
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005 615

Systematically Incorporating Domain-Specific
Knowledge Into Evolutionary Speciated

Checkers Players
Kyung-Joong Kim, Student Member, IEEE, and Sung-Bae Cho, Member, IEEE

Abstract—The evolutionary approach for gaming is different
from the traditional one that exploits knowledge of the opening,
middle, and endgame stages. It is, therefore, sometimes inefficient
to evolve simple heuristics that may be created easily by humans
because it is based purely on a bottom-up style of construction.
Incorporating domain knowledge into evolutionary computation
can improve the performance of evolved strategies and accelerate
the speed of evolution by reducing the search space. In this paper,
we propose the systematic insertion of opening knowledge and an
endgame database into the framework of evolutionary checkers.
Also, the common knowledge that the combination of diverse
strategies is better than a single best one is included in the middle
stage and is implemented using crowding algorithm and a strategy
combination scheme. Experimental results show that the proposed
method is promising for generating better strategies.

Index Terms—Checkers, combination, domain knowledge,
endgame database, opening knowledge, speciation.

I. INTRODUCTION

S INCE THE beginning of the computer age, people have
been eager to create an intelligent game program capable

of defeating human experts. Many different approaches have
been used for different games including neural networks for
backgammon [1], special-purpose hardware called Deep Blue
for chess [2], and the application of expert knowledge with rel-
atively small computational power for checkers [3] and Othello
[4]. Most of these techniques exploit expert knowledge as much
as possible, such as the proper learning algorithm for training
the evaluation function, relevance factors for the evaluation, the
weights of the evaluation factors, opening knowledge, and an
endgame database. Acquiring such knowledge requires the help
and advice of game experts, computational power for processing
the knowledge extracted, and a process of trial and error to find
the best overall approach. By using many programmers and
players, expert knowledge can be digitalized and be made ac-
cessible through the Internet.

Traditional methods for developing strategies for games such
as checkers and chess divide the game into opening, middle, and
endgame stages. For each stage, a different heuristic is applied.
For example, it is very difficult to determine the most appro-
priate choice in the opening stage of a game, so the use of an

Manuscript received August 29, 2004; revised January 17, 2005 and May 22,
2005. This work was supported in part by the Brain Science and Engineering
Research Program sponsored by Korean Ministry of Commerce, Industry, and
Energy.

The authors are with the Department of Computer Science, Yonsei University,
Seoul 120-749, Korea (e-mail: kjkim@cs.yonsei.ac.kr; sbcho@cs.yonsei.ac.kr).

Digital Object Identifier 10.1109/TEVC.2005.856213

opening book from games played by experts is beneficial. In the
middle stage, a game tree with a limited depth is constructed
and a heuristic evaluation function is applied to estimate the rel-
evance of each move. Finally, in the end game, the number of
pieces (or possible moves) becomes reasonably small and deter-
ministic calculation of the final moves is possible.

In checkers, the typical approach uses a computer program
to search a game tree to find an optimal move at each play,
but there are challenges in overcoming an expert’s experience
in the opening, middle, and endgame stages. Sometimes a
computer checkers program fails to defeat a human player
because it makes a mistake that is not common among human
players. Sometimes the fault is discovered by the computer
program after searching beyond the predefined depth of the
game tree (a so-called “horizon effect”). To defeat the best
human players, Chinook (the best computer checkers program)
uses an opening book, and most importantly, the endgame
database. Also, Chinook relies on expert knowledge that is
captured in an evaluation function, which is used in the middle
stage. Chinook’s success is based largely on traditional game
theory mechanics (game tree and alpha-beta search) and expert
knowledge (opening book, components in evaluation function,
and endgame database).

Recently, evolutionary induction of game strategies has
gained popularity because of the success reported in [5] using
the game of checkers. This approach does not need additional
prior knowledge or expert heuristics for evolving strategies
and expert-level strategies have evolved from the process
of self-play, variation, and selection. In other games such
as Othello [6], [7], blackjack [8], Go [9], chess [10], and
backgammon [11], the evolutionary approach has been applied
to discover better strategies without relying on human expe-
rience. Usually, opening knowledge and endgame databases
are not involved in the evolutionary process because a re-
searcher wants to investigate the possibility of pure evolution
[5]. However, it might take a long evolution time to create a
world-level champion program without a predefined knowledge
base. It took six months (using a Pentium II machine) to evolve
the checkers program rated at the expert level by Fogel and
Chellapilla [25], and it would take even longer time to evolve
the world-level champion program.

Incorporating a priori knowledge, such as expert knowledge,
metaheuristics, human preferences, and most importantly, do-
main knowledge discovered during evolutionary search, into
evolutionary algorithms (EAs) has gained increasing interest in
recent years [12]. In this paper, we propose a method for system-
atically inserting expert knowledge into evolutionary checkers

1089-778X/$20.00 © 2005 IEEE

616 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

Fig. 1. Conceptual diagram of the proposed method. Game organizer decides the usage of the opening DB, game tree, and the endgame DB.

framework [5] at the opening, middle, and endgame stages. In
the opening stage, openings defined by the American Checkers
Federation (ACF) are used. In previous work, we have used spe-
ciation techniques to search for diverse strategies that embody
different styles of game play and have combined them using
voting for higher performance [13], [14]. This idea comes from
the common knowledge that the combination of diverse well-
playing strategies can defeat the best one because they can com-
plement each other for higher performance. Finally, we have
used an endgame database from Chinook, the first man-machine
checkers champion. Fig. 1 explains the conceptual framework of
the proposed method.

The idea of this paper is the systematic incorporation of three
knowledge domains (opening database (DB), middle stage
knowledge, and endgame DB) into an evolutionary checkers
players with a speciation algorithm in the middle stage and a
predefined rule for using an endgame DB. The middle stage
knowledge comes from the Korean event in the game of Go. In
2003, the Internet site TYGEM (http://www.tygem.co.kr) held
a many-to-one style game between Hoon Hyun Cho, one of the
greatest Go players, and 3000 amateur players. The winner of
the game was Cho. After the game, he said that it was a very
difficult game because the amateur players did not make any
obvious mistake. A speciation algorithm is used to simulate the
effect of many amateur players in our evolutionary checkers
program.

The rest of this paper is organized as follows. Section II de-
scribes the background including the research on evolution and
games. Section III applies speciation to the evolution process
and presents the knowledge insertion method. Section IV de-
scribes the experimental results and analysis.

II. BACKGROUND

A. Checkers

Checkers is traditionally played on an eight-by-eight board
(see Fig. 2) and there are two players (“red” and “white”). Each
player has 12 pieces (checkers) and the red player moves first.
Checkers are allowed to move forward diagonally one square at

Fig. 2. Opening board in a checkers game. Red moves first.

a time. In the case that a jump condition is satisfied, one can
jump diagonally over an opposing checker and the opposing
checker is removed. Jumps are mandatory. When a checker ad-
vances to the last row of the board, it becomes a king and can
move diagonally one square at a time in any direction. The game
ends when a player has no more available moves (that player
without moves is the loser) and the game can also end when one
side offers a draw and the other accepts.

Checkers has a smaller search space than chess, approxi-
mately 5 10 positions versus O 10 for chess [36]. The
search space is small enough that one could consider solving
the problem. Chinook, one of the best checkers program, has
not solved the game but it is playing at a level that makes it
almost unbeatable. The average number of moves to consider

KIM AND CHO: SYSTEMATICALLY INCORPORATING DOMAIN-SPECIFIC KNOWLEDGE INTO EVOLUTIONARY SPECIATED CHECKERS PLAYERS 617

in a checkers position (called the branching factor) is less
than that for chess. A typical checkers position without any
captures has eight legal moves (for chess it may be 35–40). As
a result, checkers programs can search deeper than their chess
counterparts. Checkers provides an easier domain to work with,
and provides the same basic research opportunities as does
chess or Go.

B. Traditional Game Programming

A game can usually be divided into three general phases: the
opening, the middle game, and the endgame. Entering thousands
of positions in published books into the program is a way of cre-
ating an opening book. The checkers program Colossus has a
book of over 34 000 positions that were entered manually [15].
A problem with this approach is that the program will follow
published play, which is usually familiar to the humans [16].
Without using an opening book, some programs find many in-
teresting opening moves that stymie a human quickly. However,
they can also produce fatal mistakes and enter a losing config-
uration quickly because a deeper search would have been nec-
essary to avoid the mistake. Humans have an advantage over
computers in the opening stage because it is difficult to quan-
tify the relevance of the board configuration at an early stage.
To be more competitive, an opening book can be very helpful
but a huge opening book can make the program inflexible and
without novelty.

One of the important parts of game programming is to design
the evaluation function for the middle stage of the game. The
evaluation function is often a linear combination of features
based on human knowledge, such as the number of kings,
the number of checkers, the piece differential between two
players, and pattern-based features. Determining components
and weighting them requires expert knowledge and a long
trial-and-error tuning. Attempts have been made to tune the
weights of the evaluation function through automated pro-
cesses, by using linear equations, neural nets, and EAs and can
compete with hand-tuning [17], [18].

In chess, the final outcome of most games is usually decided
before the endgame and the impact of a prepared endgame data-
base is not particularly significant. In Othello, the results of the
game can be calculated in real-time if the number of empty
spaces is less than 26. In these two games, the necessity of the
endgame database is very low but in checkers, the usage of an
endgame database is extremely beneficial. Chinook has perfect
information for all checkers positions involving eight or fewer
pieces on the board, a total of 443,748,401,247 positions. These
databases are now available for download. The total download
size is almost 2.7 GB (compressed) [19]. Recently, the construc-
tion of a ten-piece database has been completed.

C. Evolution and Games

Checkers is the board game for which evolutionary compu-
tation has been used to evolve strategies. Fogel et al. have ex-
plored the potential for a coevolutionary process to learn how to
play checkers without relying on the usual inclusion of human
expertise in the form of features that are believed to be impor-
tant to playing well [20]–[23]. After only a little more than 800

TABLE I
SUMMARIZATION OF RELATED WORKS IN EVOLUTIONARY GAMES

generations, the evolutionary process generated a neural net-
work that can play checkers at the expert level as designated
by the U.S. Chess Federation rating system. In a series of six
games with a commercially available software product named
“Hoyle’s Classic Games,” the neural network scored a perfect
six wins [24]. A series of ten games against a “novice-level” ver-
sion of Chinook, a high-level expert, resulted in two wins, four
losses, and four draws [25].

Othello is a well-known and challenging game for human
players. Chong et al. applied Fogel’s checkers model to Othello
and reported the emergence of mobility strategies [6]. Wu et al.
used fuzzy membership functions to characterize different
stages (opening game, mid-game, and end-play) in the game
of Othello and the corresponding static evaluation function
for each stage was evolved using a genetic algorithm [7].
Moriarty et al. designed an evolutionary neural network that
output the quality of each possible move at the current board
configuration [26]. Moriarty et al. evolved neural networks to
constrain minimax search in the game of Othello [27], [28]. At
each level, the network saw the updated board and the rank of
each move and only a subset of these moves was explored.

The symbiotic, adaptive neuroevolution (SANE) method
was used to evolve neural networks to play the game of Go
on small boards with no preprogrammed knowledge [9].
Stanley et al. evolved a roving eye neural network for Go
to scale up by learning on incrementally larger boards, each
time building on knowledge acquired on the prior board [29].
Because Go is very difficult to deal with, they used a small size
board, such as 7 7, 8 8, or 9 9. Lubberts et al. applied
competitive coevolutionary techniques of competitive fitness
sharing, shared sampling, and a hall of fame to the SANE neu-
roevolution method [30]. Santiago et al. applied an enforced
subpopulation variant of SANE to Go and an alternate network
architecture featuring subnetworks specialized for certain board
regions [31].

Barone et al. used EAs to learn to play games of imperfect
information—in particular, the game of poker [32]. They iden-
tified several important principles of poker play and used them

618 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

Fig. 3. Flow of the game using the proposed method. Each evolutionary artificial neural network (EANN) evaluates the terminal nodes of the game tree and the
voting of the neural networks determines the final move.

as the basis for a hypercube of evolving populations. Coevolu-
tionary learning was used in backgammon [11] and chess [10],
[18]. Kendall et al. utilized three neural networks (one for split-
ting, one for doubling down, and one for standing/hitting) to
evolve blackjack strategies [8]. Fogel reported the experimental
results of evolving blackjack strategies that were performed
about 17 years ago in order to provide some baseline for
comparison and inspiration for future research [33]. Ono et al.
utilized coevolution of artificial neural networks on a game
called Kalah and the technique closely followed the one used
by Chellapilla and Fogel to evolve the successful checkers
program Anaconda (also known as Blondie24) [34]. Table I
summarizes the related works. Fogel’s checkers framework
has been used in other games such as [6], [8], [18], and [34].

Fig. 4. Upward propagation of the evaluated value through game tree using
min/max operations.

Fogel et al. applied the framework to the game of chess and
reported that the evolved program performed above the master
level [18].

KIM AND CHO: SYSTEMATICALLY INCORPORATING DOMAIN-SPECIFIC KNOWLEDGE INTO EVOLUTIONARY SPECIATED CHECKERS PLAYERS 619

Fig. 5. Example of board representation. Minus means the opponent checkers andK means the King. The value ofK is evolved with the neural networks.

Fig. 6. Example of 6� 6, 4� 4, and 3� 3 subboards. In a checkerboard, there are 91 subboards (36 3� 3 subboards, 25 4� 4 subboards, 16 5� 5 subboards,
9 6� 6 subboards, 4 7� 7 subboards, and 1 8� 8 subboards). This design provides spatial local information to the neural networks.

III. INCORPORATING KNOWLEDGE INTO

EVOLUTIONARY CHECKERS

As mentioned before, we have classified a single checkers
game into three stages: opening, middle, and endgame stages.
In the opening stage, about 80 previously summarized openings
are used to determine the initial moves. In the middle stage, a
game tree is used to search for an optimal move and an evo-
lutionary neural network is used to evaluate leaf nodes of the
tree. In the neural network community, it is widely accepted that
the combination of multiple diverse neural networks can outper-
form the single network [35]. Because the fitness landscape of

an evolutionary game evaluation function is highly dynamic, a
speciation technique such as fitness sharing is not appropriate. A
crowding algorithm that can cope with a dynamic landscape is
adopted for generating more diverse neural network evaluation
functions. The performance of evolutionary neural networks for
creating a checkers evaluation function has been demonstrated
by many researchers [5]. In the end game, an endgame database
is used which indicates the result of the game (win/loss/draw)
if the number of remaining pieces is smaller than a predefined
number (usually from 2 to 10). Fig. 3 shows the procedural flow
of the proposed method in a game.

620 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

A. Opening Stage

The opening stage is the most important opportunity to defeat
an expert player because trivial mistakes in the opening can
lead to an early loss. The first move in checkers is played by red
and there are seven choices (9-13, 9-14, 10-14, 10-15, 11-15,
11-16, and 12-16). These numbers refer the labels on the board
in Fig. 2 and the X-Y means red moves a piece from position X
to position Y. Usually, 11-15 is the best move for red but there
are many other alternatives. They are described with specific
names, such as Edinburgh, Double Corner, Denny, Kelso, Old
Faithful, Bristol, and Dundee, respectively. For each choice,
there are many well-established additional sequences which
range in length from 2 to 10. The longest sequence is described
as the White Doctor: 11-16, 22-18, 10-14, 25-22, 8-11, 24-20,
16-19, 23-16, 14-23, 26-19. Careful analysis over decades
of tournament play has proven the usefulness or fairness of
the opening sequences. Initial sequences are decided by the
opening book until the move is out of the book. Each player
chooses its opening randomly and the seven first choices have
the same probability to be selected as an opening.

If the first move is 9-13 (Edinburgh), there are eight openings
that start from 9-13. They are Dreaded Edinburgh (9-13, 22-18,
6-9), Edinburgh Single (9-13, 22-18, 11-15), The Garter Snake
(9-13, 23-19, 10-15), The Henderson (9-13, 22-18, 10-15), The
Inferno (9-13, 22-18, 10-14), The Twilight Zone (9-13, 24-20,
11-16), The Wilderness (9-13, 22-18, 11-16), and The Wilder-
ness II (9-13, 23-18, 11-16). In this case, there are four choices
for the second moves: 22-18, 23-19, 24-20, and 23-18. The
second move is chosen randomly and the next moves are se-
lected continually in the same manner.

B. Evolutionary Checkers

1) Concept of a Game Tree: To find the next move of a
player, a game tree is constructed with a limited depth. Each
node in a game tree represents the configuration of the board
at some stage of the game. The quality of the terminal nodes
is measured with the evaluator. The evaluated values of the ter-
minal nodes propagate upward using min/max operations. The
max operation chooses the max value of all children nodes and
the min operation chooses the min value. The current config-
uration of the board is represented as a root node and the arc
represents a move. At an odd number level, the max operation is
used and vice versa. Fig. 4 describes the procedure for a two-ply
example.

2) Evaluation of a Board Configuration: Usually, an eval-
uation function is the linear sum of the values of relevant fea-
tures selected by experts. The input of the evaluation function
is the configuration of the board and the output of the function
is a value of quality. Designing the function manually requires
expertise in the game and tedious trial-and-error tuning. Some
features of the board evaluation function can be modeled using
machine learning techniques such as automata, neural networks,
and Bayesian networks. There are some problems for learning
the evaluation function such as determining the architecture of
the model and transformation of the configuration into numer-
ical form.

Fig. 7. Architecture of neural network. It is fully connected in the
hidden layers. One subboard is transformed into the corresponding vector
representation and used for the input of the neuron. The number of neurons is
followed from [5]. The output of the neural network indicates the quality of the
board configuration.

3) Neural Networks for Evaluation: The feed-forward
neural network, which has three hidden layers comprising 91
nodes, 40 nodes, and 10 nodes, respectively, is used as an
evaluator. The board configuration is an input to the neural
network that evaluates the configuration and produces a score
representing the degree of relevance of the board configuration.
For evaluation, the information of the board needs to be trans-
formed into the numerical vectors. Following Fogel [5], each
board is represented by a vector of length 32 and components
in the vector could have a value of , where

is the value assigned for a king, 1 is the value for a regular
checker, and 0 represents an empty square. Fig. 5 describes the
representation of board.

For reflecting spatial features of the board configuration, sub-
boards of the board are used as an input. One board can have
36 3 3 subboards, 25 4 4 subboards, 16 5 5 subboards,
9 6 6 subboards, 4 7 7 subboards, and 1 8 8 subboard.
91 subboards are used as an input to the feed-forward neural
network. Fig. 6 shows an example of 3 3, 4 4, and 6 6 sub-
boards. The sign of the value indicates whether or not the piece
belongs to the player or the opponent. The closer the output of
the network is to 1.0, the better the position is. Similarly, the
closer the output is to , the worse the board. Fig. 7 describes
the architecture of the neural network.

4) Details of Evolutionary Search: The architecture of the
network is fixed and only the weights can be adjusted by evolu-
tion. Each individual in the population represents a neural net-
work (weights and biases) that is used to evaluate the quality
of the board configuration. Additionally, each neural network
has the value of and self-adaptive parameters for weights
and biases. Fig. 8 describes the structure of the chromosome.
An offspring for each parent
is created by

where is the number of weights and biases in the neural
network (here, this is 5046), , and

KIM AND CHO: SYSTEMATICALLY INCORPORATING DOMAIN-SPECIFIC KNOWLEDGE INTO EVOLUTIONARY SPECIATED CHECKERS PLAYERS 621

Fig. 8. Structure of the chromosome (N is the number of nodes). Each node (142 nodes in total) has bias values and the weights of the input signals.

Fig. 9. Evolutionary procedure for checkers (p is the number of individuals.
m is the number of opponents to play with). If the number of generations is
larger than the previously defined maximum, the procedure stops.

is the standard Gaussian random variable resampled
for every . The offspring king value was obtained by

where was chosen uniformly at random from .
For convenience, the value was constrained in [1.0, 3.0] by
resetting to the limit exceeded when applicable.

In fitness evaluation, each individual chooses five opponents
from a population pool and plays games with the players. Fit-
ness increases by 1 for a win, while the fitness of an opponent
decreases by 2 for a loss. In a draw, the fitness values of both
players remain the same. After all the games are played, the fit-
ness values of all players are determined. Fig. 9 summarizes the
evolutionary procedure for checkers.

C. Speciated Evolutionary Checkers

An ensemble of evolutionary neural networks can perform
better than the single best one [37]. In the Go community,
on-line matches between a professional player and a number
of amateur players are interesting events. Each move of the
amateur players is decided by voting. It is natural for a profes-
sional player to defeat an amateur player in a one-to-one match.
However, the combination of opinions of multiple players can
be as powerful as single professional player. Fig. 10 describes
the idea and the implementation in evolutionary checkers. The
goal of this approach is to improve the performance in middle
stage.

In this paper, we utilize a crowding algorithm [38], a popular
form of speciation algorithm, to search for diverse neural net-
works. In this algorithm, one neural network is selected from

Fig. 10. Evolutionary process for speciated checkers. A crowding algorithm
is used for the speciation of population and it is easily implemented. A
clustering algorithm is used for the identification of clusters in the population.
A tournament-style league is conducted to select the best player in the cluster.

two similar individuals based on the result of game played be-
tween them (usually, a crowding algorithm uses their fitness but
in this case, we cannot use fitness because of the dynamic prop-
erty of fitness landscape). A crowding algorithm is one of the
representative speciation methods that attempt to discover di-
verse species in a search space. Fig. 11 shows the algorithm
of crowding procedure. The distance between two neural net-
works is calculated by using the Euclidean distance between
their weights. To discover clusters with arbitrary shape, density-
based clustering methods have been used. Density-based spatial
clustering of applications with noise (DBSCAN) is one of the
algorithms [39]. The algorithm is described in Fig. 12. Moves of
combined players are determined using a simple voting mecha-
nism. It picks the move that has the greatest number of votes. If
there is no clear winner, one of the moves that has the greatest
votes is selected randomly. Fig. 13 summarizes the evolutionary
process using crowding and the combination of strategies.

D. Endgame Stage

The estimated quality of the board is calculated using the
evolved neural networks to evaluate the leaf nodes of the tree

622 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

Fig. 11. Pseudocode for crowding algorithm.

Fig. 12. Pseudocode for DBSCAN.

with the min–max algorithm. If the value of (estimated quality
of the next moves) is not reliable, we refer to domain-specific
knowledge and revise . The decision rule for querying the do-
main knowledge is defined as follows.

IF (and) or (and)
THEN querying the domain knowledge.

Fig. 14 shows a two-ply game tree and the concept of selective
domain-specific knowledge. In this game tree, there are eight
terminals. The two choices are evaluated as 0.3 and . It
is clear that the board configuration as evaluated is not
good. However, the board configuration with 0.3 is not enough
to decide as a draw and needs querying the domain knowledge.
If the returned answer from the DB is a draw, the player must
select the move. However, if the answer is a loss, the player
could select the configuration of .

Fig. 13. Evolutionary procedure for checkers (p is the number of individuals).
If the number of generations is larger than the maximum previously defined, the
procedure stops.

IV. EXPERIMENTAL RESULTS

The nonspeciated EA uses a population size of 100 and limits
the run to 50 generations. The speciated EA sets the popula-
tion size to 100, generations to 50, the mutation rate to 0.01,
and crossover rate to 1.0. The number of leagues (used to se-
lect the best player from each species) is five (five means that
each player selects five players from the species randomly and

KIM AND CHO: SYSTEMATICALLY INCORPORATING DOMAIN-SPECIFIC KNOWLEDGE INTO EVOLUTIONARY SPECIATED CHECKERS PLAYERS 623

Fig. 14. Example of game tree with selective use of endgame database (two ply). The real value below the board represents the evaluation value of the neural
network. Min operation is used to select the value of the board configuration at the level 1. If the evaluated value of the root node of a game tree using min–max
algorithm is near 1 or �1, there is no need of endgame DB but in the case of vagueness (0.3), the use of endgame DB is needed.

the competition results are used for the selection). Evolving
checkers using speciation requires 10 hours on a Pentium III
800 MHz (256 MB RAM). The nonspeciated EA uses only mu-
tation but the speciated EA uses crossover and mutation. The
nonspeciated EA is the same as Chellapilla and Fogel’s checkers
program. Table II summarizes parameters of a simple EA and
a speciated EA. They have the same number of individuals for
evolution and the game that they played for one generation is
the same to ours.

Fig. 15 shows experimental methods when the number of
clusters is fixed. Table III shows the results of experiments when
the number of clusters is fixed. It is the result of 68 runs. In this
result, the best single player of simple EA is a bit better than the
best single player of speciated EA but it is not statistically signif-
icant. After combining speciated players, the performance gap
between the best single player of simple EA and the coalition
of players with speciated EA is large. The result is statistically
significant.

Fig. 16 shows experimental methods when the number of
clusters is not fixed. The DBSCAN algorithm is used for clus-
tering and it can automatically select the number of clusters

TABLE II
PARAMETERS OF EXPERIMENTS

based on the predefined parameters. Table IV shows that the
coalition of players with speciated EA produces better perfor-
mance than the best single player with simple EA and speciated
EA. Also, the coalition of players with speciated EA performs
better than the coalition of players with simple EA. Each of the
results is statistically significant.

Fig. 17 shows the average number of clusters for speciated
and simple evolution. Fig. 18 shows a dendrogram of the
population evolved using the speciation method. A dendrogram
is used to understand the diversity of the population. Drawing
a dendrogram requires computing the dissimilarity between

624 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

Fig. 15. Experimental design with the fixed number of clusters. (a) The best single player with simple EA versus the best single player with speciated EA.
(b) The best single player (simple EA) versus the coalition of 20 players (speciated EA).

TABLE III
RESULTS OF EXPERIMENTS WHEN THE NUMBER OF CLUSTERS IS FIXED (68 RUNS). THE OPPONENT IS THE BEST

SINGLE PLAYER IN THE LAST GENERATION THE SIMPLE EA. Z-SCORE INDICATES THAT THE z-STATISTIC FOR A

PROBABILITY TEST (NULL HYPOTHESIS OF p = 0:5) AND THE RESULTS ARE STATISTICALLY SIGNIFICANT

(� = 0:05; z = +1:65; NOTE THAT A ONE-SIDED TEST IS REPORTED HERE).
WIN% INDICATES THE RATIO OF WINS

Fig. 16. Experimental design without the fixed number of clusters.

KIM AND CHO: SYSTEMATICALLY INCORPORATING DOMAIN-SPECIFIC KNOWLEDGE INTO EVOLUTIONARY SPECIATED CHECKERS PLAYERS 625

TABLE IV
SUMMARY OF EXPERIMENTAL RESULTS IN VARIOUS CONFIGURATIONS (250 RUNS).

IN THIS EXPERIMENT, THE SIZE OF THE COALITION IS NOT FIXED

Fig. 17. Average number of clusters in simple and speciated evolution for
15 runs.

two objects in a population and performing single-linkage
clustering. The behavioral characteristics of each individual are
used as the measure of the dissimilarity. Though the method
requires more computational time than is need to compute the
Euclidean distance of two chromosomes, it is more accurate in
this problem. Each individual is represented as a vector of 100
elements and the th element represents the result of a game
between the individual and the th one. The Euclidean distance
between two vectors is used to calculate the dissimilarity.

The Chinook endgame DB (2–6 pieces) is used for revision
when the estimated value from the neural network is between
0.25 and 0.75 or between and . Time analysis in-
dicates that the evolution with knowledge takes much less time
than that without knowledge in simple evolution [Fig. 19(a)] and
the knowledge-based evolution takes a little more time than that
without knowledge in the speciated evolution [Fig. 19(b)]. This
means that the insertion of knowledge within a limited scope can
accelerate the speed of the EA because it can reduce the compu-
tational requirement for finding an optimal endgame sequence
by using the endgame DB. Since we have used two different
machines to evolve simple and speciated versions, respectively,
direct comparison of evolution time between them is meaning-
less. In the speciated evolution, the insertion of knowledge in-
creases the evolution time and an additional 5 hours are needed
for 80 generations. Table V summarizes the competition results
between the best individual in the evolution with knowledge
and the best individual in the evolution without knowledge for
each generation. The knowledge incorporation model performs
better than the one without knowledge. Table VI shows the com-
petition results in the speciated evolution. Table VII shows the

TABLE V
EXPERIMENTAL RESULTS ON OPENING AND ENDGAME KNOWLEDGE

INCORPORATION (WIN/LOSE/DRAW) FOR SIMPLE EVOLUTION.
EVOLUTION WITH THE STORED KNOWLEDGE PERFORMS

BETTER THAN THAT WITHOUT THE KNOWLEDGE

TABLE VI
EXPERIMENTAL RESULTS ON OPENING AND ENDGAME KNOWLEDGE

INCORPORATION (WIN/LOSE/DRAW) FOR SPECIATED EVOLUTION.
EVOLUTION WITH THE STORED KNOWLEDGE PERFORMS

BETTER THAN THAT WITHOUT THE KNOWLEDGE

TABLE VII
COMPETITION RESULTS BETWEEN THE SPECIATED PLAYERS USING

BOTH OPENING AND ENDGAME DB AND THE SPECIATED PLAYER

WITH ONE OF THE KNOWLEDGE

effect of the stored knowledge (opening and endgame DB) in
speciation.

V. CONCLUSION

In this paper, evolved neural networks are used to evaluate
configurations of a checkerboard. Like other problems, evolving
checkers strategies benefit from diversity in a population. To
improve the diversity of the population, a crowding algorithm
is applied to the original EA. In the last generation, we cluster
the individuals of population and choose one representative
player from each species. From the experimental result, players

626 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

Fig. 18. Dendrogram of speciated population.

Fig. 19. Comparison of running time. (a) Simple evolution. (b) Speciated
evolution.

evolved using the speciation method show higher performance
than the best single player with simple EA. Additionally, the
incorporation of domain-specific knowledge into the evolu-
tionary procedure improves its speed and performance.

The final conclusion of the experiment is
with opening

with endgame with
opening and endgame DB. The effect of opening knowledge is
not so significant because these have only limited sequences.
The limited opening knowledge can prevent a player from
making a big mistake but becomes useless when the opponent
chooses a move that is not included in the opening sequence.

For better performance, extensive opening knowledge must
be used. Though previous evolutionary checkers reported two
wins, four losses, and four draws against Chinook [25] it was
evolved for 840 generations (six months with a Pentium II
400 Hz machine). Preparing for the game between Chinook
(novice version) and speciated EA with opening and endgame
DB requires the additional efforts such as increasing the number
of games for fitness evaluation, optimizing game tree search,
applying a game tree extension (two-ply) technique in [22], and
evolving for much longer time. The focal point of this paper
is to investigated the effect of the systematical incorporation
of domain knowledge into evolutionary checkers, and we
compared the variants of versions with or without knowledge
and with or without speciation. Though it fails to achieve
the level of Chinook, it gives an insight into improving basic
evolutionary checkers in a unified framework.

Multiple diverse neural networks can perform better than the
single best one, but there is always the problem of combination
and averaging may not work. As future work, a sophisticated
combination method should be explored for better performance.

ACKNOWLEDGMENT

The authors would like to thank the three anonymous re-
viewers and Dr. D. Fogel for their helpful and constructive
comments.

REFERENCES

[1] G. Tesauro, “Programming backgammon using self-teaching neural
nets,” Artif. Intell., vol. 134, no. 1–2, pp. 181–199, Jan. 2002.

[2] M. Campbell, A. J. Hoane Jr., and F.-H. Hsu, “Deep blue,” Artif. Intell.,
vol. 134, no. 1–2, pp. 57–83, 2002.

[3] J. Schaeffer, One Jump Ahead: Challenging Human Supremacy in
Checkers. New York: Springer-Verlag, 1997.

[4] M. Buro, “The othello match of the year: Takeshi Murakami vs. Logis-
tello,” Int. Comput. Game Assoc. J., vol. 20, no. 3, pp. 189–193, 1997.

[5] D. B. Fogel, Blondie24: Playing at the Edge of AI. San Mateo, CA:
Morgan Kaufmann, 2001.

[6] S. Y. Chong, D. C. Ku, H. S. Lim, M. K. Tan, and J. D. White, “Evolved
neural networks learning Othello strategies,” in Proc. Congr. Evol.
Comput., vol. 3, 2003, pp. 2222–2229.

[7] C.-T. Sun and M.-D. Wu, “Multi-stage genetic algorithm learning in
game playing,” NAFIPS/IFIS/NASA, pp. 223–227, 1994.

[8] G. Kendall and C. Smith, “The evolution of blackjack strategies,” in
Proc. Congr. Evol. Comput., vol. 4, 2003, pp. 2474–2481.

[9] N. Richards, D. Moriarty, and R. Miikkulainen, “Evolving neural net-
works to play go,” Appl. Intell., vol. 8, pp. 85–96, 1998.

KIM AND CHO: SYSTEMATICALLY INCORPORATING DOMAIN-SPECIFIC KNOWLEDGE INTO EVOLUTIONARY SPECIATED CHECKERS PLAYERS 627

[10] G. Kendall and G. Whitwell, “An evolutionary approach for the tuning of
a chess evaluation function using population dynamics,” in Proc. Congr.
Evol. Comput., vol. 2, 2001, pp. 995–1002.

[11] J. B. Pollack and A. D. Blair, “Co-evolution in the successful learning of
backgammon strategy,” Mach. Learn., vol. 32, no. 3, pp. 225–240, 1998.

[12] Y. Jin, Knowledge Incorporation in Evolutionary Computation. New
York: Springer-Verlag, 2004.

[13] K.-J. Kim and S.-B. Cho, “Evolving speciated checkers players with
crowding algorithm,” in Proc. Congr. Evol. Comput., vol. 1, 2002, pp.
407–412.

[14] K.-J. Kim and S.-B. Cho, “Checkers strategy evolution with speciated
neural networks,” in Proc. 7th Pacific Rim Int. Conf. Artif. Intell., 2002,
p. 599.

[15] I. Chernev, The Compleat Draughts Player. London, U.K.: Oxford
Univ. Press, 1981.

[16] J. Schaeffer, J. Culberson, N. Treloar, B. Knight, P. Lu, and D. Szafron,
“A world championship caliber checkers program,” Artif. Intell., vol. 53,
no. 2–3, pp. 273–290, 1992.

[17] J. Schaeffer, R. Lake, P. Lu, and M. Bryant, “Chinook: The man-machine
world checkers champion,” AI Mag., vol. 17, no. 1, pp. 21–29, 1996.

[18] D. B. Fogel, T. J. Hays, S. Hahn, and J. Quon, “A self-learning evolu-
tionary chess program,” in Proc. IEEE, vol. 92, 2004, pp. 1947–1954.

[19] R. Lake, J. Schaeffer, and P. Lu, “Solving large retrograde analysis prob-
lems using a network of workstations,” in Proc. Adv. Computer Chess
VII, 1994, pp. 135–162.

[20] D. B. Fogel, “Evolutionary entertainment with intelligent agents,” IEEE
Comput., vol. 36, no. 6, pp. 106–108, Jun. 2003.

[21] K. Chellapilla and D. B. Fogel, “Evolving neural networks to play
checkers without relying on expert knowledge,” IEEE Trans. Neural
Netw., vol. 10, no. 6, pp. 1382–1391, Nov. 1999.

[22] , “Evolving an expert checkers playing program without using
human expertise,” IEEE Trans. Evol. Comput., vol. 5, no. 4, pp.
422–428, Aug. 2001.

[23] D. B. Fogel, “Evolving a checkers player without relying on human ex-
perience,” ACM Intell., vol. 11, no. 2, pp. 20–27, 2000.

[24] K. Chellapilla and D. B. Fogel, “Anaconda defeats hoyle 6-0: A case
study competing an evolved checkers program against commercially
available software,” in Proc. Congr. Evol. Comput., vol. 2, 2000, pp.
857–863.

[25] D. B. Fogel and K. Chellapilla, “Verifying Anaconda’s expert rating
by competing against Chinook: Experiments in co-evolving a neural
checkers player,” Neurocomputing, vol. 42, no. 1–4, pp. 69–86, 2002.

[26] D. E. Moriarty and R. Miikkulainen, “Discovering complex Othello
strategies through evolutionary neural networks,” Connection Sci., vol.
7, pp. 195–209, 1995.

[27] , “Evolving neural networks to focus minimax search,” in Proc. of
the 12th National Conf. on Artif. Intell. (AAAI-94), 1994, pp. 1371–1377.

[28] , “Improving game-tree search with evolutionary neural networks,”
in Proc. 1st IEEE Conf. Evolu. Comput., vol. 1, 1994, pp. 496–501.

[29] K. O. Stanley and R. Miikkulainen, “Evolving a roving eye for go,” in
Proc. Genetic Evol. Comput. Conf., 2004, pp. 1226–1238.

[30] A. Lubberts and R. Miikkulainen, “Co-evolving a go-playing neural net-
works,” in Proc. Genetic Evol. Comput. Conf. Workshop Prog., 2001, pp.
14–19.

[31] A. S. Perez-Bergquist, “Applying ESP and Region Specialists to Neuro-
Evolution for Go,” Dept. Comput. Sci., Univ. Texas at Austin, Austin,
TX, May 2001. Tech. Rep. CSTR01-24.

[32] L. Barone and L. While, “An adaptive learning model for simplified
poker using evolutionary algorithms,” in Proc. Congr. Evol. Comput.,
vol. 1, 1999, pp. 153–160.

[33] D. B. Fogel, “Evolving strategies in blackjack,” in Proc. Congr. Evol.
Comput., 2004, pp. 1427–1434.

[34] W. Ono and Y.-J. Lim, “An investigation on piece differential infor-
mation in co-evolution on games using Kalah,” in Proc. Congr. Evol.
Comput., vol. 3, 2003, pp. 1632–1638.

[35] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 12, no. 10, pp. 993–1001, Oct. 1990.

[36] J. Schaeffer, J. Culberson, N. Treloar, B. Knight, P. Lu, and D. Szafron,
“Reviving the game of checkers,” Second Comput. Olympiad on
Heuristic Program. Artif. Intell., pp. 119–136, 1991.

[37] X. Yao and Y. Liu, “Evolving neural network ensembles by minimizing
of mutual information,” Int. J. Hybrid Intell. Syst., vol. 1, no. 1, pp.
12–21, Jan. 2004.

[38] Handbook of Evolutionary Computation, Oxford Univ. Press, London,
U.K., 1997. C6.1 S. W. Mahfoud Niching methods.

[39] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with noise,”
Knowl. Discovery and Data Mining, pp. 226–231, 1996.

Kyung-Joong Kim (S’02) received the B.S. and
M.S. degrees in computer science from Yonsei Uni-
versity, Seoul, Korea, in 2000 and 2002, respectively.
He is currently working towards the Ph.D. degree
in the Department of Computer Science, Yonsei
University.

His research interests include evolutionary neural
network, robot control, and agent architecture.

Sung-Bae Cho (S’88–M’98) received the B.S.
degree in computer science from Yonsei University,
Seoul, Korea, in 1988 and the M.S. and Ph.D.
degrees in computer science from Korea Advanced
Institute of Science and Technology (KAIST),
Taejeon, Korea, in 1990 and 1993, respectively.

From 1991 to 1993, he worked as a Member
of the Research Staff at the Center for Artificial
Intelligence Research, KAIST. From 1993 to 1995,
he was an Invited Researcher of Human Informa-
tion Processing Research Laboratories, Advanced

Telecommunications Research (ATR) Institute, Kyoto, Japan. In 1998, he was
a Visiting Scholar at the University of New South Wales, Canberra, Australia.
Since 1995, he has been a Professor in the Department of Computer Science,
Yonsei University. His research interests include neural networks, pattern
recognition, intelligent man-machine interfaces, evolutionary computation, and
artificial life.

Dr. Cho is a Member of the Korea Information Science Society, INNS, the
IEEE Computer Society, and the IEEE Systems, Man and Cybernetics Society.
He was awarded outstanding paper prizes from the IEEE Korea Section in 1989
and 1992, and another one from the Korea Information Science Society in 1990.
In 1993, he also received the Richard E. Merwin Prize from the IEEE Computer
Society. In 1994, he was listed in Who’s Who in Pattern Recognition from the
International Association for Pattern Recognition and received the Best Paper
Awards at the International Conference on Soft Computing in 1996 and 1998.
In 1998, he received the Best Paper Award at the World Automation Congress.
He was listed in Marquis Who’s Who in Science and Engineering in 2000 and
in Marquis Who’s Who in the World in 2001.

	toc
	Systematically Incorporating Domain-Specific Knowledge Into Evol
	Kyung-Joong Kim, Student Member, IEEE, and Sung-Bae Cho, Member,
	I. I NTRODUCTION

	Fig.€1. Conceptual diagram of the proposed method. Game organize
	II. B ACKGROUND
	A. Checkers

	Fig.€2. Opening board in a checkers game. Red moves first.
	B. Traditional Game Programming
	C. Evolution and Games

	TABLE I S UMMARIZATION OF R ELATED W ORKS IN E VOLUTIONARY G AME
	Fig.€3. Flow of the game using the proposed method. Each evoluti
	Fig.€4. Upward propagation of the evaluated value through game t
	Fig.€5. Example of board representation. Minus means the opponen
	Fig.€6. Example of 6 $\,\times\,$ 6, 4 $\,\times\,$ 4, and 3 $\,
	III. I NCORPORATING K NOWLEDGE I NTO E VOLUTIONARY C HECKERS
	A. Opening Stage
	B. Evolutionary Checkers
	1) Concept of a Game Tree: To find the next move of a player, a
	2) Evaluation of a Board Configuration: Usually, an evaluation f

	Fig.€7. Architecture of neural network. It is fully connected in
	3) Neural Networks for Evaluation: The feed-forward neural netwo
	4) Details of Evolutionary Search: The architecture of the netwo

	Fig.€8. Structure of the chromosome (N is the number of nodes
	Fig.€9. Evolutionary procedure for checkers (p is the number
	C. Speciated Evolutionary Checkers

	Fig.€10. Evolutionary process for speciated checkers. A crowding
	D. Endgame Stage

	Fig.€11. Pseudocode for crowding algorithm.
	Fig.€12. Pseudocode for DBSCAN.
	Fig.€13. Evolutionary procedure for checkers (p is the number
	IV. E XPERIMENTAL R ESULTS

	Fig.€14. Example of game tree with selective use of endgame data
	TABLE II P ARAMETERS OF E XPERIMENTS
	Fig.€15. Experimental design with the fixed number of clusters.
	TABLE III R ESULTS OF E XPERIMENTS W HEN THE N UMBER OF C LUSTER
	Fig.€16. Experimental design without the fixed number of cluster
	TABLE IV S UMMARY OF E XPERIMENTAL R ESULTS IN V ARIOUS C ONFIGU
	Fig.€17. Average number of clusters in simple and speciated evol
	TABLE V E XPERIMENTAL R ESULTS ON O PENING AND E NDGAME K NOWLED
	TABLE VI E XPERIMENTAL R ESULTS ON O PENING AND E NDGAME K NOWLE
	TABLE VII C OMPETITION R ESULTS B ETWEEN THE S PECIATED P LAYERS
	V. C ONCLUSION

	Fig.€18. Dendrogram of speciated population.
	Fig.€19. Comparison of running time. (a) Simple evolution. (b) S
	G. Tesauro, Programming backgammon using self-teaching neural ne
	M. Campbell, A. J. Hoane Jr., and F.-H. Hsu, Deep blue, Artif. I
	J. Schaeffer, One Jump Ahead: Challenging Human Supremacy in Che
	M. Buro, The othello match of the year: Takeshi Murakami vs. Log
	D. B. Fogel, Blondie24: Playing at the Edge of AI . San Mateo, C
	S. Y. Chong, D. C. Ku, H. S. Lim, M. K. Tan, and J. D. White, Ev
	C.-T. Sun and M.-D. Wu, Multi-stage genetic algorithm learning i
	G. Kendall and C. Smith, The evolution of blackjack strategies,
	N. Richards, D. Moriarty, and R. Miikkulainen, Evolving neural n
	G. Kendall and G. Whitwell, An evolutionary approach for the tun
	J. B. Pollack and A. D. Blair, Co-evolution in the successful le
	Y. Jin, Knowledge Incorporation in Evolutionary Computation . Ne
	K.-J. Kim and S.-B. Cho, Evolving speciated checkers players wit
	K.-J. Kim and S.-B. Cho, Checkers strategy evolution with specia
	I. Chernev, The Compleat Draughts Player . London, U.K.: Oxford
	J. Schaeffer, J. Culberson, N. Treloar, B. Knight, P. Lu, and D.
	J. Schaeffer, R. Lake, P. Lu, and M. Bryant, Chinook: The man-ma
	D. B. Fogel, T. J. Hays, S. Hahn, and J. Quon, A self-learning e
	R. Lake, J. Schaeffer, and P. Lu, Solving large retrograde analy
	D. B. Fogel, Evolutionary entertainment with intelligent agents,
	K. Chellapilla and D. B. Fogel, Evolving neural networks to play
	D. B. Fogel, Evolving a checkers player without relying on human
	K. Chellapilla and D. B. Fogel, Anaconda defeats hoyle 6-0: A ca
	D. B. Fogel and K. Chellapilla, Verifying Anaconda's expert rati
	D. E. Moriarty and R. Miikkulainen, Discovering complex Othello
	K. O. Stanley and R. Miikkulainen, Evolving a roving eye for go,
	A. Lubberts and R. Miikkulainen, Co-evolving a go-playing neural
	A. S. Perez-Bergquist, Applying ESP and Region Specialists to Ne
	L. Barone and L. While, An adaptive learning model for simplifie
	D. B. Fogel, Evolving strategies in blackjack, in Proc. Congr. E
	W. Ono and Y.-J. Lim, An investigation on piece differential inf
	L. K. Hansen and P. Salamon, Neural network ensembles, IEEE Tran
	J. Schaeffer, J. Culberson, N. Treloar, B. Knight, P. Lu, and D.
	X. Yao and Y. Liu, Evolving neural network ensembles by minimizi

	Handbook of Evolutionary Computation, Oxford Univ. Press, London
	M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, A density-based a

