
Experience on Running a Small-Size Simulated Car Racing

Tournament in an Introductory Programming Course
Kyung-Joong Kim

Dept. of Computer Engineering

Sejong University, Seoul, South Korea
+82-2-3408-3838

kimkj@sejong.ac.kr

Sung-Bae Cho
Dept. of Computer Science

Yonsei University, Seoul, South Korea

+82-2-2123-2720

sbcho@cs.yonsei.ac.kr

ABSTRACT

This paper reports short-term experience on running a small-size

car racing tournament in “Programming C Language class” for

freshmen. It was based on Computational Intelligence and Games

(CIG) 2009 Car Racing Competition software and rules with

small modifications. Five students were involved in this small

competition and they built their own controllers during this course.

Although they don’t have much experience on programming and

computational intelligence (CI), the small competition makes

them enjoy programming and understand the concepts of CI. In

this paper, we’d like to introduce the competition, software used,

modification to them, controllers developed, and results. This

report will be useful to the CIG community which plan to use

competition software for their class.

Categories and Subject Descriptors

I.2.1 [Artificial Intelligence]: Applications and Expert Systems -

Games

General Terms

Algorithms, Measurement, Performance, Human Factors

Keywords

Competition, Game, Car Racing, Education, Rule-based System

1. INTRODUCTION
Recently, there are a lot of game intelligence competitions

organized by international conferences (IEEE Conference on

Fuzzy Systems (FuzzIEEE), Computational Intelligence and

Games (CIG), Genetic and Evolutionary Computation Conference

(GECCO), Congress on Evolutionary Computation (CEC), World

Congress on Computational Intelligence (WCCI), and Games

Innovation Conference (ICE-GIC)) and they cover board games

(Othello), car racing, unreal tournament, Super Mario Bros, and

PacMan. They provide with library, open source code, and API of

games to allow users build their own controllers or strategies. This

gives great opportunity to the computational intelligence

researchers which plan to apply their idea to the real-world

applications.

Recent issue of IEEE Computational Intelligence (CI)

Magazine was specialized to “Education” [1]. The main focus of

this issue is to share educational ideas for the teaching of difficult

concepts like CI. Robot soccer systems can be a good educational

tool to teach and share ideas for students [2]. Also, there are

several papers introducing case studies of CI courses taught at

universities [3]. They assumed that students are undergraduates or

graduates with some expert knowledge or experience on

engineering, mathematics, or programming.

 Is it reasonable to use the competition as a final project for an

introductory programming language course? Most students learn a

programming language for the first time and they’re freshmen in

the department of computer engineering. Usually, the attendants

to the competitions are researchers or graduates with the expertise

about programming language (C, C++, and JAVA) and

computational intelligence techniques. For example, the best

controller at WCCI 2008 Car Racing competition was built with

evolutionary neural networks programmed by C++ [4].

 Competitions may be the key to the potential of new knowledge

and an attractive way of binding up technology and education [5].

Although the competitions require expert knowledge and

programming skills, they can be good platforms for projects in a

programming class. It motivates students to get better results from

the competition and use their programming skills for practical

purpose. The student’s work can be evaluated objectively based

on the ranks in the competition. It also attracts a lot of students to

the computational intelligence society as future members.

 In this semester, the second author offered a course entitled as

“Software Agent” for graduate students. In the course, students

made their own programs for Car Racing, PacMan, and Unreal

Tournament. Their score was evaluated based on the results of the

three tournaments. In the course, three or four students were

grouped into a team and did the projects together. The number of

students was 28 and all of them involved in the tournaments.

 The first author offered a course entitled as “Programming C”

for freshmen in the department of computer engineering. Based on

the successful case of the “Software Agent” course, the first

author decided to introduce the competition as one of the final

projects for the class. Among 80 students from two classes, only

five students choose the programming for competitions as a final

project. This paper introduces the progress and results of this

small competition with the novice computer programmers.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’04, Month 1–2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

2. BACKGROUNDS

2.1 Artificial Intelligence for Car Racing
There are a lot of papers about computational intelligence for

car racing. Most of them use point-to-point car racing simulator

developed by Togelius [6]. Recently, several papers are published

using The Open Car Simulator (TORCS) platform [4]. Recent

competitions (WCCI 2008, CIG 2009, and GECCO 2009) are

mainly based on the TORCS which provides realistic car racing

simulation (Figure 1).

The recent car racing research was originated from simulated

radio-controlled car racing used for CEC 2003, 2004, 2005

competitions. Since 2005, there are a lot of papers based on point-

to-point car racing simulator developed by Togelius [7]. In [8],

Togelius et al. addressed the case of two cars competing against

each other on the same track at the same time in the evolution. In

[9], Togelius et al. investigated the evolution of task-specific

(operating well for a specific track) and robust (operating well for

a large sets of tracks) neural controllers.

Figure 1. The TORCS game

In 2007, University Essex Group led by S. Lucas published

several papers using the point-to-point car racing. In [10][11],

genetic programming was used to evolve controllers for car racing.

In [12], evolution and temporal difference learning (TDL) was

compared in the context of simulated car racing environment. In

[13], sensor data was predicted by neural networks trained by

evolution and traditional back-propagation algorithm. In [14],

tracks for car racing were evolved.

In 2008 and 2009, there are more than ten papers published by

different groups (Japan, Singapore, UK and Switzerland). In

[15][16], behavior-based approach based on fuzzy logic was

proposed and won FuzzIEEE 2007 car racing competition. In [17],

they design, build, and tune a fuzzy rule-based car controller for

FuzzIEEE 2007 car racing using co-evolution.

In [18], the Ant Colony Optimization algorithm was used to

reduce the lap time on a known track. In [19], adaptive controllers

were proposed to profile the skill level of the opponent during

game. In [20], they proposed a number of partially conflicting

objectives in the car racing and used multi-objective optimization

algorithm to yield pareto fronts of interesting controllers. In

[21][22], fuzzy rule-based systems trained were used for car

racing simulation. In [23], the results of CEC 2007 simulated car

racing competition were reported in the international journals. In

[24], neural network and behavior-based approaches were

compared in the context of car racing simulation environments.

In WCCI 2008 competition, TORCS was introduced to the car

racing competition and five controllers were submitted [4].

Reynolds et al. used the cultural algorithm to train controllers

designed from scratch. Lucas modified the supplied sample

controller based on the observation of behavior. The parameters

were optimized manually because of time limit. Matt Simmerson

used evolutionary neural networks called NEAT to drive

simulated car and won the competition. Diego Perez et al. used

rule-based controller [25] and K.C. Tan et al. used evolutionary

strategies to optimize parameters. Recently, Cardamone et al.

applied on-line neuro-evolution to the TORCS environments [26].

3. RUNNIG COMPETITION

3.1 Basic Information about This Course
The title of this course is “Programming C” offered to

freshmen in the department of computer engineering at Sejong

University located in Seoul, South Korea. There are two classes

and each has 40 students. The purpose of this class is to teach

basic grammar of C language and practice programming.

In the first day of class, students answered to the following

questions: “Q1: Did you have any experience on programming?”

and “Q2: Have you heard about C language?” Table 1 shows the

answers from students. From this survey, 76% of students

reported no experience on programming. 28% of students

reported that it is the first time to hear the programming language

C.

Table 1. Survey from students at the first day of class

 Yes No

Q1 18 (23.7%) 58 (76.3%)

Q2 55 (72.4%) 21 (27.6%)

 In the first half of this semester, they studied about variable,

constant, if statement, control statements (for, while, do-while,

and switch) and one-dimensional array. After the midterm exam,

they studied about multi-dimensional array, function, structure,

and pointer. Students have to start a small project after the

midterm exam and finish it before the final exam. They have

about 2 months for the small projects.

 Because they were not yet experienced programmers, it was

questionable whether they are able to do a small project related to

the car racing. When students feel that the projects are too

difficult one, it may result in losing interest in the first

introductory programming course.

 As a result, instructor decided to provide with three different

types of projects and students can choose one of them as a final

project. The first option is to solve 50 simple problems using C

language (Type 1) provided by instructor. The second option is to

make a small program (Type 2) by themselves without any

restriction on the topics. The last one is to build a driver program

for CIG 2009 car racing competition (Type 3). As expected, most

students chose the first option for their project, because they

thought the problem solving is an attractable one (Table 2).

Table 2. The choice of project type

 Number Percentage

Type 1 60 75 %

Type 2 6 8 %

Type 3 5 6 %

None of them 9 11 %

 It is interesting to see the profiles of students who choose the

car racing as their final projects. Based on their ranks, they’re not

good at programming C. However, they have great passion on the

programming car racing driver using C. All of them have no

experience of programming at the first day of this course because

they answered No for the Q1.

Table 3. Profiles of players for the car racing competition

Name

(Initial)

Rank in

Midterm

Exam

Q1 Q2

MJKIM 46/80 No Yes

CHPARK 69/80 - -

SHKIM 39/80 No Yes

SHKANG 61/80 No No

JWPARK 77/80 No Yes

3.2 The Preparation of Competition
This project was based on the CIG 2009 car racing

competition. The first thing that the instructor did was showing

the demonstration of car racing using the sample controller from

the CIG 2009 competition site. Although this made student say

“Wow,” they didn’t choose the car racing as their project because

they feel it as one of the most difficult projects.

float angle = cs.getAngle();

float opponents[36];

for(z=0;z<36;z++) opponents[z]=cs.getOpponents(z);

float track[36];

for(z=0;z<19;z++) track[z]=cs.getTrack(z);

float trackPos = cs.getTrackPos();

Figure 2. An excerpt from the modified source code of

SimpleDriver.cpp (It allows student do programming without

C++ style grammar)

Initially, the competition package was written for C++ or

JAVA programmers. Because the students have no knowledge on

the object-oriented languages, it was modified to exclude C++

style sentences. Instead, the modified codes allow student do

programming with only C style grammars. (Figure 2).

Also, instructor provided with step-by-step instructions on the

programming with simulated car racing software. Although CIG

2009 has manuals for the software, it was too technical and also

students have difficulty to read documents written in English. You

can download the step-by-step guide from [27] (written by

Korean).

There are a lot of well-made functions in the sample source

code for autonomous driving: automatic transmission (gear

change), steering (forcing the car to follow the middle lie of the

track), acceleration and brake decision based on track sensors,

checking stuck condition and recovery, and anti-lock braking

system (ABS). Instead of removing all of them, the instructor

removes only the acceleration and brake parts. You can download

the modified SimpleDriver.cpp source code from [28].

3.3 The Submitted Controllers

Figure 3. The tail of cars (The text in the side of cars is the

name of students. The car’s body image can be found in the

sub-directory of TORCS. You can edit the image using the

software like GIMP (Linux) and ACDSEE PHOTO EDIT

(windows))

The instructor recommends students to use the opponent sensors

in their final submission. Based on the rules of CIG 2009, if the

car’s damage is larger than the predefined level, it is removed

from the race. It resulted in most of participants fail to complete

the first lap. In our competition, old versions of server program

(version champ2009win-1-2) which supports a command line

option for ignoring the damage restriction (wtorcs.exe –

nodamage). Finally, the instructor recommended students to

modify their similar steering mechanism based on sample code to

avoid the tail of cars (Figure 3). For the competition, a simple

batch program was developed to copy each student’s car skins and

control programs to the TORCS directory and run the competition.

It also automatically edits the championship2009server.XML. By

doing this, the names in the rank list of TORCS were changed into

the player’s real name. You can get the software from authors

upon request.

In the final competition, the widest one (E-Track 3) was

chosen. The track was chosen in the competition day and students

had no time to optimize their submission for the track. The track’s

width is 18 meter. Based on [4], the E-Track 3 has a good mix of

shallow curves, tight curves, and straight sections. (Figure 4)

Figure 4. E-Track3

 CHPARK

His controller was composed of five rules based on the speed

of cars and distance to track edge sensors. He mentioned that it

was quite difficult to add more rules with track sensors and

opponent sensors to the controllers initially made by scratch.

Adding more rules resulted in low speed and rotation. Finally, he

removed all other rules and submitted a controller with simple

rules.

 MJKIM

He used more than 20 rules with opponent sensors, track

position sensors, and distance to track edge sensors. For each

track position (middle, right and left), he made multiple rules

conditioned only by opponents sensors. He used opponent sensor

#2, #9, #27, and #34. Based on the values of the opponent sensors,

he changed the brake and steering angle. The parameters are

manually tuned. The following is the one of rules used.

if (opponents[27]>1 && opponents[34]>3.5

&& opponents[2]>3.5 && opponents[9]>1){

 accel = 1.0f; brake = 0.0f;

 targetAngle=(angle-trackPos*0.5);

 steer = (targetAngle)/0.785398;

}

 SHKIM

 His controller is relatively simple. Although his controller is

not too fast, his one is robust. Unlike other players, he changed

the steering mechanism provided in the sample code (following

middle of the track). This makes his controller avoid the tail of

cars in the middle of track and pass other cars. The following

shows the excerpt from his control codes.

if(steer >0 && t >= 9) ch=1;

if(steer <0 && t >= 9) ch=2;

if (t> 0.1 && t< 8.0) ch=4;

if (speedx <= 50) ch=3 ;

if(track[9] >50) accel = 0.8f;

switch(ch){

case 1 : accel = 0.45f,brake= 0.1f;

case 2 : accel = 0.45f,brake= 0.1f;

case 3 : accel = 1.0f;

case 4 : accel=1.0f;

}

float targetAngle=(angle-trackPos*0.5-0.3);

steer = (targetAngle)/0.785398;

 JWPARK

 If the speed is below than 300km/h, the acceleration is 1.0. He

used multiple rules based on track sensors and opponent sensors

to change steering angle, and brake (Figure 5). His car showed

very nice cornering and high speed driving. However, sometimes,

the car stopped in the corner and moved very slowly. It seems that

this is due to conflicts of multiple rules.

 Figure 6 shows the cornering of JWPARK’s controller. Before

the corner, his controller follows the middle of the track. When

the corner is close, his car changes the direction into the inside of

corner minimizing the cornering distance. After finishing the

cornering, the car returns to the middle of the track with small

steering change.

if(speedx <300) accel = 1.0f; else accel=0.0f;

float targetAngle=(angle-trackPos*0.5);

steer = (targetAngle)/0.785398;

if (trackPos == 0 || -0.5< trackPos <0.5) steer = 0.0f;

if (trackPos<-0.5) steer = 0.25f;

else if (trackPos>0.5) steer = -0.25f;

if (track[4]>50) {brake = 0.1f; steer = 1.0f;}

 if (track[5]>50) {brake = 0.1f; steer = 0.88f;}

if (track[9]<78 && track[6]>75) {brake = 0.1f; steer = 1.0f;}

 if (track[9]<=72 && track[7]>80) {brake = 0.1f; steer = 0.65f;}

 if (track[9]<=57 && track[8]>70) {brake = 0.1f; steer = 0.55f;}

 if (track[9]<30 && track[8]>15 && track[10]>60) {brake = 0.3f;

steer = 0.8f;}

 if (track[9]<30 && track[8]>60 && track[10]>15) {brake = 0.3f;

steer = -0.8f;}

 if (track[8]<10) brake = 0.7f;

 if (track[9]<10) brake = 0.7f;

 if (track[10]<10) brake = 0.7f;

 if (track[9]<=50 && track[9]>20) {brake =0.3f; steer = 1.0f;}

 if (track[9]<=57 && track[10]>50) {brake = 0.1f; steer = -0.55f;}

 if (track[9]<=72 && track[11]>67) {brake = 0.1f; steer = -

0.65f;}

 if (track[9]<78 && track[12]>62) {brake = 0.1f; steer = -1.0f;}

 if (track[13]>50) {brake = 0.1f; steer = -0.88f;}

 if (track[14]>50) {brake = 0.1f; steer = -1.0f;}

if (opponents[18]<20 && trackPos >0.5) steer = -0.1f;

 if (opponents[18]<20 && trackPos <-0.5) steer = 0.1f;

 if (opponents[9]<10) steer = -0.05f;

 if (opponents[27]<10) steer = 0.05f;

 if (opponents[0]<10) accel = 0.3f;

Figure 5. A controller source code of JWPARK

Figure 6. The cornering of JWPARK’s controller (The front

car is controlled by JWPARK’ program)

 SHKANG

 He tried to replace the original steering mechanism as a new

one but failed to do that. As a result, his controller didn’t work

well.

3.4 Results and Discussions
The final racing was consisted of two stages. In the first stage,

the participants race alone. In the second stage, all drivers race

together. For each run, the starting position was determined

randomly. Table 4 shows the results of the first stage. In this

stage, it is important to drive the track as quickly as possible

without considering other opponents. It is interesting that three of

five drivers outperform the example program provided by the

instructor.

Table 4. The result of the final racing alone (E-Track 3, 1 lap)

(The bold one is the best)

 Time
Top

Speed

Min

Speed
Damages

JWPARK 2:09:11 224 -71 7485

CHPARK 3:12:03 150 -81 9254

MJKIM 3:13:16 220 -93 7486

EXAMPLE 3:13:19 136 -64 2053

SHKIM 3:13:54 153 -67 2771

SHKANG OUT OUT OUT 10000

We used F1 scoring system: 1st rank = 10 points, 2nd rank = 8

points, 3rd rank = 6 points, 4th rank = 4 points, 5th rank = 2 points

and 6th rank = 0 point. Although JWPARK did very well for 1st,

2nd and 3rd runs, he failed to move in corners in the last two runs.

SHKIM always got high ranks for all runs.

Table 5. The final result of racing together (The bold one is the

best in the run) (E-Track 3, 1 lap, 5 runs)

 1
st
 run 2

nd
 run 3

rd
 run 4

th
 run 5

th
 run

JWPARK 2:42 2:34 2:05 +1 lap +1 lap

SHKIM +0:25 +0:45 +1:06 3:06 3:09

EXAMPLE +0:26 +0:31 +1:33 +0:17 +0:18

CHPARK +1:35 +1:03 +1:41 +0:45 +0:18

MJKIM +l lap +1:18 +1:13 +0:10 +2:13

SHKANG +1 lap +1 lap +1 lap +1 lap +1 lap

 Score

JWPARK 34

SHKIM 42

CHPARK 20

MJKIM 22

SHKANG 0

 After the final racing, JWPARK expressed his thought on this

project.

Dear Instructor,

In this semester, the project is the most memorable thing. After

choosing the racing as my project, I always think about the car

racing. I did the project although my classmates told me “Idiot!

Why do you choose such a difficult thing? Type I project is much

easier than this car racing.” Sometimes, there was no progress in

my project although I did everything that I can do. At that time, I

wish that I can solve the problem clearly. From this project, I

learnt that the programming task is not a trivial one and needed

professional skills. Although I repeated a number of tedious

rebuilding, execution, and debugging cycles, I learnt a lot of

things from this project. This was very exciting experience and

finally I can laugh.

4. CONCLUSIONS
As mentioned before, the five participants were not familiar to

programming but they did a great job in this car racing project. To

realize this, we need some modification in the original

competition software and additional small software written by

authors. The provided software, manuals and the controllers by

students can be good sources for the researchers plan to offer

competition for students with less experienced programming skills.

 Although students used only rules, they can build interesting

and successful controller by themselves. From this project, they

learned the difficulty of rule-based controls and the parameter

turning. This motivates students to study more advanced

computational intelligence techniques like fuzzy rule-based

system, learning, search and adaptation algorithms.

 In the next semester, the first author has a plan to teach C++

programming to the freshmen and intelligent systems to the senior.

Although only the car racing is used for the project of this

semester’s course, other games (PacMan, and Unreal Tournament)

can be good alternatives to attract more students into this kind of

projects.

5. ACKNOWLEDGMENTS
This research was supported by the Original Technology Research

Program for Brain Science through the National Research

Foundation of Korea (NRF) funded by the Ministry of Education,

Science and Technology (2010-0018948)

6. REFERENCES
[1] IEEE Computational Intelligence Magazine, February 2009.

[2] J.-H. Kim, Y.-H. Kim, S.-H. Choi, and I.-W. Park,

“Evolutionary multi-objective optimization in robot soccer

system for education,” IEEE Computational Intelligence

Magazine, pp. 31-41, February 2009.

[3] A. E. Smith, “Evolving an adaptive optimization course,” pp.

52-54, IEEE Computational Intelligence Magazine, February

2009.

[4] D. Loiacono et al., “The WCCI 2008 simulated car racing

competition,” IEEE Symposium on Computational

Intelligence in Games, pp. 119-126, 2008.

[5] V. Dagiene, “Information technology contests – Introduction

to computer science in an attractive way,” Informatics in

Education, vol. 5, no. 1, pp. 37-46, 2006.

[6] J. Togelius, Optimization, Imitation, and Innovation:

Computational Intelligence and Games, Ph.D. Thesis,

Department of Computer Science, University of Essex, Sep

2007.

[7] J. Togelius, and S. Lucas, “Evolving controllers for

simulated car racing,” IEEE Congress on Evolutionary

Computation, vol. 2, pp. 1906-1913, 2005.

[8] J. Togelius, and S. Lucas, “Arms races and car races,” 9th

International Conference on Parallel Problem Solving from

Nature, pp. 613-622, 2006.

[9] J. Togelius and S. Lucas, “Evolving robust and specialized

car racing skills,” IEEE Congress on Evolutionary

Computation, pp. 1187-1194, 2006.

[10] A. Agapitos, J. Togelius, and S. Lucas, “Evolving controllers

for simulated car racing using object oriented genetic

programming,” 9th Annual Conference on Genetic and

Evolutionary Computation, pp. 1543-1550, 2007.

[11] A. Agapitos, J. Togelius and S. Lucas, “Multiobjective

techniques for the use of state in genetic programming

applied to simulated car racing,” IEEE Congress on

Evolutionary Computation, pp. 1562-1569, 2007.

[12] S. Lucas, and J. Togelius, “Point-to-Point car racing: An

initial study of evolution versus temporal difference

learning,” IEEE Symposium on Computational Intelligence

in Games, pp. 260-267, 2007.

[13] H. Marques, J. Togelius, M. Kogutowska, O. Holland and S.

M. Lucas, “Sensorless but not senseless: Prediction in

evolutionary car racing,” IEEE Symposium on Artificial Life,

pp. 370-377, 2007.

[14] J. Togelius, R. Nardi, and S. Lucas, “Towards automatic

personalized content creation for racing games,” IEEE

Symposium on Computational Intelligence and Games, pp.

252-259, 2007.

[15] D. T. Ho, and J. M. Garibaldi, “A novel fuzzy inferencing

methodology for simulated car racing,” IEEE International

Conference on Fuzzy Systems, pp. 1907-1914, 2008.

[16] D. T. Ho, and J. M. Garibaldi, “A fuzzy approach for the

2007 CIG simulated car racing competition,” IEEE

Symposium on Computational Intelligence and Games, pp.

127-134, 2008.

[17] S. Guadarrama, and R. Vazquez, “Tuning a fuzzy racing car

by coevolution,” 3rd International Workshop on Genetic and

Evolving Fuzzy Systems, pp. 59-64, 2008.

[18] L. delaOssa, J. A. Gamez, and V. Lopez, “Improvement of a

car racing controller by means of ant colony optimization

algorithms,” IEEE Symposium on Computational

Intelligence and Games, pp. 365-371, 2008.

[19] C. H. Tan, J. H. Ang, K. C. Tan, and A. Tay, “Online

adaptive controller for simulated car racing,” IEEE Congress

on Evolutionary Computation, pp. 2239-2245, 2008.

[20] A. Agapitos, J. Togelius, S. Lucas, J. Schmidhuber and A.

Konstantinidis, “Generating diverse opponents with

multiobjective evolution,” IEEE Symposium on

Computational Intelligence in Games, pp. 135-142, 2008.

[21] S. Fujii, T. Nakashima, and H. Ishibuchi, “A study on

constructing fuzzy systems for high-level decision making in

a car racing game,” IEEE International Conference on Fuzzy

Systems, pp. 2299-2306, 2008.

[22] T. Nakashima, and S. Fujii, “Effect of opponent players on

the performance of fuzzy decision making systems for car

racing,” IEEE International Conference on Systems, Man

and Cybernetics, pp. 1800-1805, 2008.

[23] J. Togelius et al. “The 2007 IEEE CEC simulated car racing

competition,” Genetic Programming and Evolvable

Machines, vol. 9, pp. 295-329, 2008.

[24] H. Tang, C. H. Tan, K. C. Tan and A. Tay, “Neural network

versus behavior based approach in simulated car racing

game,” IEEE Workshop on Evolving and Self-Developing

Intelligent Systems, pp. 58-65, 2009.

[25] D. Perez, Y. Saez, G. Recio, and P. Isasi, “Evolving a rule

system controller for automatic driving in a car racing

competition,” IEEE Symposium on Computational

Intelligence and Games, pp. 336-342, 2008.

[26] L. Cardamone, D. Loiacono, and P. L. Lanzi, “On-line

neuroevolution applied to the open car racing car simulator,”

IEEE Congress on Evolutionary Computation, pp. 2622-

2629, 2009.

[27] http://dasan.sejong.ac.kr/~kimkj/C_2009/car_racing.pdf

(Koran Document)

[28] http://dasan.sejong.ac.kr/~kimkj/C_2009/SimpleDriver.cpp

http://dasan.sejong.ac.kr/~kimkj/C_2009/car_racing.pdf

