
ARTICLE IN PRESS
0925-2312/$ - se

doi:10.1016/j.ne

�Correspond
E-mail addr

sbcho@cs.yons
Neurocomputing 69 (2006) 2193–2207

www.elsevier.com/locate/neucom
Evolved neural networks based on cellular automata for
sensory-motor controller

Kyung-Joong Kim�, Sung-Bae Cho�

Department of Computer Science, Yonsei University, 134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749, South Korea

Received 17 April 2004; received in revised form 15 July 2005; accepted 15 July 2005

Available online 7 February 2006

Communicated by W. Yu
Abstract

Constructing the controller of a mobile robot has several issues to be addressed: how to automate behavior generation procedure, how

to insert available domain knowledge effectively, and how to hybrid these methods in an integrated manner. There has been extensive

work to construct an optimal neural network for controlling a mobile robot by evolutionary approaches such as genetic algorithm,

genetic programming, and so on. However, evolutionary approaches have a difficulty to design the controller that conducts complex

behaviors. In order to overcome this shortcoming, we propose an incremental evolution method for neural networks based on cellular

automata and a method of combining several evolved modules by a rule-based approach. The incremental evolution method evolves the

neural network by starting with simple environment and gradually making it more complex. The multi-modules integration method can

make complex behaviors by combining several modules evolved or programmed to do simple behaviors. Simulation results show the

potential of the incremental evolution and multi-module integration methods as sophisticated techniques to make the evolved neural

network to do complex behaviors. In this paper, we attempt to investigate the applicability of cellular automata-based neural networks

and propose sophisticated techniques for the generation of high-level behaviors.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Evolutionary neural network; Incremental evolution; Multi-module integration; Cellular automata; Mobile robot control
1. Introduction

How can we minimize human’s effort to design robot
controller? There are some difficulties to construct a
sensory-motor controller for an autonomous mobile robot
such as coordinating the mechanics and control system
parts of the robot, and managing interaction with external
environments [16]. There have been many publications of
constructing a mobile robot controller by evolutionary
approaches, such as evolving neural network (NN) by
genetic algorithm, using genetic programming, and com-
bining fuzzy controller with genetic algorithm to avoid the
obstacles, because they have the possibility of automatic
construction of the controller without explicit design. In
particular, evolving NNs has attracted much interest as a
e front matter r 2006 Elsevier B.V. All rights reserved.

ucom.2005.07.013

ing authors.

esses: kjkim@cs.yonsei.ac.kr (K.-J. Kim),

ei.ac.kr (S.-B. Cho).
promising way for this problem: NNs can easily exploit
various forms of learning and they are resistant to noise
that is massively presented in interaction between robot
and environments [7].
There are more than 100 publications that discuss

evolutionary design methods applied to NNs [27]. One of
the important advantages of evolutionary NNs is their
adaptability to a dynamic environment, and this adaptive
process is achieved through the evolution of connection
weights, architectures and learning rules. Designing the
optimal architecture of NNs can be formulated as
searching in the space where each point represents an
architecture. The performance level of all the architectures
forms a surface in the space. There are several character-
istics in such a surface which make evolutionary algorithms
promising candidates over conventional learning models.
Cellular automata (CA) can represent complicated

structures and functions with simple rules as a biological
brain composed of billions of simple nerve cells does. This

www.elsevier.com/locate/neucom


ARTICLE IN PRESS

Fig. 1. Mobile robot, Khepera.

K.-J. Kim, S.-B. Cho / Neurocomputing 69 (2006) 2193–22072194
indicates that the CA might be a good platform of complex
NNs developed based on simple rules. Moreover, due to
the features (massive parallelism and affinity to VLSI
implementations) of CA it is possible to evolve enormous
NNs very quickly on parallel hardware. There are special
purpose hardwares called CAM (cellular automata ma-
chine) for the quick update of the states of CA [23].

In this paper, the NNs based on CA [9] are used to
control an autonomous mobile robot. The model develops
NNs composed of neurons, axons and dendrites on CA.
The mechanism used to evolve NNs on CAM in this paper
is the same as the original work which attempts to apply
the model to many problems and show the possibility of
the approach [3,4]. The applications include 2-D pattern
recognizer [5], bit string detection module, multiple timer
module and life-like robot called Robokoneko which
shows the possibility of the robot behavior such as
jumping, catching a ball, and walking [8].

However, the traditional evolutionary method cannot be
easily used to design the controller for complex and general
behaviors which have multiple goals. We propose two
methods for a sensory-motor controller to do complex
behaviors with NNs based on CA. One is incrementally
evolving the controller by starting with simple environment
and gradually making it more complex and general for
complex behaviors [11]. Experimental results of this
method show the potential as a technique for improving
efficiency of evolutionary process. The other is combining
several modules evolved or programmed to do a simple
behavior by a rule-based approach [21]. Simulation results
of this method show the feasibility of integration of multi-
module evolved NNs based on CA incrementally.

The rest of this paper illustrates on the sophisticated
techniques for NNs based on CA, and simulation results
from applying them to controlling a mobile robot in detail.
The neural network is used to evolve basic behaviors
incrementally and rule-based integration of them is
adopted for high-level behaviors. Section 2 offers a brief
explanation on backgrounds such as a behavior-based
robot, Khepera, used in our simulations, and related
works. Section 3 describes the NNs based on CA in detail.
Sections 4–6 explain the integrated approach for generating
high-level behavior and multi-module integration methods
and present the simulation results.
2. Backgrounds

2.1. Behavior-based robot: Khepera

Khepera (see Fig. 1) was originally designed for research
and education in the framework of a Swiss Research
Priority Program [13]. It allows confrontation to the
real world of algorithms developed in simulation for
trajectory execution, obstacle avoidance, pre-processing
of sensory information, and hypothesis test on behavior
processing.
2.2. Related works

As mentioned previously, there are some difficulties to
construct a sensory-motor controller of an autonomous
mobile robot: It is very difficult to coordinate mechanics
and control system parts of the robot because it is hard to
predict the interaction between these two levels of Khepera
robot, because the autonomous robot interacts with
external environments. Therefore, building robots is a
tough job because the designer has to predict the
interactions between the robot and the environment [22].
It is reasonable to use an automatic procedure such as
evolutionary computation because this makes it possible to
construct a controller without human intervention and we
can automatically design its internal structure in detail with
less restriction.
Evolving NNs by using genetic algorithm is a useful

method among many evolutionary approaches. Smith et al.
proposed the evolution of GasNet NN controllers for a
robotic visual discrimination problem [20]. Santos et al.
presented different aspects of the use of evolution for the
successful generation of artificial NN controllers for real
robot [19]. In their work, several parameters of an
evolutionary/genetic algorithm (GA) and the way they
influence the evolution of artificial neural network (ANN)
behavioral controllers for real robots were contemplated.
Floreano and Mondada [6] have evolved recurrent NNs for
a real mobile robot controller. Their aim is to show that
more complex behaviors can emerge by reducing the
constraints imposed by the fitness function and by
increasing the affordabilities of the environment. For this,
they have evolved a real mobile robot controller to
navigate and avoid bumping against obstacles by GA
and battery-recharging behavior by using the simple fitness
function. Walker and Miglino [26] have presented that GA
is successfully used to evolve ANNs networks for efficient
exploration strategies in a population of software simu-
lated Khepera robots.



ARTICLE IN PRESS

Fig. 2. The procedure of evolving neural networks based on cellular

automata.

K.-J. Kim, S.-B. Cho / Neurocomputing 69 (2006) 2193–2207 2195
Barlow et al. developed autonomous navigation con-
trollers for fixed wing unmanned aerial vehicle (UAV)
applications using incremental evolution with multi-objec-
tive genetic programming [1]. Walker described the effect
of mutating every individual in the seed populations of
incremental evolution [25] and compared the performance
of incremental evolution to that of direct evolution in
multi-variable symbolic regression problem [24]. Parker et
al. studied the incremental evolution of NNs to control
hexapod robot locomotion [17].

3. Neural networks evolved on cellular automata

NNs based on CA finally aims at developing an artificial
brain. In particular, due to the features (massive paralle-
lism and affinity to VLSI implementations) of CA the
architecture of NNs composed of millions of neurons can
be evolved very quickly on parallel hardware. It is already
proved that it can be implemented on CAM-brain machine
(CBM) with field programmable gate array (FPGA). It is
basically designed to create and evolve CA-based NN
modules in real time [3].

However, there are only a few simulation results of this
model in some problems such as binary comparator, timer,
sine curve generator, and so on. Recently, they are
attempting to make NN modules evolved to control a
lifesize kitten robot, Robokoneko, for showing off the
capacities of the model [8].

3.1. Chromosome representation

The model makes NNs based on CA with its own
chromosome that has information about the cell structure
and state of CA. Therefore, it is possible to evolve and
adapt the structure of the NN to a specific task by GA.
Fig. 2 shows the evolution procedure of this model. In
general, GA generates the population of individuals and
evolves them with genetic operators such as mutation and
crossover [10]. We have used the GA to search for the
optimal NN. At first, a half of the population that has
better fitness value is selected to produce new population.
Two individuals in the new population are randomly
selected and parts of them are exchanged by one-point
crossover. Mutation is operated in the segment of
chromosome (if there is n-bit chromosome, n segments
exist and 1 bit means 1 segment). Mutation changes the
value of segment as 0 if the value is 1 (vice versa). The GA
generates a new population from the fittest individuals for
the given problem.

CA consists of a number of cells with states that change
according to a set of rules, based on the states of its
surrounding cells. The state of a cell which is located at
ðx; y; zÞ at time tþ 1 in three dimensional CA is as follows:

stþ1
ðx;y;zÞ ¼ f ðst

ðxþ1;y;zÞ; s
t
ðx;yþ1;zÞ; s

t
ðx;y;zþ1Þ; s

t
ðx;y;zÞ; s

t
ðx�1;y;zÞ,

st
ðx;y�1;zÞ; s

t
ðx;y;z�1ÞÞ, ð1Þ
where st
ðx;y;zÞ denotes the state of cell at time t, f ðÞ denotes

the transition function that defines the rule governing state
change of a cell. NN structure composed of blank, neuron,
axon and dendrite is grown inside 3-D CA space encoded
by chromosome. Roles of each cell are as follows:
�
 Blank: If cell state is blank, it represents empty space
and cannot transmit any signals.

�
 Neuron: It collects signals from surrounding dendrite

cells which are accumulated. If the sum of collected
signals is greater than a threshold, neuron cells send
them to surrounding axon cells.

�
 Axon: It sends signals received from neurons to the

neighborhood cells.

�
 Dendrite: It collects signals from neighborhood cells and

passes them to a connected neuron in the end.

Neighborhood cells of one cell mean surrounding cells
(north, south, west and east in 2-D CA space and top and
bottom added to them in 3-D CA space). The states of each
cell and program (or rules) deciding it with those of neighbors
are determined by chromosome (see Fig. 3). The information
encoded in a chromosome determines a NN architecture. To
represent the whole structure of a NN, chromosome has the
same number of segments with the cells in CA space and each
segment has information of each cell. A segment can change
blank cell to neuron cell (NS bit of Fig. 3), and decide the
directions of sending received signals to neighborhood cells
(N, S, E, W, T and B bits of Fig. 3). The signal can be only
sent to the direction where the bit corresponds to 1.

3.2. Growth phase

The growth phase organizes neural structure and makes
the signal trails among neurons. Neurons are seeded in CA



ARTICLE IN PRESS

Fig. 3. Information encoded in chromosome.

Table 1

State transition rules

Old cell state New cell state

Type Neuron seed The number of

axon signal

The number of

dendrite signal

Type

00 0 1 X 11

00 0 X 1 10

00 0 0 or 41 0 or 41 00

00 1 X X 01

X Means ‘‘don’t care’’; 00: Empty; 01: Neuron; 10: Dendrite; 11: Axon.

K.-J. Kim, S.-B. Cho / Neurocomputing 69 (2006) 2193–22072196
space by chromosome. The NN structure grows by sending
two kinds of growth signals (axon and dendrite) to
neighborhood cells. A neuron sends axon growth signal
to two opposite directions determined by chromosome and
dendrite growth signal to the remaining four directions.
Table 1 explains state transition rules. The number of
axonal or dendrite signals is dependent on surrounding
cells. The detailed procedure is as follows:

Step 1: A chromosome is randomly made and the states
of all cells are initialized as blank. At this point some of the
cells are specified as neuron with some probability.

Step 2: A neuron cell sends axon and dendrite growth
signals to the direction determined by chromosome. Axon
growth signal is sent to two opposite directions and
dendrite growth signal is sent to the remaining directions.

Step 3: The blank cell received growth signal changes to
axon or dendrite cell according to the type of growth
signal. It sends the signals received from other cells to the
direction determined by chromosome.

Step 4: Every blank cell goes through Step 3. Repeating
this process, the final NN is obtained when the state of
every cell changes no longer.

Fig. 4 shows the growing process in 4� 4 2-D CA space.
In this figure, the cell which is filled with oblique lines is
blank cell, and the black arrows show the direction of
signaling determined by chromosome. Fig. 4(a) shows the
process of seeding a neuron in blank cells, where a neuron
is located in (x2, y2). Fig. 4(b) shows that the neuron cell
sends growth signal to surrounding cells. Fig. 4(c) shows
Step 3 of the above procedure, and Fig. 4(d) shows that
blank cells grow into axon or dendrite.

3.3. Signaling phase

Signaling phase transmits the signal from input to output
cells continuously. The trails of signaling are performed
with the structure evolved at the growth phase. Each cell
plays a different role according to the cell type. If the cell
type is neuron, it gets the signal from connected dendrite
cells and gives the signal to connected axon cells when the
sum of signals is greater than a threshold. If the cell type is
dendrite, it collects signals from the connected cells and
eventually passes them to the neuron body. If the cell type
is axon, it distributes signals originating from the neuron
body.
The location of input and output cells in CA space is

determined in advance. During signaling phase, the fitness
evaluation is executed. The detailed procedure of signaling
is as follows:

Step 1: If the state of input cell is neuron, it receives
signals from outside and accumulates them. It implies that
no signaling occurs when the input cell is not a neuron.

Step 2: If the sum of signals from outside is greater than
a threshold, it sends þ1 to excitatory axon and �1 to
inhibitory axon.

Step 3: Axon cell that received signals from neuron sends
the signal to the surrounding cells except the cell that sends
the signal. Repeating this process, axon cell distributes the
signal to neighborhood cells continuously.

Step 4: When dendrite cells belonging to another neuron
receive the signals, they collect these signals and send them
to a neuron.

Step 5: A neuron cell that received signals from dendrite
cell goes through Step 2 and it sends the signals to the
surrounding cells. Repeating this process, the signal from
input cell is passed to the neuron cells and finally arrives at
output neuron.
Fitness is evaluated by the output value in this process.

Depending on the task, several methods can be used such
as the number of activated cells, Hamming distance of the
target and output vectors, and some function to evaluate
the fitness. Fig. 5 shows the directions of signals after
neuron, axon and dendrite are made. In this figure, neuron
sends excitatory signal (þ1) to the neighborhood cell that
has grown into excitatory axon, and inhibitory signal (�1)
to the neighborhood cell that has grown into inhibitory
axon. Dendrite cell collects signals from neighborhood cells
and sends them to a neuron, and axon cell distributes the
signals originated from neuron to neighborhood cells.

4. Mobile robot control

Applying CA based NN to a mobile robot control
requires the following process. NN structure is made at



ARTICLE IN PRESS

Fig. 4. The process of growth of neural network structure: (a) black arrow represents signaling direction determined by chromosome, and a neuron is

located in (x2, y2); (b) the neuron sends growth signals; (c) the cell state is determined according to the type of growth signals; (d) propagating growth

signals, blank cells become axon or dendrite.

Fig. 5. The process of signaling of neural network. Neuron cell in CA-

based neural network does a similar job with that in feed-forward neural

network: it collects signals and accumulates them until the signals exceed

the threshold.

K.-J. Kim, S.-B. Cho / Neurocomputing 69 (2006) 2193–2207 2197
first, and then sensor values from Khepera simulator are
used as inputs of the input cells of the NN which transmits
signal from input to output cells. As the output values of
the network are inputted to Khepera simulator, the robot
moves. When the robot bumps against the obstacle or
reaches the goal, its fitness is calculated. Chromosomes are
reproduced according to it.

4.1. Method

There are many problems in applying the NNs based on
CA to control a mobile robot. Because the network cannot
perfectly utilize activation values of robot sensors the
activated range of input neurons is made differently
according to the value. The higher the value of sensor,
the more the number of neurons that gets the input signals.
In addition, because delay time is needed until the network
makes output value, dummy signaling phase should be
executed for some duration until the signals started from



ARTICLE IN PRESS

Table 2

Environmental variables

The size of CA space 5� 5� 5, 10� 10� 10

Population size 100

The proportion of neurons in cellular

automata space

5%

Crossover rate 0.3

Mutation rate 0.05

Threshold values of neuron �16; 15

Fig. 6. The change of the best and average fitnesses when applied to

mobile robot control (5� 5� 5 cellular automata space).

Fig. 7. The trajectory of a successful individual evolved in 5� 5� 5

cellular automata space.

K.-J. Kim, S.-B. Cho / Neurocomputing 69 (2006) 2193–22072198
input cells arrive at output cells. These make the robot to
react timely in situation.

Khepera robot simulator has been programmed with
Cþþ, and the simulation has been performed on Sun
UltraSparc. The population size is 100, and the maximum
step of sensor sampling for the evaluation of the individual
is 30 000. We use 5� 5� 5 and 10� 10� 10 CA space to
solve the problem (5� 5� 5 CA is used to analyze its
structure). Table 2 shows the parameters used in our
simulation. Among sensors of the robot, light sensors are
not used and 0, 2, 3, 5 distance sensors are used for
evolving avoiding obstacle behavior. Only four sensors are
used in this simulation and each input cell is in the center
region of four faces of hexahedrons in CA space. Output
cells are in the top and bottom faces of hexahedrons, and
produce the speed of left and right motors, respectively.

The number of bumps in navigation is used for fitness
evaluation. If the robot goes round the simulation space
completely without bumping, the fitness becomes 1.0 and
the robot stops moving. If robot crashes to the wall it stops
movement and the fitness is decreased. Even if we do not
give any knowledge about the movements, such as ‘‘turning
right,’’ ‘‘turning left’’ and ‘‘avoiding obstacles,’’ the
evolution guides NNs naturally to solve the problems.

‘‘Following Light’’-module is evolved to go to the light
source. Input values of NN module are light sensor values
of the robot. The fitness value is defined as follows:

Fitness ¼ S � ð1�
ffiffiffiffi
V
p
Þ � ðDÞ, (2)

where S, is the average speed of the two wheels, V, the
difference between the velocities of two wheels, D, the
normalized value of light sensors.

The fitness evaluation causes the robot to go straight
quickly and reach the nearby light source. Population size
is 50 and the fitness of individual is computed by the
average of four runs. Of course, the direction of the robot
changes in each run.

4.2. Simulation results

Fig. 6 shows the change of fitness with generation. At the
10th generation, better solution emerges suddenly and it
struggles to survive. The fluctuation from the 14th
generation to the 20th generation exists because of no
eliticism. It seems to make evolution search for more
robust solution by exploring extensively. After the 21st
generation, individuals that have fitness value of one keep
on appearing. Fig. 7 shows the trajectory of a successful
robot. This is less smooth than that obtained in our
previous work [2], but this robot controller has smaller
number of neurons, which makes the analysis easier.
Fig. 8 shows the architecture of the NN evolved. Dotted

arrow represents inhibitory connection, and lined arrow
represents excitatory connection. This has been obtained
by tracing the activation values of each neuron. The
number of neurons is 12, but neurons 8, 11 and 12 are
inaccessible because these neurons are not in the path of
input to output neurons. Neurons 2 and 10 are output
neurons to produce the velocity of left and right wheels,
and neurons 3, 4, 5 and 6 are input neurons. Neuron 3 is
for the front sensor of the robot, neurons 5 and 6 are for
the left sensor, and neuron 4 is for the right sensor. The
output neuron for left wheel has only one input from the
right sensors. The output neuron for right wheel has two
inputs from left sensors and hidden neurons. The link
between the output neuron and the neuron for left sensors
is positive but the link with the hidden neuron is negative.



ARTICLE IN PRESS
K.-J. Kim, S.-B. Cho / Neurocomputing 69 (2006) 2193–2207 2199
The input from the left sensors can accelerate the velocity
of right wheel but inputs from left, right and front sensors
can deaccelerate the right wheel with some delay.

Fig. 8 shows the interpreted neural architecture of the 3-
D NN based on CA. The procedure of transforming the
CA-based NN into such an understandable NN architec-
ture is as follows. At first, each neuron cell is indexed and
their relationships are analyzed by tracing the neural trail
formed at the growth phase. Input and output neurons are
predefined at designing stage of controller. The remaining
neurons are all hidden neurons. Some of them are ignored
because they are isolated from the input–output signal
stream. Based on the information of the link and the
direction of signal, the edge is visualized. Each neuron is
Following Lig

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51 61 71 81 91

Gen

F
itn

es
s

Fig. 9. The change of the best and average fi

Fig. 8. The architecture of the neural networks evolved in 5� 5� 5

cellular automata space.
represented as a circle. This interpreted NN makes some-
one understand the structure of CA-based NN. However,
the visualization cannot reflect the different time-delaying
property of each connection.
Fig. 9 shows the change of the best and average fitnesses

for evolving 10� 10� 10 CA for following light behavior.
It shows evolutionary change of 200 generations. The best
solution has emerged at the 51st generation but it
disappears because of no eliticism. However, there is
steady increase in average fitnesses. It shows that evolving
10� 10� 10 CA needs more generations for convergence
than evolving 5� 5� 5 CA. Fig. 10(a)–(d) shows the
trajectory of the evolved robot when the angles are
0�; 90�; 180� and 270�, respectively. The robot can be
oriented in the intended direction at the initial position. 0�

means that robot faces the right side of the environment.
The robot changes its orientation to the counterclockwise
rotation, if the angle value increases. In evolutionary
procedure, the average success of four trials (0, 90, 180, and
270�) is used and the figure shows the successful one at the
last generation.
5. Incremental evolution

An evolutionary method suffers from the inefficiency to
solve complex problem because it is difficult to find proper
solution in huge search space. Therefore, it is more feasible
to solve a complex problem by evolving the controller with
simpler environments and gradually developing it with
more general and complex environments [11]. Evaluation
tasks t1; t2; t3; . . . ; tn are derived by transforming a goal task
in incremental evolution, where n is the number of tasks
and tn is the goal task. In this set, ti is easier than tiþ1 for all
i: 0oipn. Thus, population is evaluated in task ti and then
task tiþ1 and it finally does in the goal task, tn [11]. Fig. 11
shows the process of this method. It is expected to produce
a controller doing complex and general behaviors.
ht (10X10X10)

101 111 121 131 141 151 161 171 181 191

eration

Max Average

tnesses (10� 10� 10 cellular automata).



ARTICLE IN PRESS

Fig. 10. The trajectory of a successful robot: (a) 0�, (b) 90�, (c) 180� and (d) 270�.

Fig. 11. The incremental evolution process of neural networks based on

cellular automata.

K.-J. Kim, S.-B. Cho / Neurocomputing 69 (2006) 2193–22072200
5.1. Method

In this paper, we attempt to incrementally evolve a mobile
robot controller to avoid bumping against obstacles. After
determining environments, we evaluate population of the
NNs in each environment. It is important to devise a nice
method to generate new population for the next environ-
ment, while maintaining the behaviors learned at the
previous environments. The simplest way is to copy a
successful individual (this method is called manual selection)
obtained in the previous step into all the individuals in the
next population and then mutate them. This can maintain
good features of successful individuals in the previous step
but new individuals tend to heavily depend on it.
Gomez and Mikkulainen [11] have solved it by applying

delta-coding [15] to escape local minima. Delta coding is an
iterative genetic search strategy that sustains search by
periodically re-initializing the population. In manual
selection, we choose the best individual for the seed of
the next population. In this paper, we select several
successful individuals according to the fitness value (this
method is called automatic selection) and then generate
new population by mutating them with a modified delta-
coding method. The number of mutations in each
individual is decided by Cauchy distribution to distribute
new individual properly. The values that represent
differences from the best solution need to be generated
using a probability density function that concentrates most



ARTICLE IN PRESS
K.-J. Kim, S.-B. Cho / Neurocomputing 69 (2006) 2193–2207 2201
of the values in the local search space while occasionally
permitting values of much larger magnitude. Cauchy
distribution is defined as follows:

f ðxÞ ¼
a

pða2 þ x2Þ
. (3)

With this distribution, the value of f will fall within the
interval �a with 50% probability. This makes many
individuals similar to the individual obtained in the
previous step and a few individuals very different to them,
due to the shape of Cauchy probability density function. In
the simulations, this distribution is used to decide the
number of mutations on the current population.

Because the robot behavior is composed of going
straight and turning left and right, the controller can be
incrementally evolved to do those behaviors step by step.
The environments in Fig. 12(a) and (b) make the robot to
go straight and those in Fig. 12(c)–(e) to turn right, and
those in Fig. 12 (f) and (g) to turn left. Fitness is evaluated
based on the velocity of the robot and the number of
straight movements

Fitness ¼ 50�
1

S

XS

i¼0

Vi

 !
, (4)

where S, is the number of movements until stopping and
V i, the value determined by the velocity in the ith step.

This fitness function causes the robot to arrive at goal
position quickly without bumping against walls. Popula-
tion size is 50 and the fitness of individual is computed by
the average of four runs.

5.2. Simulation results

Fig. 13(a) shows the change of the best fitness when
evolving in the environment of Fig. 12(g). As can be seen,
the direct evolution has difficulty producing a successful
Fig. 12. Environments used
controller for this task easily. Because all the individuals
are poor in performance for the difficult task, simple GA
gets trapped in an unpromising region of the solution
space. An easier task might induce good individuals which
leads to a promising region of the space. In this simulation,
successful controller did not emerge after 100 generations.
Fig. 13(b) shows the result of the incremental evolution
with manual selection of the best individual in each step. In
the figure, the goal of evolution is to find the successful
solution for the environment in Fig. 12(g). At first, six
generations are passed to generate the successful solution
for the environment in Fig. 12(a). If the average fitnesses of
the population is larger than the pre-defined threshold, it
stops. The next generation for more difficult problem is
determined manually. For Fig. 12(c), (e), and (f), it takes
only one generation because the first population is enough
for the problem. To achieve the final goal, more than 100
generations are needed.
Fig. 13(c) shows the result of the incremental evolution

with automatic selection of the best individuals and
mutations using Cauchy distribution. In the figure, the
distribution of the next population for the more difficult
problem is determined automatically. The stop criterion is
the same as that of manual selection. It needs only 41
generations for achieving the final goal. In these figures, we
can see the efficiency of incremental evolution for solving a
complex problem. Fig. 14 shows the architectures of the
evolved NNs in each step. Fig. 14(a)–(d) shows only the
NN architectures evolved in the period of (a), (b), (e) and
(g) in Fig. 12, respectively, because Fig. 12(c)–(e) can be
solved by the successful individual obtained in the previous
step. We can see that the architectures of NNs get
complicated as the step goes on.
In Fig. 14(a), input from the front sensors (neuron

labeled as ‘‘6’’) has a major role for the movement. In
Fig. 14(c), the right wheel needs to decrease velocity and
in incremental evolution.



ARTICLE IN PRESS

Fig. 13. (a) The change of the best fitness when evolving in Fig. 12(g) environment; (b) the change of the best fitness of the incremental evolution with

manual selection of the best individuals in each step; (c) the change of the best fitness of the incremental evolution with automatic selection of the best

individuals and mutations using Cauchy distribution.

K.-J. Kim, S.-B. Cho / Neurocomputing 69 (2006) 2193–22072202
the left wheel needs to increase for turning right. As a
result, neuron for the right wheel has two inhibitory
connections for decreasing speed but the neuron for the left
wheel has one inhibitory link. In the case of Fig. 14(d),
both turning left and turning right behaviors are needed to
move correctly and the architecture of the network is
difficult to understand because of the complexity of the
architecture. Fig. 15 shows the results of applying the



ARTICLE IN PRESS

Fig. 14. The neural network architectures in each step (dotted line: inhibitory connection, solid line: excitatory connection).

Fig. 15. Applying a successful robot to different environments.

K.-J. Kim, S.-B. Cho / Neurocomputing 69 (2006) 2193–2207 2203
individual obtained by the incremental evolution method
to more complex environments.

Fig. 16 shows the simulation results for an improved
following light behavior. In this simulation, the configura-
tion of the environment is relatively more complex than
that of ‘‘avoiding obstacle,’’ and ‘‘following light.’’ Like
other simulations, the map information of the environment
is not used and there is no exact information about which
way is the right one (only light information is used as a
clue). In this case, the initial population is generated



ARTICLE IN PRESS

Fig. 16. Evolution of improved following light behavior for simple environment with relatively simple obstacles. The initial population for the evolution is

automatically generated from the most successful individual for Fig. 12(g). The initial setting of the CA-based neural network is modified to input the light

signal to the network because the previous behavior (avoiding obstacle) does not need the sensor values. The robot searches for the light source with

reduced bumps using the behavior: (a) simulation environment (star mark represents the light source and the arc in (a) represents the initial orientation of

the robot), (b) an individual in the initial population which causes many bumps to get the light source but takes a shortcut to the destination, (c) an

individual in the initial population which takes long time, (d) successful one.

K.-J. Kim, S.-B. Cho / Neurocomputing 69 (2006) 2193–22072204
automatically using the most successful one for Fig. 12(g).
It can only avoid obstacles well and has no information on
following light behavior. Finally, the individual which finds
shortcuts (robot can infer the way by using the light level
information) with relatively less bumps emerges.

6. Multi-module integration

The controller composed of only one NN module has a
difficulty in making the robot perform complex behaviors.
Some researchers attempt to overcome this shortcoming by
combining several modules evolved or programmed to do
simple behaviors such as ‘‘going straight,’’ ‘‘avoiding
obstacles,’’ ‘‘seeking object,’’ and so on [14,18]. They
expect the controller combined with several modules to do
complex behaviors.
6.1. Method

Combining low and simple behaviors makes high-level
complex behaviors. In this section, basis behaviors and
the IF–THEN rules for combining them are presented.
Four basis behaviors used in this paper are defined as
follows:
�
 Battery recharge: If a robot arrives at battery recharge
area, battery is recharged. This module enables the
robot to operate as long as possible.

�
 Following light: The robot goes to stronger light. It

must operate this module to go to the ‘battery recharge’
area because the light source exists in that area.

�
 Avoiding obstacles: If the obstacles exist around the

robot, it avoids obstacles without bumping against



ARTICLE IN PRESS
K.-J. Kim, S.-B. Cho / Neurocomputing 69 (2006) 2193–2207 2205
them. This module enables it to go to ‘Battery Recharge’
area safely by avoiding obstacles.

�
 Going ahead: If there is nothing around the robot, it

goes ahead: This module makes it move continuously
without stopping.

These basis behaviors are needed to adapt to a given
environment shown in Fig. 17. The robot must avoid
bumping against obstacles and go to the ‘‘Battery
Recharge’’ area for recharging battery occasionally in
order to be alive for a long time in a given environment.

We use IF–THEN rules for combining the four basis
behaviors properly. We can determine an operating module
according to the situation which is judged by sensor values
of the robot using IF–THEN rules. We expect that this
method adapts to a given environment if the rules are
defined properly. The rules used in this paper are as follows:
IF (‘‘Battery Recharge’’ area)

T
HEN Execute Battery Recharge module

E
LSE IF (Battery sensor oa) AND (Minimum value of
light sensors pg)
T
HEN IF (Maximum value of distance sensors pb1)

T
HEN Execute Following Light module

E
LSE Execute Avoiding Obstacles module
E
LSE IF (Maximum value of distance sensors p b2)

T
HEN Execute Going Ahead module

E
LSE Execute Avoiding Obstacles module
The robot moves differently according to the constant
values (a, b, g). In these rules, constants are defined as
follows:
�
 a: If battery sensor value is less than a, battery is needed
recharging.

�
 b1 and b2: If the maximum value of distance sensors is

greater than b1 and b2, the robot perceives obstacles.

�
 g: If the minimum value of light sensors is less than g, the

robot perceives light.
Fig. 17. Simulation environment.
The robot moves differently according to these constant
values. For example, the robot moves around ‘‘Battery

Recharge’’ area if a is large, while the robot consumes
the battery before reaching the ‘‘Battery Recharge’’ area if
it is small. Also, if b is large, the robot bumps against
the obstacles frequently and if g is very small, the robot
far from light source cannot perceive ‘‘Battery Recharge’’
area.

6.2. Simulation results

This approach is simulated in a modified Khepera
simulator. There are two kinds of modules. One is
programmed modules such as ‘‘Battery Recharge’’ and
‘‘Going Ahead,’’ and the other is evolved on CA such as
‘‘Following Light’’ and ‘‘Avoiding Obstacles.’’
‘‘Battery Recharge’’ module is programmed because

this behavior is very simple. Algorithm of this module is
that the robot recharges battery if it is in the ‘‘Battery
Recharge’’ area shown in Fig. 17.
The operating module is selected by the rules explained

previously and sensor values of the robot. Fig. 18 shows
the trajectory of the robot by combined modules in a given
environment. According to starting position of the robot,
the trajectory and moving behavior are different. Battery
decreases as the robot moves and battery becomes 2500
when it is recharged: the robot can move without
recharging for 2500 times. a is 2

3 of the maximum battery,
b1 is 200, and b2 is 250. The value of the distance sensor
ranges from 0 to 1024, and the larger the value is, the closer
the obstacles are. The b1 and b2 must be between 0 and
1024. For the safety of the robot, avoiding obstacle module
is allowed to be selected for most cases but if the value of
the sensor indicates that the robot is too far from the
obstacles, another behavior can be selected. The definition
of ‘‘too far’’ is empirically determined from many
simulations and the values from 200 to 250 (approximately
1
5
of the maximum value) are used. The b1 and b2 can be

determined from the range.
Fig. 19 shows the trajectory of the robot by combined

modules in a more difficult environment. The purpose of
this simulation is to show the adaptivity and usefulness of
the proposed method. In chaotic environment, there are
many small obstacles but the basic structure of the
environment and the goal of the robot are not changed.
This implies that the pre-defined rules can be applied to the
similar but more complex environments easily.

7. Concluding remarks

This paper has attempted to evolve neural networks
based on cellular automata to control an autonomous
mobile robot. In particular, in order to remedy the
shortcoming of conventional evolutionary neural networks
and obtain the sensory-motor controller doing complex
and general behaviors, we have combined multi-modules
evolved or incrementally to do simple behaviors using



ARTICLE IN PRESS

Fig. 19. The trajectory of the robot in chaos environment with multi-

modules.

Fig. 18. The trajectories of the robot with multi-modules.

K.-J. Kim, S.-B. Cho / Neurocomputing 69 (2006) 2193–22072206
IF–THEN rules to generate complex behaviors. We hope
that the sophisticated techniques proposed in this paper
make the evolutionary algorithms to be used in larger
variety of applications. For the scalability of the proposed
method, automatic rule generation or sophisticated action
selection mechanism is needed. Contribution of this paper
lies in the investigation of applicability of cellular automata
based neural network for the real-world applications. The
proposed systematic procedure to generate high-level
behavior can be used in the evolutionary robotics area.
This paper has reported ongoing efforts for generating

complex high-level behavior using systematic approach in
the context of CA-based NNs. Because it is at the initial
stage of the research, the behaviors evolved or generated
seem relatively simple and need to be improved. At this
stage, we have attempted to show the potential of the
proposed methods in relatively simple problems. The
extension of the works using sophisticated module
combination methods and evolving more complex behavior
will be the next step. The increase of complexity for module
combination using action selection mechanism is an
ongoing research and a preliminary result is reported in
another work [12].



ARTICLE IN PRESS
K.-J. Kim, S.-B. Cho / Neurocomputing 69 (2006) 2193–2207 2207
Acknowledgement

This research was supported by Brain Science and
Engineering Program sponsored by Korea Ministry of
Commerce, Industry and Energy.

References

[1] G.J. Barlow, C.K. Oh, E. Grant, Incremental evolution of

autonomous controllers for unmanned aerial vehicles using

multi-objective genetic programming, Proceedings of the 2004

IEEE Conference on Cybernetics and Intelligent Systems, 2004,

pp. 688–693.

[2] S.B. Cho, G.B. Song, Evolving CAM-brain to control a mobile

robot, Appl. Math. Comput. 111 (2–3) (2000) 147–162.

[3] H. de Garis, M. Korkin, The CAM-brain machine (CBM) an FPGA

based hardware tool which evolves a 1000 neuron net circuit module

in seconds and updates a 75 million neuron artificial brain for real

time robot control, Neurocomputing 42 (1–4) (2002) 35–68.

[4] H. de Garis, M. Korkin, G. Fehr, The CAM-brain machine (CBM):

an FPGA based tool for evolving a 75 million neuron artificial brain

to control a lifesized kitten robot, Auton. Robot. 10 (3) (2001)

235–249.

[5] H. de Garis, M. Korkin, P. Guttikonda, D. Cooley, Simulating the

evolution of 2D pattern recognition on the CAM-Brain machine, an

evolvable hardware tool for building a 75 million neuron artificial

brain, Proceedings of the IEEE-INNS-ENNS International Joint

Conference on Neural Networks, vol. 6, 2000, pp. 606–609.

[6] D. Floreano, F. Mondada, Evolution of homing navigation in a real

mobile robot, IEEE T. Syst. Man Cybern. 26 (3) (1996) 396–407.

[7] D. Floreano, F. Mondada, Evolutionary neurocontrollers for

autonomous mobile robots, Neural Networks 11 (7–8) (1998)

1461–1478.

[8] GenoByte Inc. ROBOKONEKO (Kitten Robot), hhttp://www.geno-

byte.com/robokoneko.htmli.

[9] F. Gers, H. de Garis, M. Korkin, CoDi-1Bit: a simplified cellular

automata based neural model, Proceedings of the Conference on

Artificial Evolution, Nimes, France, October 1997, pp. 315–334.

[10] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning, Addison-Wesley, Reading, MA, 1989.

[11] F. Gomez, R. Mikkulainen, Incremental evolution of complex

general behavior, Adapt. Behav. 5 (3–4) (1997) 317–342.

[12] K.-J. Kim, S.-B. Cho, Integration of multiple neural networks

evolved on cellular automata by action selection mechanism, Seventh

International Conference on Neural Information Processing vol. 2,

2000, pp. 687–692.

[13] K-Team, Khepera Simulator Version 5.02 User Manual, 1999.

[14] H.H. Lund, Modern artificial intelligence for human-robot interac-

tion, Proc. IEEE 92 (11) (2004) 1821–1838.

[15] K.E. Mathias, L.D. Whitley, Initial performance comparisons for the

delta coding algorithm, Proceedings of IEEE Conference on

Evolutionary Computation, vol. 1, 1994, pp. 433–438.

[16] S. Nolfi, D. Floreano, Synthesis of autonomous robots through

evolution, Trends Cog. Sci. 6 (1) (2002) 31–37.

[17] G.B. Parker, L. Zhiyi, Evolving neural networks for hexapod leg

controllers, Proceedings of IEEE/RSJ International Conference on

Intelligent Robots and Systems, vol. 2, 2003, pp. 1376–1381.

[18] P. Rusu, E.M. Petriu, T.E. Whalen, A. Cornell, H.J.W. Spoelder,

Behavior-based neuro-fuzzy controller for mobile robot navigation,

IEEE Trans. Instrum. Meas. 52 (4) (2003) 1335–1340.

[19] J. Santos, R.J. Duro, J.A. Becerra, J.L. Crespo, F. Bellas,

Considerations in the application of evolution to the generation of

robot controllers, Inform. Sci. 133 (3–4) (2001) 127–148.
[20] T. Smith, P. Husbands, M. O’shea, Local evolvability of statistically

neutral GasNet robot controllers, Biosystems 69 (2–3) (2003)

223–243.

[21] G.-B. Song, S.-B. Cho, Rule-based integration of multiple neural

networks evolved based on cellular automata, FUZZ-IEEE’99, vol. 2,

1999 pp. 791–796.

[22] B. Ster, An integrated learning approach to environment modelling in

mobile robot navigation, Neurocomputing 57 (2004) 215–238.

[23] T. Toffoli, N. Margolus, Cellular Automata Machine, MIT Press,

Cambridge, MA, 1987.

[24] M. Walker, Comparing the performance of incremental evolution to

direct evolution, Second International Conference on Autonomous

Robots and Agents, 2004, pp. 119–124.

[25] M. Walker, Mutated seeds: a performance enhancer for incremental

evolution, Proceedings of the First Postgraduate Conference of the

Institute of Information and Mathematical Sciences, Massey

University, 2004, pp. 95–99.

[26] R. Walker, O. Miglino, Simulating exploratory behavior in evolving

artificial neural networks, Proceedings of the Genetic and Evolu-

tionary Computation Conference 1999, pp. 122–1428.

[27] X. Yao, Evolving artificial neural networks, Proc. IEEE 87 (9) (1999)

1423–1447.

Kyung-Joong Kim (Student Member, IEEE)

received the B.S. and M.S. degrees in computer

science from Yonsei University, Seoul, Korea, in

2000 and 2002, respectively. Since 2002, he has

been a Ph.D. student in the Department of

Computer Science, Yonsei University. His re-

search interests include evolutionary neural net-

work, robot control, and agent architecture.
Sung-Bae Cho (Member, IEEE) received the B.S.

degree in computer science from Yonsei Uni-

versity, Seoul, Korea, in 1988 and the M.S. and

Ph.D. degrees in computer science from Korea

Advanced Institute of Science and Technology

(KAIST), Taejeon, Korea, in 1990 and 1993,

respectively.

From 1991 to 1993, he worked as a Member of

the Research Staff at the Center for Artificial

Intelligence Research at KAIST. From 1993 to
1995, he was an Invited Researcher of Human

Information Processing Research Laboratories at ATR (Advanced

Telecommunications Research) Institute, Kyoto, Japan. In 1998, he was

a Visiting Scholar at University of New South Wales, Canberra, Australia.

Since 1995, he has been a Professor in the Department of Computer

Science, Yonsei University. His research interests include neural networks,

pattern recognition, intelligent man–machine interfaces, evolutionary

computation, and artificial life.

Dr. Cho is a Member of the Korea Information Science Society, INNS,

the IEEE Computer Society, and the IEEE Systems, Man and Cybernetics

Society. He was awarded outstanding paper prizes from the IEEE Korea

Section in 1989 and 1992, and another one from the Korea Information

Science Society in 1990. In 1993, he also received the Richard E. Merwin

prize from the IEEE Computer Society. In 1994, he was listed in Who’s

Who in Pattern Recognition from the International Association for

Pattern Recognition and received the best paper awards at International

Conference on Soft Computing in 1996 and 1998. In 1998, he received the

best paper award at World Automation Congress. He was listed in

Marquis Who’s Who in Science and Engineering in 2000 and in Marquis

Who’s Who in the World in 2001.

http://www.genobyte.com/robokoneko.html
http://www.genobyte.com/robokoneko.html

	Evolved neural networks based on cellular automata for �sensory-motor controller
	Introduction
	Backgrounds
	Behavior-based robot: Khepera
	Related works

	Neural networks evolved on cellular automata
	Chromosome representation
	Growth phase
	Signaling phase

	Mobile robot control
	Method
	Simulation results

	Incremental evolution
	Method
	Simulation results

	Multi-module integration
	Method
	Simulation results

	Concluding remarks
	Acknowledgement
	References


