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ABSTRACT 
Theory of mind (ToM) is a cognitive function in which an agent 
can infer another agent’s internal state and intention based on 
their behaviors. Can robots realize ToM like humans? There are 
many issues to be tackled to address this challenging problem, 
such as the representation, discovery and exploitation of an 
actor’s self models. In this paper we study how robots can 
represent other’s self with artificial neural networks and an 
evolutionary learning mechanism. This framework was tested with 
simulated and physical robots and a novel prey-predator scenario 
was introduced to measure the performance of ToM learning. 
Experimental results showed that the proposed ToM approach can 
recover other’s self models successfully. 

Categories and Subject Descriptors 
I.2.0 [Artificial Intelligence – General]: Cognitive Simulation  

General Terms 
Algorithms, Performance, Design, Reliability, Experimentation, 
and Verification 

Keywords 

Robotics, Evolutionary Computation, Estimation-Exploration 
Algorithm, Theory of Mind, Neural Network, Robot Test 

1. INTRODUCTION 
Theory of Mind (ToM) is a cognitive capability that allows us to 
understand another’s internal states (intention, goal, and belief) 
and predict future behaviors of others [1].  From the observation 
of other’s behavior, facial expression, and speech, we can infer 
the person’s internal state (emotions, thought, decision making, 
and plans). It was known that this function is supported by widely 
distributed areas of human brain [2][3]. For Chimpanzees, they 
have ToM but it is a bit different with human’s one [4].  

ToM has gained great interest from an engineering society. 
Scassellati built “finding faces and eyes and distinguishing 
animate from inanimate stimuli” functions for humanoid robots 
[5]. Buchsbaum et al. developed an anthropomorphic animated 
mouse character that uses his own behavior repositories to 

interpret other’s behavior [6]. Hegel et al. studied human’s theory 
of minds for different shapes of robots [7]. Ono et al. used theory 
of mind mechanism to improve human’s understanding on robot’s 
intention [8].  

Implementing ToM has great difficulty because it is a kind of 
reverse inference based on observation. Other’s self model is 
hidden and it exists inside of objects. It is not possible to see the 
internal model directly and it is only indirectly observable. The 
only thing that we can observe is that the reaction of the object to 
the inputs from environments. The model with continuous input-
output signals is more difficult to be discovered than discrete one. 

In this paper, each robot has its own self and the problem of 
ToM is to discover other robot’s self as close as possible. In case 
of human, the self is located inside of human brain and 
represented with biological neural networks. The problem of ToM 
for human is to build models inside of my brain that approximate 
the behaviors originated from other’s internal self. Like other’s 
original self, the inferred other’s self is also represented as 
biological neural networks. The problem can be reformulated as 
finding another biological neural network that shows close 
behavior with the original one. Robot uses the similar mechanism 
to do the ToM.   

 
Figure 1. Theory of Mind in robots 

In this paper, robots do theory of minds by inferring the 
neural networks inside other robots based on their movement 
(Figure 1). An artificial neural network controls the movement of 
robot’s wheels based on sensory inputs. The inference is based on 
the exploration-estimation algorithm (EEA) used in reverse 
engineering of nonlinear-dynamical systems [9] and robot’s self 
modeling [10]. After building other’s self models, the robot 
exploits them to predict other robot’s behavior. Figure 2 shows a 
neural network and virtual/physical robots used.  
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(a) A neural controller 

 
(b) A real robot 

Figure 2. An artificial neural network and robots 

2. RELATED WORK 
Premack and Woordruff asked “does the chimpanzee have a 
theory of mind?” in 1978 [1]. Heyes surveyed experimental 
evidences of non-human theory of mind in 1998 [11]. After 30 
years research from the initial question, it was revealed that 
chimpanzee do have a theory of mind but do not understand 
others like humans do [12]. Series of experiments were conducted 
with chimpanzees to know what they know about others 
[13][14][15].  Two chimpanzees compete for food when only one 
of them has complete information about the location of food. 
They concluded that chimpanzees know what other can see and 
exploit it for food competition.  

Childhood autism is related to the lack of theory of mind 
[16][17]. Baron-Cohen et al. compared normal, autistic, and 
Down’s syndrome subjects using a belief question to test theory of 
mind. The results for Down’s syndrome and normal subjects were 
similar (85% and 86% success ratio). On the other hand, 80% of 
autistic children failed the belief question.  Ozonoff et al. tested 
the relationships between autism and first-order, second-order 
theory of mind [18].   

Based on [19], theories for “theory of mind” are classified 
into four categories: Modular theory, simulation theory, theory-
theory, and executive function theory. In modular approach, the 
theory of mind is functionally dissociable from other cognitive 
functions [17][20]. They assume that there are one or more neural 
structures specifically dedicated to theory of mind. In simulation 
theory [21], there is no general theory guiding the theory of mind. 
Instead, human’s brain mentally simulates other person ’ s 
situation by placing himself to the other person’s place. This 
perspective-taking view of theory of mind does not support 
specialized, distinct neural structure for this cognitive skill. In 

theory theory view, child has a theory about how other minds 
operate and it evolves over time [22]. Some theorists argue that a 
distinct theory of mind does not exist and executive functions are 
sufficient for the cognitive skills [18].  

Recently, there are new finding about theory of mind of 
humans.  Herrmann et al. compared theory of mind ability among 
human, chimpanzee, and orangutan with gaze following and 
intention understanding tasks [23]. They concluded that human 
outperforms other species in theory of mind. Falck-Ytter et al. 
investigated proactive goal-directed eye movements in 12-month 
old and 6-month old infants using a specialized system for action 
perception [24]. They concluded that 12-month old infants do the 
proactive goal-directed eye movements and this is evidence on the 
action understanding of infants. False-belief test is a 
representative method to know whether infants have theory of 
mind. Onishi et al. proposed a novel nonverbal task to examine 
15-month old infant’s ToM ability [25]. Rosenbaum et al. 
conducted theory of minds tests for someone with severe 
impairment of episodic memory and autonoetic consciousness 
[26]. They reported that there is no difference of the ToM ability 
between normal and impaired persons. Bloom’s research 
suggested that theory of mind is important to learn meanings of 
words [27].   

There are works on verifying theories of “theory of mind” 
with neuroscience knowledge. Gallese et al. [28] related to the 
theory of “theory of mind” and the discovery of mirror neurons in 
human and monkey’s brain. They argued that the finding supports 
“simulation theory” but not “theory-theory.” Blakemore et al. 
supports the simulation theory based on the psychophysical and 
neurophysiological studies [29]. Ramnani et al. tested “simulation 
theory” by comparing human brain’s activation for preparing 
one’s own actions with one for predicting the future actions of 
others [30]. The conclusion was that both of them use action 
control system of the human brain but activate different action 
sub-systems. This result suggests that a simple form of simulation 
cannot be the only mechanism involved in ToM [31]. Siegal et al. 
reviewed recent findings on the relationships between brain 
regions and theory of mind [32]. Some functional components 
found were not solely dedicated to the theory of mind. However, 
domain-specific component (centered on the amygdale circuitry) 
was included in the region. This result supports modularity view. 
Saxe et al. related developmental psychology and functional 
neuroimaging research and supported the modular approach by 
arguing the existence of a specialized neural system for ToM [33].  

Brain-imaging technology has been widely used to pinpoint 
region of brain for theory of mind [2]. Frith et al. used “story 
comprehension task” to invoke theory of mind and revealed 
several active regions (medial prefrontal cortex and posterior 
superior temporal sulcus) of human brain by ToM [34]. McCabe 
et al. reported that prefrontal cortex is highly activated to the 
cooperator in “trust and reciprocity” games for cash rewards 
against human [35]. Gallagher et al. reviewed several functional 
imaging works for theory of mind [36]. Krach et al. tested 
human’s ToM with human-robot game and the activation of brain 
regions related to ToM is related to the human-likeness 
(computer<functional robot<anthropomorphic robot<human) 
[37].  Hampton et al. investigated the activation of human brain 
using fMRI when they play simple two-player strategy game [38]. 
In their game, players use three different strategies (reinforcement 
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learning, fictitious play based on history of other players, and 
sophisticated ToM). They investigated brain activation regarding 
to the choice of the strategy.  

The works that implemented ToM are categorized into two 
groups based on the level of implementations. Some of them 
focused on the demonstration only with simulation. A few 
demonstrated their works in real physical robots. The complexity 
increases when the work is realized in physical robots.  

Christopher developed synthetic vision, memory, and theory 
of mind module for embodied conversational agents [39]. In his 
work, agent has three theories to do ToM: “Have they seen me”, 
“Have they seen me looking”, and “interest level.” Robinson et al. 
invented a mind-reading machine recognizes human’s mental 
states (discrete six states) from video input of human’s facial 
expression [40]. Breazeal et al. developed synthetic mouse 
characters that recognize other mouse’s behavior based on their 
own repositories [6].  Treur et al. proposed a two-level BDI 
(Belief, Desire and Intention) model for ToM [41]. The first level 
was used to model self’s BDI and the other was for reasoning 
about other agent. Marsella et al. developed a social simulation 
tool, PsychSim whose agents have beliefs about other agents [42]. 
Arita et al. [43] and Zanlungo [44] applied ToM to complex 
agent-based simulations and discussed about the effect of the level 
of ToM. Kondo et al. used the ToM in “carrying a stick task” for 
the cooperation of two computer programs [45]. Bringsjord et al. 
created a virtual character with a reasoning engine and they 
demonstrated that the character can pass the false-belief task by 
inserting “If someone sees something, they know it and if they 
don’t see it, they don’t” statement [46].  

Kelley et al. developed a physical robot that uses own 
learned experience to detect the intentions of the humans [47].   
The experience of robot was encoded into Hidden Markov 
Models. Breazeal et al. created animated robot LEONARDO that 
infers other person’s goals based on the simulation theory [48].  It 
passes a basic false-belief task. Scassellati developed ToM for a 
humanoid robot COG based on two representative ToM theories 
[5]. Yokoya et al. used a recurrent neural network to model the 
relationships between robot’s movement and actual object’s 
reaction [49]. After building its own model, it observes human’s 
behavior of rotating objects (blocks) and expanded the original 
self model to model human’s one. Demiris et al. followed 
“simulation theory of mind” and used robot’s own motor system 
to understand other robot’s behavior [50]. Takanashi et al. 
inferred other robot’s behavior based on its own behavior 
repositories in the game of robot soccer [51].  

       There are several works targeted to theory of mind. Kuniyoshi 
et al. developed several skills of simulated and embodied robots 
for theory of minds: “learning by watching,” and “imitation” [52]. 
Kozima et al. proposed a framework to implement and exploit 
theory of mind from indirect experience of infant humanoid robot 
[53]. Ono et al. assumed that human’s theory of mind model is 
organized as Baron-Cohen’s modular view and implemented an 
interface system to help humans understand robot’s intention [54].  
Agents migrate from physical robots to user’s computer for shared 
attention. Ito et al. also focused on factors related to human’s 
ToM in the interaction of artifacts [55][56]. Scassellati et al. built 
a self model from the relationships between visual input and 
actual motor movement of robot and used it to discriminate others 
from self [57]. This is an important skill to do theory of mind. 

Kramer provided with an overview of the theory of mind in 
communication with virtual humans [58]. McCabe et al. 
introduced the concept of theory of mind to interpret the results of 
theoretical games played by humans [59]. They mentioned that 
the form of games is related to the human’s theory of mind 
execution and produce different outcomes. Boella et al. stressed 
the importance of theory of mind in the construction of social 
reality with multi-agent systems [60]. Akiwa et al. recognized that 
just imitating human’s behavior is not interesting to human 
demonstrator and proposed a system to predict subject’s next 
action based on past experience [61]. The prediction was done 
based on the difference between current behavior and past one. 
Flax modeled Leslie’s modular view on the theory of mind using 
first-order modal logic with an example of a scenario [62]. Hall et 
al. used theory of mind assessment of children to evaluate a 
virtual character system [63].  

3. METHODS 
In [64], authors tested ToM learning in simulated robots. In this 
real robot testing, simulation and a real robot was used together to 
do the ToM. In actor learning, simulation is used. In observer 
learning, the trajectories were collected from real robots and 
simulation was used in EEA. In actor exploitation, the position of 
new light source to seduce actor’s robot was determined with 
simulation and tested in real robots.  

 
Figure 3. Overview of ToM learning 

3.1 Actor Learning 
In the first stage, the neural network controller is evolved for the 
actor robot. The architecture of neural network is fixed and only 
the weights are evolved. The sensory inputs (light level) are 
inputted to the neural network and the output is the movement of 
wheels. Figure 4 explains the details of the evolutionary algorithm 
used. Each controller is represented with a vector of weights and 
each entry has an associated self-adaptive parameter. The 
mutation operator updates the weights based on the self-adaptive 
parameter’s value. A task is to follow light source and a fitness 
function is defined based on the distance to the light source. 
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Figure 4. The evolutionary procedure to evolve actor robot’s 

controller 

3.2 Observer Learning  
The goal of this stage is to discover actor robot’s self (the neural 
network evolved) based on their real trajectories. It uses EEA 
(Estimation-Exploration Algorithm) to learn other’s self models 
[9]. Initially, one trajectory is observed from the actor robot. In 
Estimation step, it runs learning other’s self models multiple times 
with different random seed and produces multiple candidates 
(neural networks). In Exploration step, using the candidates, a 
number of starting points are tested and the EEA chooses the one 
with the maximum disagreement of the candidates as a next 
observing point. The next trajectory is observed from the new 
starting point chosen and the two trajectories are used for the next 
estimation step. A new population of the estimation step is 
initialized with the best candidates of the previous estimation step.  
Evolutionary algorithm is used to learn the other’s self model in 
the estimation step. It is a kind of active incremental learning 
algorithm. 

 Figure 5 explains the fitness function in the evolutionary 
algorithm. The trajectory of the robot is a time-series sequence of 
the X-Y coordinates. At time t, the robot is placed in (X(t), Y(t)) 
in the environment and the next position is estimated by a 
candidate neural network. The fitness was calculated based on the 
difference between the original position and the estimated one.  
 

 
Figure 5. Fitness measuring of a candidate neural network 

3.3 Actor Exploitation 
Once actor’s self models are discovered, they can be used to 
predict the robot’s trajectory and observer robot can catch it with 
a trap based on the estimation. A trap is placed in the middle of 
the light source and a starting position of the other robot. With the 
actor’s self models discovered, a new light position can be 
estimated to seduce the other robot to the trap. This is called 
“ToM estimation.” The easiest way to predict the other robot’s 

movement is “straight line estimation” assuming that the robot 
will go straightly to the light source. However, the movement of 
robot evolved is not straight line and shows several interesting 
patterns. The two approaches are compared to measure the 
goodness of our method. 

4. EXPERIMENTAL RESULTS 
The proposed method was tested in various settings from 
simulations to real physical robots.  In a simulation side, PhysX 
(A simulator with physics engine) and EnKi (for E-Puck robot) 
are used.  In a physical side, E-Puck robots are used to get results. 
The robot has two light sensors (left and right) and controls the 
robot by adjusting the wheels. In PhysX simulation, the neural 
network outputs are “the rotational angle” and “speed” of wheel.  
For E-Puck robot, the speed of left and right wheels is outputs of 
the network. In case of visible trap, the robot can detect the trap 
located, and left and right sensors digitize the strength of signals 
from the trap. Each neuron in a neural network has a bias 
parameter and the arc tangent function is used as a transfer 
function.  

Based on the success of the virtual experiments [64], our 
experiments were expanded to the real physical robots. In our 
experiment, E-Puck mobile robots were used. It has two wheels 
and eight infra-red sensors. Like the virtual cases, only two 
sensors were used. As a light source, infra-red LED light was used. 
The trajectory of robot was recorded using Vicon motion capture 
system. Reflexive balls were attached to robot’s custom-built 
mounting base and the Vicon system recognized the position and 
angles of the robot based on the balls detected. Our simulator was 
implemented based on EnKi simulator. In our simulator, a sensor 
model was built based on sampling data (129 positions ×15 
different angles × 8 sensors).  Additionally, wheel speed level was 
readjusted based on real sampled data. 

The actor’s neural network was evolved at each setting. 
Figure 6 shows trajectories of the evolved controllers at various 
starting positions. Their trajectories are not straight line and have 
a lot of curves. Also, they are very complex and have a lot of 
rotations to reach the goal position (light source). Although the 
controllers are evaluated at one starting position in the evolution, 
they can generalize well for different starting positions.  

 
Figure 6. Trajectories of evolved neural controller (Black 

circle = Initial position, Black cross = Light) 
 Figure 7, Figure 8 and Figure 10 shows the progress of EEA 
learning. Figure 9 shows successful exploitation results for real 
physical robots. In EEA learning, real trajectories were collected 
from actor’s robot. In the exploitation scenario, the new light 
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position was estimated with simulation and tested with real robots. 
It shows that the reconstructed controllers can be used 
successfully to seduce the actor robot to the trap.  

 
Figure 7. The progress of the observer learning in various 

environments 

 
Figure 8. The trajectories actively chosen by the observer 

learning 
       Table 1 summarizes errors of all experimental environments. 
The ToM was compared with straight line estimation (assume that 
the robot will go straightly to the light source). For all cases, the 
ToM method can beat the straight line estimation method. In 
PhysX case, the ensemble of five candidate neural networks was 
successful and outperforms the single best neural network 
candidate and the straight line estimation. However, it is not true 
for the EnKi case and the ensemble method was not used for real 
robots. 

  

 

 
Figure 9. An example of exploitation for real robots. 

 
Table 1. Statistical summary 

 Straight Line 
Estimation 

ToM 
(Single 
neural 

network) 

ToM 
(Ensemble of 

5 neural 
networks) 

PhysX1 5.93 ± 0.54 3.87 ± 0.69 1.10 ± 0.28 

PhysX with a 
Visible Trap1 18.21 ± 2.60 18.29 ± 2.72 11.97 ± 2.24 

EnKi1 10.75 ± 1.26 0.89 ± 0.30 29.08 ± 5.75 

Real Robots1 
(Simulation) 54.28 ± 2.84 35.37 ± 3.35 - 

Real Robots2 34.80 ± 7.66 26.59 ± 9.33 - 

1: Average of 100 points 
2: Average of 10 points  
 

5. CONCLUSIONS 
In this paper, a variety of experiments were conducted to 

show the possibility of theory of mind implementation for robots. 
Each robot can model other robot’s internal self model (neural 
network) based on their observation using EEA learning 
algorithm. Once the model was built, they can be used to predict 
other robot’s future behavior. In these experiments, several virtual 
experiments and real physical robot testing successfully show the 
benefit of the other’s self modeling.  
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   In this paper, it is assumed that the neural structure of an actor 
robot is the same with the one of observer and there is no process 
to identify the fundamental structure. The number of the input-
output neurons has to be analyzed to determine the structure of 
neural networks. After then, there are also many structural 
considerations: The number of layers, the number of hidden nodes 
for each layer, and the existence of recurrent links. The solution 
might be evolving topology and weights of neural networks 
simultaneously. 
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Figure 10. Progress of observer learning for real robots (Red line = Real Trajectory, Yellow line = Predicted trajectory) 
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