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Abstract

Colon cancer is second only to lung cancer as a cause of cancer-related mortality in Western
countries. Colon cancer is a genetic disease, propagated by the acquisition of somatic alterations
that in3uence gene expression. DNA microarray technology provides a format for the simul-
taneous measurement of the expression level of thousands of genes in a single hybridization
assay. The most exciting result of microarray technology has been the demonstration that pat-
terns of gene expression can distinguish between tumors of di9erent anatomical origin. Standard
statistical methodologies in classi:cation and prediction do not work well or even at all when
N (a number of samples) ¡p (genes). Modi:cation of conventional statistical methodologies
or devise of new methodologies is needed for the analysis of colon cancer. Recently, design-
ing arti:cial neural networks by evolutionary algorithms has emerged as a preferred alternative
to the common practice of selecting the apparent best network. In this paper, we propose an
evolutionary neural network that classi:es gene expression pro:les into normal or colon cancer
cell. Experimental results on colon microarray data show that the proposed method is superior
to other classi:ers.
c© 2003 Published by Elsevier B.V.

Keywords: DNA Microarray; Evolutionary neural network; Colon cancer; Feature selection; Information
gain

1. Introduction

Recently, the techniques based on oligonucleotide or cDNA arrays allow the ex-
pression level of thousands of genes to be monitored in parallel. Critically important
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thing for cancer diagnosis and treatment is precise prediction of tumors. One of the
remarkable advances for molecular biology and for cancer research is DNA microarray
technology. DNA microarray datasets have a high dimensionality corresponding to the
large number of genes monitored and there are often comparatively few samples. In
this paper, we address the problem of prediction of cancer using a small subset of
genes from broad patterns of gene expression data.
In cancer research, microarray technology allows the better understanding of the

regulation of activity of cells and tumors in various states [32]. Prediction, classi:cation,
and clustering techniques are used for analysis and interpretation of the microarray
data. Colon cancer is the second most common cause of cancer mortality in Western
countries [7]. Gene expression in 40 tumor and 22 normal colon tissue samples was
analyzed with an A9ymetrix oligonucleotide array complementary to more than 6500
human genes. We chose to work only with the 2000 genes of the greatest minimal
expression over the samples [1].
Evolutionary arti:cial neural networks (EANNs) combine the learning of neural net-

works and evolution of evolutionary algorithms [8]. A lot of works have been made on
EANNs. For the game of checkers, the evolutionary algorithm can discover a neural
network that can be used to play at a near-expert level without injecting expert knowl-
edge about how to play the game [12]. Evolutionary algorithm can be used for various
tasks, such as connection weight training, architecture design, learning rule adaptation,
input feature selection, connection weight initialization and rule extraction from ANNs
[38]. We propose an evolutionary neural network for classifying (predicting) human
tumor samples based on microarray gene expressions. This procedure involves the
dimension reduction with information gain and the classi:cation with EANN. The pro-
posed method is applied to colon cancer microarray data sets containing various human
tumor samples. We have compared the evolutionary neural network to the well-known
classi:cation methods.
The rest of the paper is organized as follows. In Section 2, we describe the microarray

technology and related works on the prediction of cancer, which include oligonucleotide
microarray technology, the relevant works with evolutionary neural networks and the
results on colon cancer data set of previous studies. In Section 3, we present the
evolutionary neural network in details. In Section 4 we examine the performance of
the proposed method.

2. Bioinformatics with DNA microarray

Uncovering broad patterns of genetic activity, providing new understanding of gene
functions and generating unexpected insight into biological mechanism are the im-
pact of microarray-based studies [19]. With the development and application of DNA
microarrays, the expression of almost all human genes can now be systematically exam-
ined in human malignancies [18]. DNA sequences are initially transcribed into mRNA
sequences. These mRNA sequences are translated into the amino acid sequences of
the proteins that perform various functions. Measuring mRNA levels can provide a
detailed molecular view of the genes. Measuring gene expression levels under di9erent
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Fig. 1. General process of acquiring the gene expression data from DNA microarray. (this is an example
of Leukemia cancer and there are two types of cancers including ALL and AML. A sample comes from
patient.)

conditions is important for expanding our knowledge of gene function. Gene expression
data can help in better understanding of cancer.

2.1. Oligonucleotide DNA microarray

A main goal of the analysis of gene expression data is the identi:cation of sets of
genes that can serve as classi:cation. Understanding cellular responses to drug treatment
is another important goal of gene expression pro:ling. The complexity of microarray
data calls for data analysis tools that will e9ectively aid in biological data mining.
DNA microarrays are composed of thousands of individual DNA sequences printed in
a high-density array on a glass microscope slide using a robotic arrayer as shown in
Fig. 1. After hybridization of two samples, the slides are imaged using scanner that
makes 3uorescene measurements for each dye.
In this study, Alon’s colon cancer data that are monitored using A9ymetrix oligonu-

cleotide array are used [1]. High-density oligonucleotide chip arrays are made us-
ing spatially patterned, light-directed combinatorial chemical synthesis, and contain up
to hundreds of thousands of di9erent oligonucleotides on a small glass surface [22].
As the chemical cycle is repeated, each spot on the array contains a short synthetic
oligonucleotide, typically 20–25 bases. The oligonucleotides are designed based on
the knowledge of the DNA target sequences, to ensure high-aLnity and speci:city



364 K.-J. Kim, S.-B. Cho /Neurocomputing 61 (2004) 361–379

Table 1
Relevant works on colon cancer classi:cation

Authors Method Accuracy (%)

Feature Classi:er

Furey et al. [13] Signal to noise ratio SVM 90.3
Li et al. [26] Genetic algorithm KNN 94.1
Ben-Dor et al. [5] All genes, TNoM score Nearest neighbor 80.6

SVM with quadratic kernel 74.2
AdaBoost 72.6

Nguyen et al. [30] Principal component analysis Logistic discriminant 87.1
Quadratic discriminant 87.1

Partial least square Logistic discriminant 93.5
Quadratic discriminant 91.9

of each oligonucleotide to a particular gene. This allows cross-hybridization with the
other similar sequenced gene and local background to be estimated and subtracted.
Oligonucleotide DNA microarray might eventually eliminate the use of cDNA arrays
[4].

2.2. Related works

Derisi et al. [10] published that the expression patterns of many previously uncharac-
terized genes provided clues to their possible functions [10]. Eisen et al. [11] presented
that clustering gene expression data grouped together eLciently genes of known sim-
ilar function [11]. Shamir [34] described some of the main algorithmic approaches
to clustering gene expression data [34]. Getz et al. [14] presented two-way cluster-
ing approach to gene microarray data analysis. There are many researchers to attempt
to predict colon cancer using various machine learning methods and they show that
prediction rate of colon cancer can be approximately 80–90% (Table 1).
Sarkar et al. [33] presented a novel and simple method that exhaustively scanned mi-

croarray data for unambiguous gene expression patterns [33]. Tclass is a corresponding
program of a method that incorporates feature selection into Fisher’s linear discriminant
analysis for gene expression based on tumor classi:cation [36]. Li et al. investigated
two Bayesian classi:cation algorithms incorporating feature selection and these algo-
rithms were applied to the classi:cation of gene expression data derived from cDNA
microarrays [25]. Li et al. studied to decide which and how many genes should be se-
lected [24]. Guyon et al. proposed a new method of gene selection using support vector
machine based on recursive feature elimination (RFE) [17]. Xiong et al. reported that
using two or three genes, one could achieve more than 90% accuracy of classi:cation
in colon cancer, breast cancer, and leukemia [37].
There are some related works on EANNs that combine the advantages of the global

search performed by evolutionary algorithms and local search of the learning algorithms
(like BP) of ANN. Yao [39] proposed EANNs approach, EPNet based on Fogel’s evo-
lutionary programming (EP) as evolutionary algorithm. EPNet emphasizes the evolution
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of ANN behaviors by EP and uses a number of techniques, such as partial training after
each architectural mutation and node splitting, to maintain the behavioral link between
parent and its o9spring e9ectively. EPNet also encourages parsimony of evolved ANNs
by attempting di9erent mutations sequentially. That is, node or connection deletion is
always attempted before addition. EPNet has shown good performance in error rate
and size of ANN.
Cho proposed a new approach of constructing multiple neural networks that used

genetic algorithms with speciation to generate a population of accurate and diverse
ANNs. Speciation in genetic algorithm creates di9erent species, each embodying a
sub-solution, which means to create diverse solutions not the best one [2]. Experi-
ments with the breast cancer data from UCI benchmark datasets show that the method
can produce more speciated ANNs and improve the performance by combining only
representative individuals [3]. Several combination methods are applied to combine
speciated neural networks [23].

3. Evolutionary neural network for cancer classi�cation

A traditional arti:cial neural network based on backpropagation algorithm has some
limitations. At :rst, the architecture of the neural network is :xed and a designer needs
much knowledge to determine it. Also, error function of the learning algorithm must
have a derivative. Finally, it frequently gets stuck in local optima because it is based on
gradient-based search without stochastic property. Evolutionary algorithm is a kind of
search method based on biological facts and uses a population of multiple individuals.
The combination of evolutionary algorithm and neural network can overcome these
shortcomings.
Design of a near optimal ANN architecture can be formulated as a search problem

in the architecture space where each point represents architecture. One major issue in
evolving pure architectures is to decide how much information about architecture should
be encoded into a chromosome (genotype). There are two representative encoding
schemes for neural network including direct and indirect methods. In indirect encoding,
rules for generating neural network structure are represented as a chromosome for the
evolution [21]. If the phenotype has many overlapped components, indirect encoding is
more useful than direct one because it can reduce the length of a chromosome by simple
rule representation. In our work, recurrent link is not allowed and only feed-forward
link is acceptable. Usually, recurrent link is used for memorizing information but in
our problem, it is not useful to adopt the link.

3.1. Feature selection

There are two approaches to reduce the dimensionality of data. In :ltering approach,
there is no concern about which classi:er is used and only characteristics of the features
are measured for selection. The method is very fast and easily implemented. Meanwhile,
wrapper approach is a method that uses a speci:c classi:er for the selection procedure
and the performance of the classi:er-feature combination is measured for selection. In
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this paper, we adopt the :ltering approach because it is computationally inexpensive.
Usually, evolutionary computation is computationally expensive and wrapper approach
is not appropriate. Details of comparison between two approaches can be found in [28].
The number of genes is too large to manipulate in learning algorithm and all features

are not useful for classi:cation. Only relevant features are useful for classi:cation to
produce better performance. Feature ranking method is used to classify genes. Informa-
tion gain is representative feature ranking and selection method used in C4.5 [31] that
utilizes information gain to :nd the most important feature for each time. De:nition
of information gain is restricted to genes that take on a discrete set of values. This
restriction can easily be removed by dynamically de:ning new discrete valued genes
that partition the continuous gene value into a discrete set of intervals (threshold c is
used for the separation). How to select the optimal threshold c is described in [27]. In
the formula below, k is the total number of classes; n is the total number of expres-
sion values; nl is the number of values in the left partition; and nr is the number of
values in the right partition; li is the number of values that belong to class i in the
left partition; ri is the number of values that belong to class i in the right partition.
Information gain of a gene is de:ned as follows:

IG =
k∑
i=1

(
li
n
log

li
nl

+
ri
n
log

ri
nr

)
−

k∑
i=1

(
li + ri
n

)
log

(
li + ri
n

)
:

3.2. EANN

The simultaneous evolution of both architectures and weights can be summarized
as follows: (1) Evaluate each individual based on its error and/or other performance
criteria such as its complexity. (2) Select individuals for reproduction and genetic
operation. (3) Apply genetic operators, such as crossover and mutation, to the ANN’s
architectures and weights, and obtain the next generation. Fig. 2 shows the overview
of evolving neural network. Each ANN is generated with random initial weights and
full connection. Then, each ANN is trained partially with training data to help the
evolution search the optimal architecture of ANN and is tested with validation data to
compute the :tness. The :tness of ANN is recognition rate of validation data. Once
the :tness is calculated, selection is conducted that chooses the best 50% individuals
to apply genetic operators. The genetic operators, crossover and mutation, are applied
to those selected individuals. Then a population of the next generation is created. The
process is repeated until stop criterion is satis:ed. The ANNs in the last generation are
trained fully.
Feature selection is used to reduce the dimensionality for EANN because one feature

is corresponding to one input node and if the number of features is very large, the
size of network is required to be large. Large network size is not useful for the gen-
eralization and the dimensionality reduction is needed for the EANN procedure. Data
separation procedure divides the data into three distinct sample sets such as training,
validation, and test sets. Training data are used for partial training and full training.
Validation data are used for :tness calculation and full training. The :tness of each
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Fig. 2. The procedure for evolving neural network.

individual in EANN is solely determined by the inverse of an error value. The selection
mechanism used in EANN is rank based. M is the population size. Let M sorted
individuals be numbered as 0; 1; : : : ; M − 1, with the zeroth being the :ttest. Then the
(M − j)th individual is selected with probability

p(M − j) = j∑M
k=1 k

:

Each sample (gene expression data for one person) is used to train or validate each
individual (EANN) of the population (a set of individuals). Population is a collection
of individuals and the size is :xed at the initial stage. Each individual represents one
evolutionary neural network. In Fig. 2, iteration is repeated until stop criterion is sat-
is:ed. It stops when an individual shows better performance than pre-de:ned accuracy
(100%) or iteration number exceeds pre-de:ned maximum number of generations.

3.2.1. Representation
To evolve an ANN, it needs to be expressed in proper form. There are some methods

to encode an ANN like binary representation, tree, linked list, and matrix. We have
used a matrix to encode an ANN since it is straightforward to implement and easy
to apply genetic operators [35]. When N is the total number of nodes in an ANN
including input, hidden, and output nodes, the matrix is N ×N , and its entries consist
of connection links and corresponding weights. In the matrix, upper right triangle (see
Fig. 3) has connection link information that is 1 when there is a connection link and
0 when there is no connection link. Lower left triangle describes the weight values
corresponding to the connection link information. There will be no connections among
input nodes. Architectural crossover and mutation can be implemented easily under
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Fig. 3. An example of neural network representation.

such a representation scheme. Node deletion and addition involve 3ipping a bit in the
matrix. Fig. 3 shows an example of encoding of an ANN that has one input node,
three hidden nodes, and one output node. Each input node is mapped to one gene of
a sample and two output nodes are used for indication of cancer.
The maximum number of hidden nodes must be pre-de:ned in this representation.

The number of input nodes and output nodes is dependent on the problem as described
before. Though the maximum number of hidden nodes is prede:ned, it is not necessary
that all hidden nodes are used. Some hidden nodes that have no useful path to output
nodes will be ignored. At the initialization stage, connectivity information of the matrix
is randomly determined and if the connection value is 1, the corresponding weight is
represented with a random real value. This representation allows some direct links
between input nodes and output nodes.

3.2.2. Crossover
The crossover operator exchanges the architecture of two ANNs in the population

to search ANNs with various architectures [29]. In the population of ANNs, crossover
operator selects two distinct ANNs randomly and chooses one hidden node from each
ANN selected. These two nodes should be in the same entry of each ANN matrix
encoding the ANN to exchange the architectures. Once the nodes are selected, the two
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Fig. 4. Crossover operation. (a) Node H2 is selected as a crossover point. Two neural networks exchange
all the links related to H2 and H3. (b) Matrix representation of the above example.

ANNs exchange the connection links and corresponding weights information of the
nodes and the hidden nodes after that. Fig. 4 shows an example of crossover operation.
In this example, two ANNs have one input node, three hidden nodes, and one output
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Fig. 5. Mutation operation.

node. For simplicity, it is assumed that the maximum number of hidden nodes is
3. Among the hidden nodes, one hidden node is randomly selected as a crossover
point. In the :gure, H2 node is chosen as the crossover point. The hidden nodes that
have larger index than the point are considered for crossover. In this example, H2
and H3 are considered and the links related to them are exchanged. Fig. 4(a) shows
topology change after crossover operation and Fig. 4(b) shows change of the matrix
representation.

3.2.3. Mutation
The mutation operator changes a connection link and the corresponding weight of a

randomly selected ANN from the population. Mutation operator performs one of the
two operations that are addition of a new connection and deletion of an existing con-
nection. Mutation operator selects an ANN from the population of ANNs randomly
and chooses one connection link from it. If the connection link does not exist and
the connection entry of the ANN matrix is the 0, the connection link is added. It
adds new connection link to the ANN with random weights. Otherwise, if the con-
nection link already exists, the connection is deleted. It deletes the connection link
and weight information. Fig. 5 shows two examples of the mutation. In the :gure,
an entry (I1, H3) of the matrix is selected for mutation and there is no connection
between them. In this case, a new connection is generated and weight is determined
randomly. In the second case, (H3, O1) is selected for mutation and there is already



K.-J. Kim, S.-B. Cho /Neurocomputing 61 (2004) 361–379 371

a connection. In the case, the connection is eliminated and there is no link between
H3 and O1.
In this study, we use only two mutation types but other methods can be used such

as only modifying weights as di9erent value. In EPNET, they use only mutations for
evolution and does not use crossover [39]. Mutation is very useful to explore broad
area of solution space but overuse of the operation can hinder convergence of the
solution. In this reason, we have adopted only two mutation types with small mutation
rate.

4. Experimental results

Colon dataset consists of 62 samples of colon epithelial cells taken from colon-cancer
patients. Each sample is from one person and contains 2000 gene expression levels.
Although original data consist of 6000 gene expression levels, 4000 out of 6000 were
removed based on the con:dence in the measured expression levels. 40 of 62 samples
are colon cancer samples and the remainings are normal samples. Each sample was
taken from tumors and normal healthy parts of the colons of the same patients and
measured using high-density oligonucleotide arrays. 31 out of 62 samples were used
as training data and the remainings were used as test data in this paper. (Available at
http://www.sph.uth.tmc.edu:8052/hgc/default.asp)
As mentioned before, the feature size of colon dataset is 2000. There is no single

solution for optimal number of features for classi:cation but approximately 20–40
genes are appropriate for classi:cation. In this study, we use 30 genes for classi:cation
that has high information gain in feature ranking. There are some systematic ways to
determine the optimal number of features. Evolutionary approach is also useful to
estimate optimal subset of genes [26]. Table 2 shows the name of 30 genes that are
selected. Fig. 6 shows some of the features with color that represents the rank.
Parameters of genetic algorithm are as follows [15]. In EANN, the population size

is 20 and the maximum generation number is 200. Each ANN is feed-forward ANN
and back-propagation is used as learning algorithm. Learning rate is 0.1 and the partial
training presents the training data 200 times and full training presents the training data
1000 times. Crossover rate is 0.3 and mutation rate is 0.1. Fitness function of EANN is
de:ned as the recognition rate for validation data. In colon data set, the number of data
sample is very small and we use test data as validation set. Parameters of the EANN
are determined empirically. Usually, the number of population size is necessary to be
large but it consumes much computational resource. In empirical test with population
size as 40 shows no performance improvement and we set the size as 20.

4.1. Classi5ers compared

SASOM (structure-adaptive self-organizing map) [6] is used by 4 × 4 map with
rectangular topology, 0.05 of initial learning rate, 1000 of initial maximum iteration,
10 of initial radius, 0.02 of :nal learning rate, 10000 of :nal maximum iteration
and 3 of :nal radius. We have used SVM (support vector machine) [9] with linear

http://www.sph.uth.tmc.edu:8052/hgc/default.asp


372 K.-J. Kim, S.-B. Cho /Neurocomputing 61 (2004) 361–379

Table 2
30 genes selected by information gain

Name Name

1 Human monocyte-derived neutrophil-activating
protein (MONAP) mRNA, complete cds.

16 Complement factor D precursor (Homo sapi-
ens)

2 Human desmin gene, complete cds. 17 H.sapiens mRNA for p cadherin.
3 Myosin heavy chain, nonmuscle (Gallus gallus) 18 GTP-binding nuclear Protein ran (Homo sapi-

ens)
4 Human cysteine-rich protein (CRP) gene, ex-

ons 5 and 6.
19 Prohibitin (Homo sapiens)

5 Collagen alpha 2(XI) chain (Homo sapiens) 20 Hypothetical protein in trpe 3′region
(Spirochaeta aurantia)

6 Human gene for heterogeneous nuclear ribonu-
cleoprotein (hnRNP) core protein A1.

21 40S Ribosomal protein S6 (Nicotiana
tabacum)

7 P03001 Transcription factor IIIA;. 22 Small nuclear ribonucleoprotein associated pro-
teins B and B′ (Human);.

8 Myosin regulatory light chain 2, smooth mus-
cle isoform (Human); contains element TAR1
repetitive element;.

23 Human DNA polymerase delta small subunit
mRNA, complete cds.

9 Mitochondrial matrix protein P1 precursor (Hu-
man);.

24 Human GAP SH3 binding protein mRNA,
complete cds.

10 Human aspartyl-tRNA synthetase alpha-2 sub-
unit mRNA, complete cds.

25 Human (Human);.

11 Human cysteine-rich protein (CRP) gene, ex-
ons 5 and 6.

26 Tropomyosin, :broblast and epithelial
muscle-type (Human);.

12 Human cysteine-rich protein (CRP) gene, ex-
ons 5 and 6.

27 Human serine kinase mRNA, complete cds.

13 Human homeo box c1 protein, mRNA, com-
plete cds.

28 Thioredoxin (Human);.

14 Macrophage migration inhibitory factor (Hu-
man);.

29 S-100P Protein (Human).

15 Human splicing factor SRp30c mRNA, com-
plete cds.

30 Human mRNA for integrin alpha 6.

function and RBF (radial basis function) as kernel function. In RBF, we have changed
the gamma variable as 0.1–0.5. For classi:cation, we have used 3-layered MLP (mul-
tilayer perceptron) [20] with 5–15 hidden nodes, 2 output nodes, 0.01–0.50 of learning
rate and 0.9 of momentum. Similarity measures used in KNN [27] are Pearson’s corre-
lation coeLcient and Euclidean distance. KNN (k nearest neighbor) has been used with
k = 1–8.

4.2. Results and analysis

We have conducted 10 runs of experiments to get the average. Fig. 7 shows the
results of 10 runs, and min, max and average of 20 individuals in the last generation
for each run. Fig. 8 shows the comparison of classi:ers’ performance which con-
:rms that EANN performs well. In this experiment, all classi:ers including EANN use
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Fig. 6. Some features of colon cancer data.

features that are extracted using the information gain. To show the performance of the
method clearly, 10-fold cross validations are conducted. Recognition rate of the cross
validation is 75%. The neural network which shows 94% recognition rate
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features that are selected using the information gain).

contains 203 connections. The number of connections from input nodes to hidden
nodes is 147, that from input nodes to output nodes is 26, that from hidden nodes
to hidden nodes is 25, and that from hidden nodes to output nodes is 5. The neural
network contains 42 nodes: 30 input nodes, 10 hidden nodes and 2 output nodes. Fig.
9 shows four di9erent connections among nodes using a graph visualization tool [16].
How to extract meaningful information from the network structure is challenging task
and one attempt is as follows. In Fig. 9(b), there are some direct links between input
nodes and output nodes and it is possible to estimate relationship between features and
the cancer. If there is a link between feature and cancer indication output node (which
is set as 1.0 when patient is cancer) with high weight, it can be inferred that the feature
is the most relevant one for the cancer. Meanwhile, some features are connected only
to output node that is for normal person indication. Some are connected to two output
nodes simultaneously. To analyze the meaning correctly, comparison with the clinical
investigation is demanded.
Table 3 summarizes the confusion matrix of the best evolutionary neural network.

The network produces wrong classi:cation for the sample id 24 and 30. Sensitivity of
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Fig. 9. Connection of nodes by the four di9erent types. (a) from input nodes to hidden nodes, (b) from
input nodes to output nodes, (c) from hidden nodes to hidden nodes, (d) from hidden nodes to output nodes.

the classi:er is 100.0% and speci:city is 81.8%. This means that the classi:er does
not classify patient into normal person but it classi:es normal person into patient with
the probability of 18.2%. This means that if the person whom the classi:er decides
as a patient is a normal person with the probability of 9%. The relationship between
speci:city and sensitivity is negatively correlated and the cost for misclassi:cation for
two cases is important point to decide the level of two measures. Prediction error is
composed of two components (one is discriminating normal person as a cancer person
and vice versa). The two cases have di9erent cost for the misclassi:cation. If normal
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Table 3
Confusion matrix of the best EANN

EANN Predicted

0 (Normal) 1 (Cancer)

Actual 0 (Normal) 9 2
1 (Cancer) 0 20

A confusion matrix contains the information about actual and predicted classi:cations conducted by a
classi:cation system.

person is diagnosed as a cancer person only small cost is enough for deep investigation,
whereas missing cancer person produces big loss such as death. The best neural network
means the one that produces 94% of accuracy as depicted in Fig. 8.

5. Concluding remarks

It is important to distinguish normal from tumor samples. We have introduced
an evolutionary neural network for the classi:cation of tumors based on microarray
gene expression data. The methodologies involve dimension reduction of the high-
dimensional gene expression space followed by information gain. We have illustrated
the e9ectiveness of the method in predicting normal and tumor samples in colon cancer
data set. The methods can distinguish between normal and tumor samples with high
accuracy. There are many approaches to predict cancer data using machine learning
techniques including SASOM, SVM, MLP and KNN. EANN is a hybrid method of
evolutionary algorithm and neural network to :nd a solution without expert knowledge.
Comparison with other classi:ers shows that EANN performs very well. Especially, in-
cluding feature selection for evolution procedure can avoid too large network structure
that requires huge computational resource and produces low performance.
The advantage of the proposed method can be summarized as follows. At :rst, human

does not need any prior knowledge about neural network structure. Additional research
can reveal the relationships between genes and classes from the emerged structure. For
example, rule extraction from neural network can be used for this task. Disadvantage
of the method is that it requires more computational resource than the conventional
methods because evolutionary algorithm uses multiple points to search solutions.
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