences of lap times from map-dependent controilers

Choosing the parameter set whose sum of diff. is minimum

Figure 11. Flowchart for choosing the most general parameter set.

The second method is a “self-adaptive” 10+10 ES. This
method is the same as the simple ES, except for the
mutation operation used. For each individual, we define a
weighted value (wi) for each parameter (pi)) and this
weighted value (the step size of the mutation) is also
mutated during the generations. For each parent p; its
offspring parameter p’i is defined as follows:

w'.=w, +exp(r X N,(0,1)), i=l..,n,
P = p W xN.(0,1), i=l,n,
=0.397635.

1 1
o J2N, 2410

Note that, unlike the simple ES, the self-adaptive ES uses
the two-stage mutation process (Figure 10).

Int J Adv Robotic Sy, 2012, Vol. 9, 73:2012

3.2.2 The generalization of the parameter set

We generalize the parameter set by observing the
behaviour of the optimized controller for each track. The
parameter sets obtained by the learning strategy are
dependent on the tracks and the sets are not practical for
the competition. In order to find a general parameter set,
we gather 30 generations by extracting 5 generations (the
20t the 40%, the 60™, the 80" and the 100%) from 100
generations for the 6 tracks. In other words, we have 300
parameter sets in total. For each selected individual, we
estimate the lap times for the 6 tracks and compute the
sum of the lap time differences from the track-dependent
optimized controllers. Among the 300 parameter sets, we
choose the parameter set with the minimum standard
deviation as the most general parameter set (Figure 11).

www.intechopen.com

4. Experimental results

In this section, we experimentally analyse our controller.
First, we compute parameter sets using the two strategies
and analyse the performance of the controller with the
parameter sets. Next, we generalize the parameter set and
analyse the performance of the controller with the
generalized parameter set.

4.1 Evolutionary strategy

We obtained 12 track-dependent
optimized by the two different learning strategies (the
simple ES and the self-adaptive ES). We produced 100
generations to search the space. Table 1 shows the values
of 12 optimal parameter sets optimized by two learning
strategies for the 6 tracks and the lap times of the BFB3.
As shown in the table, our controller significantly
improved the performance of the BFB3. In addition, the
self-adaptive ES found better parameters than the simple
ES except for the tracks ERoad and Wheel2.

parameter sets

Track- Tracks
dependent |Alpinel | Aspeed | Cgtrack2 | Eroad | Wheel | Wheel
controller Way 1 2

Alpinel 158.49 36.53 64.58| 86.16| 92.85| 133.37

AspeedWay| 161.71 35.27 65.44| 81.43| 91.95| 135.51

Cgtrack2 | 161.75 36.35 64.05| 86.40| 118.99| 134.07

Eroad 161.99 37.77 64.98| 79.54| 91.93| 134.89
Wheell 161.27 37.21 65.06] 82.84| 90.17| 134.71
Wheel2 162.27 37.13 65.11| 80.62| 92.28| 133.03

Alpinel |ASpeedWay| CgTrack2 | ERoad | Wheell | Wheel2
S1| -358 3.95 0.86 -1.35 -1.17 0.31
S2 | -4.50 -0.32 0.09 -1.17 -0.42 1.55
Ss | -0.69 3.39 0.15 1.17 2.66 -0.67
S4 0.85 -2.09 0.08 -3.60 -0.16 -3.94
Ss 3.16 -1.43 0.47 0.14 2.19 -0.42
D1 0.92 4.53 0.80 -1.52 0.58 2.29
D2 | -452 2.06 0.66 -2.05 2.57 2.57
Ds| 0.83 3.59 0.05 -042 | -0.57 2.46
D: | 036 -1.15 0.95 078 | -1.01 0.95
O1 3.14 0.01 0.43 1.49 -0.07 0.11

(a) Track-dependent parameter sets optimized by the simple ES.

Alpinel | ASpeedWay | CgTrack2 | ERoad | Wheell | Wheel2
S1| -0.03 6.43 0.34 3.01 3.24 0.92
S2 2.11 141 0.12 -0.58 0.57 0.70
Ss | -0.90 -5.77 0.71 7.36 12.92 3.33
S+ | 0.67 0.11 1.89 0.93 0.06 1.04
S5 2.21 3.47 0.65 1.20 0.47 2.19
Di| -0.33 19.29 1.37 2.72 9.07 3.03
D2| 145 2.31 0.28 3.17 -5.71 -1.57
Ds | 047 0.28 1.86 0.91 0.31 2.39
Ds| 113 5.59 0.21 -0.02 -0.24 -0.23
O1| -0.01 15.26 -0.01 -0.90 -0.08 2.48

(b) Track-dependent parameter sets optimized by the self-adaptive ES.

Alpinel |ASpeedWay |CgTrack2|ERoad | Wheell | Wheel2
BEB3 | 162.63 | 36.67 6592 | 8825 | 93.34 |139.97
S“ggle 15942 | 3633 6412 | 7930 | 90.63 |132.61
Self-
adaptive| 158.49 | 35.27 64.05 | 7954 | 90.17 |133.02
ES

(c) Lab times of three different controllers on the six tracks. (Bold
means the best one)

Table 1. Results of evolutionary learning

www.intechopen.com

Table 2. Lap times of track-dependent controllers on the six tracks.

Figure 12 shows the comparison of the performance of
the simple ES and the self-adaptive ES over 100
generations. The x-axis represents the generation number
and the y-axis represents the lap time (in seconds). For
CgTrack2 and ERoad, the performance of the two
strategies is similar. For Wheel2, the self-adaptive ES is
worse than the simple ES during the early generations
but the two strategies are almost the same towards the
end of the generations. For the other three tracks, the self-
adaptive ES is better than the simple ES. Consequently,
the self-adaptive ES generally escapes from a local
minimum within a relatively short time and, thus, the
self-adaptive ES is more suitable for learning the track-
dependent optimal controllers than the simple ES.

Table 2 shows the lap times of track-dependent
controllers trained by the self-adaptive ES on the 6 tracks.
Obviously, the parameter set with the best record
(indicated in bold face) for each track is the parameter set
trained on the same track. However, the optimal
parameter set of a particular track may witness shoddy
performance on the other tracks. Specifically, the
controller with the parameter set optimized on the track
“Cgtrack2” ran the track “Wheell” in 118.99 sec, which is
28 sec worse than the parameter set optimized on the
track “Wheell.” Therefore, we need to find the general
parameter set to make a practical track-independent
controller.

4.2 Extracting the general parameter set

We generalized the parameter sets using the method
described in Section 3.2. We used the self-adaptive ES for
the generalization. Table 3 shows the top 5 individuals
(parameter sets) from the search space of the self-
adaptive ES whose sum of differences are the least. We
denote the name of the parameter set by its generation
number, <track
name>_<generation number>_<individual number>. In
our experiment, the best parameter set was Wheell_100_8
and the second was Wheel2_20 1.

number and individual such as

Tae Seong Kim, Joong Chae Na and Kyung Joong Kim:

Optimization of an Autonomous Car Controller using a Self-Adaptive Evolutionary Strategy

—— Aspeedway_Simple

41 A
40 -
39 A
38 -

1me

36 -
35 A
34 A
33 A

Lapt

37 s

AspeedWay SA

32

T T T T T T T T 1

0 10 20 30 40 50 60 70 80 90

——Cgtrack2 Simple

66 -
65,5 -

Generation

Cgtrack2 SA

0 10

20 30 40 50 60 70 80 90
Generation

—— Alpinel_Simple

——Eroad_Simple

88
86

Alpinl_SA

T T T T T T T T T

0 10 20 30 40 50 60 70 80 90
Generation

Eroad SA

T T T T T T T T T

0 10 20 30 40 50 60 70 80 90

Generation

= Wheell Simple Wheell SA ——Wheel2 Simple Wheel2 SA
94 - 137 -
93 _: 136 -
o " % 4
oo g \
by * 134
g1 - — g .
- =~ 133 -
90 - 132 -
89 T T T T T T T T T 131 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Generation Generation
Figure 12. Variation for the average performance of the simple ES and the self-adaptive ES.

Param. set Alpinel ASpeedWay CgTrack2 | Eroad | Wheell | Wheel2 | Sum of diff. | Stddew.
Optimized 158.49 35.27 64.05 79.54 90.17 133.03 0 0
Wheell_100_8 160.49 37.25 65.15 78.33 90.69 134.91 6.28 1.14
Wheel2_20_1 159.93 36.75 65.02 80.29 91.68 133.19 6.31 0.49
Alpine_20_6 160.47 37.13 64.43 79.19 92.06 134.53 7.25 0.89
Alpine_80_9 159.85 37.05 65.68 80.00 91.42 134.55 8.00 0.43
Alpine_100_3 158.89 36.75 64.95 81.19 92.21 134.59 8.04 0.54

Table 3. Lap times of the track-dependent parameter sets and the 5 most general parameter sets.

10 IntJ Adv Robotic Sy, 2012, Vol. 9, 73:2012

www.intechopen.com

EBFB3

100 8 BWheel2 20 1

OOptimized &Wheell

| | | _ | _ [
A
122 R p—
B ey %
= o
W o S L L LA L B S A R A T A\@
s s %ow»
L S,
WAL LLLLLLLLLLLLLLLLLLLLLLSL LSS, %
- % ¥
A A AN AR AR AN EANE004400Y % &
=
I 9
“ @ m@@
L /M ,AW
m
@ 2y
o Omu
R e N N] ,\
5]
o m m T T ﬂaW»
= 5)
= o %
B =< [5) ,AW
: 2 R
~
b = 2,
S55555555555555555555% M (i3] .\&
=
B0 SIS &
@) OO_ S50 55555555555 55555555555 55% \\%
o
S ANO
i | 0
>
N = 5 5
fimninnty 2 3 Y
5555500500558 5 = ~0©
O = o
“)
n_u m H555555 55555555 55555555% \ﬁm.u Q
<
n\;\;\;\;\;\;\;\;\;\;\;\;\.ﬂm
— t
Q
R
=]
i <

180

T T [1

T T T T T T
[} [l (= (= (=] (=) [
N [} 0 O < N
—

160
140

o o o o o o o o o @Ww
= © < N = 0 © < N o»ou
(99s) owny de (99s)owny de

"

Tae Seong Kim, Joong Chae Na and Kyung Joong Kim:

Optimization of an Autonomous Car Controller using a Self-Adaptive Evolutionary Strategy

Track name

Figure 13. Comparison of the BFB3, track-dependent controllers and two generalized controllers at the six training tracks and other

www.intechopen.com

tracks.

Name S1 S2 S3 S Ss

Value 5.89 1.47 -1.43 2.69 2.08
Name D1 D: Ds D4 O1
Value 11.43 -10.38 0.30 0.00 -0.09

(a) Wheel1_100_8.

Name S1 S2 Ss S4 Ss
Value 1.61 0.70 3.12 1.07 1.38
Name D1 D> Ds D4 O1
Value 2.74 -1.83 3.06 -0.28 1.63

(b) Wheel2_20_1.

Table 4. Values of the parameter set

The values of the parameter set Wheell_100_8 are given
in Table 4. Even though we used the 10 parameters, only
four parameters are meaningful. First, 52 and D2 of the
straight track segment are never used in the desired
speed module because Si is larger than Sz (see Figure 6).
Second, in a SAZ, only Ss is used and prob is always set to
0 because S3 is negative. That is, the controller with the
parameter set Wheell _100_8 does not require the
prediction of an ANN. Consequently, the controller with
Wheell_100_8 only uses four parameters (S1, D1, S3 and
O1). Similarly, the second best parameter set Wheel2_20_1,
given in Table 4, uses 6 parameters (S1, D1, Ss, Ss, D3 and
O1) and the value of prob is still not used. Although
Wheel2_20_1 does not use four parameters (Sz, Ss, D2 and
Da), it corresponds with our design intention because it
still requires the prediction of an ANN.

To test the generality of the two parameter sets, we
compared the four controllers: the generalized controller
with Wheell_100_8, the generalized controller with
Wheel2 _20_1, the optimal track-dependent controller,
and the BFB3. The performance of each controller was
measured upon the elapsed time to complete a single lap
and the comparisons were carried out for the 6 tracks,
Alpinel, ASpeedWay, Cgtrack2, Eroad, Wheell and
Wheel2 (see Figure 13). Both the controllers with
Wheell_100_8 and Wheel2_20_1 performed in a manner
which was worse on average than the track-dependent
controller, but they were always better than the BFB3.

Although these generalized parameter sets are not
dependent on a particular track, it may bring out slightly
lower performance on several tracks because these
parameter sets are still subordinate to the 6 tracks. Figure
13 shows the lap times on twelve TORCS tracks other
than the 6 tracks used in the ES. Our controller is not
always better than the BFB3 on some tracks which were
not considered in our research. On only one track
(CgSpeedWayl), the controller with Wheell_100_8 had
the best record among the three controllers. On three
tracks (Etrack2, Etrack3 and Ruudskogen), Wheel2_20_1
was the best. On four tracks (BSpeedWay, CSpeedWay,
DSpeedWay and ESpeedWay), the lap times of the
controllers were almost similar. On the other four tracks,
the BFB3 was the best.

—<— Modified controller = BFB3

0,02

straight SAZ

® e e I T
~

-0,02
-0,04

-0,06
-0,08

20,1

TrackPos

-0,12
-0,14

-0,16

-0,18
-0,2

573 587 600 613 626

640 653 666 680

Distance from start

Figure 14. Variations for the values of trackPos by two different steering control modules.

12 IntJ Adv Robotic Sy, 2012, Vol. 9, 73:2012

www.intechopen.com

a www boreserg
) =

o

-=3
| T—

E EEEEEEEEE

& G

BFB3

b)
9 5=
- @e
._ % . /\
d) [’ | —

E EEEEEEE

W tevaserg |

[e——

. toresorg

Our controller

Figure 15. Two series of screenshots at Eroad.

www.intechopen.com

Optimization of an Autonomous Car Controller using a Self-Adaptive Evolutionary Strategy

Tae Seong Kim, Joong Chae Na and Kyung Joong Kim:

13

We also compared the steering strategies of our controller
and the BFB3 in SAZs. Figure 14 shows the variations of
the trackPos values with our modified steering control
module and the original steering control module of the
BFB3 at a part of Wheell (573m~688m). We used the
generalized parameter set Wheell _100_8 for our
controller. The track segment between 588m and 667m is
considered as an SAZ in both controllers. Unlike the
variation of the BFB3, our controller moved the car
gradually in the same direction as the upcoming corner in
the SAZ to prevent it from skidding. This shows that the
BFB3 is more likely to be stuck at the sharp corner due to
the drastic variation of the trackPos value.

Figure 15 shows a series of screenshots of the BFB3 (to the
left) and our controller (to the right) at a corner of the
track “Eroad”. In Figure 15 b), our controller moved the
car to a position closer to the inner side of the track than
the BFB3 and it skidded relatively less than the BFB3
(Figure 15 c)). As a result, the BFB3 bumped the car
against a track fence but our controller passed the corner
smoothly (Figure 15 d)).

5. Conclusion and Future Works

In this paper, we proposed our new controller on the
basis of the established controller, the BFB3 [17]. For this
work, we modified the original desired speed module
and the steering control of the BFB3 and utilized the
curvature information. In addition, we defined additional
rules and new parameters to improve the desired speed
module and the steering control module. Moreover, we
optimized the parameters using the simple ES and the
self-adaptive ES method, and extracted the most general
parameter set from the partial search space of the ES. As a
result, our proposed controller can always drive faster
than the BFB3 when it comes to the 6 tracks (Alpinel,
AspeedWay, Cgtrack2, Eroad, Wheell and Wheel2). In
addition, it reduces the time and effort for tuning the
parameters of the manually designed controller.

Although this generalized parameter set is not dependent
on a particular track, it may bring about slightly low
performance on several tracks except for the 6 tracks. This
is because is still
subordinate to the set of the 6 tracks. However, we have
supposed that if the set of tracks is extended enough, it
will be able to obtain the more generalized parameter set
through our method. In this work, we use if-then rules to
represent the control mechanisms for the autonomous car,
but there are several alternatives. For example, a type-1
and type-2 fuzzy logic controller can handle uncertainty
and vagueness in the area of robotic control [22][23]. In
particular, the type-2 fuzzy logic controller is promising
in relation to the design of accurate control systems, but it
requires additional parameters to be optimized
[24][25][26].

the generalized parameter set

14 IntJ Adv Robotic Sy, 2012, Vol. 9, 73:2012

6. Acknowledgements

Joong Chae Na, the corresponding author, was supported
by the Basic Science Research Programme through the
National Research Foundation of Korea (NRF) funded by
the Ministry of Education, Science and Technology (2012-
0003214). The co-author, Kyung-Joong Kim, was
supported by the Basic Science Research Programme and
the National Research Program for Brain Science through
the National Research Foundation of Korea (NRF) and
funded by the Ministry of Education, Science and
Technology (2012-0001749, 2012-0005799).

7. References

[1] TORCS, http://torcs.sourceforge.net/.

[2] S. Haufe, M.S. Treder, M.F. Gugler, M. Sagebaum, G.
Curio, B. Glankertz (2011) EEG potentials predict
upcoming emergency brakings during simulated
driving. Journal of Neural Engineering. Available:
http://iopscience.iop.org/1741-2552/8/5/056001.

[3] P.V.D.Haak, R.V. Lon,].V.D. Meer, L. Rothkrantz (2010)
Stress assessment of car-drivers using EEG-analysis.
Proceedings of the 11" International Conference on
Computer Systems and Technologies. pp. 473-477.

[4] M.-L. Toma, D. Datcu (2012) Determining car driver
interaction intent through analysis of behavior
patterns. IFIP Advances in Information and
Communication Technology 372: 113-120.

[5] C.Tran, M.M. Trivedi (2010) Towards a vision-based
system exploring 3D driver posture dynamics for
driver assistance: Issues and possibilities. IEEE
Intelligent Vehicles Symposium. 179-184.

[6] F. Wang, M. Yang, R. Yang (2009) The intelligent
vehicle coordination of the cybernetic transportation
system. International Journal of Advanced Robotic
Systems 6: 53-58.

[7] D. Meyer-Delius, C. Plagemann, W. Burgard (2009)
Probabilistic situation recognition for vehicular
traffic scenarios. IEEE International Conference on
Robotics and Automation. pp. 459-464.

[8] M. Eilers, C. Moebus, (2010) Learning of a Bayesian
autonomous driver mixture-of-behaviors (BAD MoB)
model. 1% International Conference on Applied
Digital Human Modeling.

[9] D. Loiacono et al., (2008) The WCCI 2008 simulated
car racing competition. Proceedings of the IEEE
Symposium on Computational Intelligence and
Games. pp. 119-126.

[10] E. Onieva, D.A. Pelta, J. Alonso, V. Milanes,]. Pere
(2009) A modular parametric architecture for the
TORCS racing
Computational Intelligence and Games. pp. 256-262.

[11] E. Onieva, J. Alonso, J. Perez, V. Milanes, T. de
Pedro (2009) Autonomous car fuzzy control modeled
by iterative genetic algorithms. IEEE International
Conference on Fuzzy Systems. pp. 1615-1620.

engine. IEEE Symposium on

www.intechopen.com

[12] M.V. Butz, T.D. Lonneker (2009) Optimized
sensory-motor couplings plus strategy extensions for
the TORCS car racing challenge. IEEE Symposium on
Computational Intelligence in Games. pp. 317-324.

[13] N.V. Hoorn, J. Togelius, D. Wierstra, J.
Schmidhuber (2009) Robust player imitation using
multiobjective evolution. Proceedings of the 11th
Conference on
Computation. pp. 652-659.

[14] J. Munoz, G. Gutierrez, A. Sanchis (2010) A human-
like TORCS controller for the simulated car racing
championship. IEEE International Conference on
Computational Intelligence and Games. pp. 473-480.

[15] L. Cardamone, D. Loiacono, P. L. Lanzi (2009)
Learning drivers for TORCS through imitation using
supervised methods. IEEE Symposium on
Computational Intelligence and Games. pp. 148-155.

[16] J. Seo,]. Park, J. Lee, K. Kim (2010) Designing robust
robotic car controllers based on artificial neural

Congress on Evolutionary

network. International Conference on Convergence &
Hybrid Information Technology. pp. 183-190.

[17] K. Kim, J. Seo, J. Park, J. C. Na (2012) Generalization
of TORCS car racing controllers with artificial neural
networks and regression analysis.
Neurocomputing 88: 87-99.

[18] J. Quadflieg, M. Preuss, O. Kramer, G. Rudolph
(2010) Learning the track and planning ahead in a car
racing controller. IEEE International Conference on
Computational Intelligence and Games. pp. 395-402.

[19] A.M. Lopes, E.J. Solteiro Pires, M.R. Barbosa (2012)
Design of a parallel robotic manipulator using
evolutionary computing. International Journal of
Advanced Robotic Systems 9:1-13.

linear

www.intechopen.com

[20] C.-C. Lin, K.-C. Chen, and W.-]J. Chuang (2012)
Motion planning using a evolution
algorithm for swarm robots. International Journal of
Advanced Robotic Systems 9:1-9.

[21] X. Wang, T. Lu, P. Zhang (2012) State generation
method for humanoid motion planning based on
genetic algorithm. International Journal of Advanced
Robotic Systems 9:1-8.

[22] L. Astudillo, O. Castillo, L.T. Aguilar, R. Martinez-
Soto (2007) Hybrid control for an autonomous
wheeled mobile robot under perturbed torques.
International Fuzzy Systems Association World
Congress. pp. 594-603.

[23] R. Martinez-Soto, O. Castillo, L.T. Aguilar (2009)

type-2 fuzzy logic

controllers for a perturbed autonomous wheeled

memetic

Optimization of interval
mobile robot using genetic algorithms. Information
Sciences 179(13): 2158-2174.

[24] N.R. Cazarez-Castro, L.T. Aguilar, O. Castillo (2010)
Fuzzy logic control with genetic membership
function parameters optimization for the output
regulation of a servomechanism with nonlinear
backlash. Expert Systems with Application 37(6):
4368-4378.

[25] O. Castillo, P. Melin, A.A. Garza, O. Montiel, R.

Sepulveda (2011) Optimization of interval type-2

fuzzy logic controllers using evolutionary algorithms.

Soft Computing 15(6): 1145-1160.

[26] O. Castillo, R. Martinez-Marroquin, P. Melin, F.
Valdez,]. Soria (2012) Comparative study of bio-
inspired algorithms applied to the optimization of
type-1 and type-2 fuzzy controllers for an autonomous
mobile robot. Information Sciences 192: 19-38.

Tae Seong Kim, Joong Chae Na and Kyung Joong Kim:

Optimization of an Autonomous Car Controller using a Self-Adaptive Evolutionary Strategy

15

