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Abstract Classification using small sample size (limited

number of samples) with high dimension is a challenging

problem in both machine learning and medicine as there

are a wide variety of possible modeling approaches. Fur-

thermore, it is not always clear which method is optimal for

a prediction task. Different modeling choices include fea-

ture selection (dimensionality reduction), classification

algorithms, and ensemble selection. There are several

possible combinations of these methods, and it is not

always clear which is the best. In the previous works,

researchers show that evolutionary computation is useful to

build an ensemble from the pairs of feature selection and

classification algorithms. However, there are several

parameters to be determined for the evolutionary compu-

tation and it requires computational time for the optimi-

zation. In this paper, we attempt to improve the approach

by adopting meta-classification with the farthest-first

clustering algorithm. The effectiveness and accuracy of our

method are validated by experiments on four real micro-

array datasets (colon, breast, prostate and lymphoma can-

cers) publicly available. The results confirm that the

proposed method outperforms single individual classifiers

and other alternatives (standard genetic algorithm, and

methods from literature).

Keywords High dimension � Small sample size � Meta-

classification � Ensemble classifier � Microarray data

Abbreviations

AVG Average

CC Cosine coefficient

CF Classification

DCGA Deterministic crowding genetic algorithm

DLDA Diagonal linear discriminant analysis

ED Euclidean distance

F1–F4 Fitness functions

FS Feature selection

G The number of genes

G1–G2 Global ranking feature selection methods

GA Genetic algorithm

IG Information gain

IV Ideal vector

KNN K-nearest neighbor

KNNC KNN with cosine coefficient

KNNE KNN with Euclidean distance

KNNP KNN with Pearson correlation

KNNS KNN with Spearman correlation

LOOCV Leave-one-out cross-validation

M The number of classification algorithms

MDL Minimum description length

MI Mutual information

MLP Multi-layer perceptron

N The number of feature selection methods

NNGE Non-nested generalized exemplars

P The number of training samples

PAM Prediction analysis with microarray

PC Pearson correlation

PCP Pattern classification program

SNR Signal-to-noise ratio

SP Spearman correlation
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SPEGASOS Stochastic variant of primal estimated sub-

gradient solver for SVM

SVM Support vector machine

SVML Linear SVM

TS Training sample

1 Introduction

Bioinformatics is one of the important application areas

highly related to software development and system design

[1]. The number of gene expression data is continuously

increasing and we need appropriate software to mine useful

knowledge from them and hardware systems to accelerate

the efficient processing of data. Because the biological data

have high dimensionality with small number of samples, it

is challenging to design classification algorithm to handle

the data. Gene activation is highly correlated with many

diseases, but modeling their relationships [2, 3] is chal-

lenging. Figure 1 illustrates an example of gene expression

data and their classification. Usually, gene expression data

have very few samples (50–200 samples), but the number

of genes is enormous (1,000–20,000 genes).

The expression value of each gene is digitized from

scanned images and represented as a real value with an

associated class type (‘‘tumor’’ or ‘‘normal’’). Our goal is to

predict the type of each sample from their expression

levels. Because not all genes are relevant for the classifi-

cation task, it is useful to select a subset of them before

learning the model. Finally, the accuracy of the model is

evaluated using the test data (unseen data).

Ensemble methods are promising for tumor classifica-

tion, but their accuracy is heavily dependent on the

selection of the members. Like the single-classifier situa-

tion, there are a number of available pairs of feature

selection and classification algorithm for ensembles. The

selection of members itself is a problem to be optimized.

N feature selection methods and M classification algo-

rithms would produce 2N9M ensemble candidates. This is

an enormous search space, and it is promising to use

evolutionary computation [4] that is capable enough for a

global search.

Kim et al. [5] proposed a genetic algorithm (GA) to

optimize the members in the ensemble and demonstrated

its performance on two gene expression datasets. In the

evolutionary method, authors used only abstract-level

combination method which dealt with the output of clas-

sifier as 0 or 1. They reported that the use of real-valued

representation could improve the performance of classifi-

cation. However, there are several parameters to be deter-

mined for the evolutionary algorithm and it requires

additional time for the optimization.

In this paper, we extend the standard GA-based

ensemble optimization with different levels of combination

methods and types of evolutionary search algorithms. Also,

instead of the selective ensemble approach, it is attempted

to use all the outputs from the M 9 N classifiers as the

input to meta-classification. We propose to use a simple

clustering algorithm (farthest first) as the meta-level clas-

sifier to combine multiple classification algorithms. The

meta-classifier determines the final classes of samples by

combining predictions from multiple base classifiers

(Fig. 2). Ho et al. [6] used simulated gene expression data

to test and validate machine learning classifiers. However,

in this work, the proposed method was evaluated on four

real microarray datasets.

If you have M classification algorithms and N gene

selection methods, it is possible to produce M 9 N models.
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Each model is trained with different classification algo-

rithm and gene selection method. If you prefer a single

classifier, you can select one model from the pool of

models based on training accuracy. From our experience,

the approach is not so successful because of over-fitting

and unstable performance on different datasets. The solu-

tion is to combine the models as an ensemble whose

member size is M 9 N. Previous study shows that the

ensemble of all members is not competitive than the single

classifier [5]. The possible solution is to form an ensemble

with a subset of the models but the size of ensemble search

space is too big (2M9N). In this work, we propose to con-

struct a meta-level classifier (inputs to the meta-classifier

are the outcomes from the base classifiers). Experiment on

four real-world datasets show that it is preferable to use a

relatively simple meta-classifier to combine the outcomes.

In this paper, we propose to use a meta-level learning to

combine a number of classification algorithms for the

small-sized gene expression data. For the small-sized

problem, it is difficult to select the best combination of the

feature selection and the classification algorithm. Based on

our proposal, it is possible to build a meta-learner from a

set of several classification algorithms and different feature

subset selection algorithms. The rest of this paper is

organized as follows. Section 2 describes the related

works. Section 3 applies the clustering meta-classifiers and

the extension of the evolutionary ensembles to the

M 9 N classifiers learned. Section 4 describes the experi-

mental results and analysis.

2 Related works

The number of genes is usually quite substantial, but only

subsets of them are useful for classification. The problem

of gene selection is to choose subsets of them from all the

genes. There are a wide variety of gene selection methods,

which can be categorized into three classes: filter, wrapper

and embedded approaches [7]. In the filter approach, the

selection of the genes is independent of the choice of

classification algorithms. This requires less computational

cost than the other two methods. The wrapper approach

selects genes based on the interaction between gene subsets

and specific classification algorithms [8]. The values of

gene subsets are evaluated according to the performance of

the classifier trained with them. This is known as a clas-

sifier dependent and computationally expensive method.

Inza et al. [9] compared the filter and wrapper approa-

ches in terms of accuracy and computational cost. In the

embedded method, the gene selection is built into the

classifier learning algorithm [10]. RANKGENE is an open-

source program to select genes with the filter and wrapper

approaches [11]. Recently, many efforts have been made

on ensemble technique for gene selection [12]. A recent

Fig. 2 An overview of meta-

classifier for high-dimensional,

small sample size data
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work discovered biologically significant genes from mul-

tiple gene expression data sources [11]. They used a gene-

disease database to evaluate the values of the subsets

found.

Buturovic implemented an open-source pattern classifi-

cation program (PCP) for gene expression analysis [13].

The program contains six classification algorithms and

three gene selection methods with six gene selection cri-

teria. However, it does not support the ensemble approa-

ches. Diaz-Uriarte et al. [14] used the random forest (an

ensemble of trees) to classify gene expression datasets.

This showed comparable performance to other classifica-

tion methods (DLDA, KNN, and SVM). However, it sup-

ports only tree-based ensembles. Dettling [15] proposed a

new type of ensemble method called bagboosting for gene

expression dataset analysis. This combines two represen-

tative ensemble methods, bagging and boosting, to gener-

ate classifiers for the datasets.

Aitken et al. [16] used an evolutionary algorithm to

choose relevant genes, but they did not apply it to the

classification part. Li et al. [17] used the genetic algorithm

to choose relevant genes combined with K-nearest neigh-

bor method. In the paper, the classification algorithm was

fixed to K-nearest neighbor method. The performance of

the classification system depends on the feature selection

method and classification algorithm used. There are several

works reporting the performance of feature selection

methods and classification algorithms for different datasets

[18–21]. It is known that the ensemble of classifiers can

perform better than single classifiers if they are combined

properly [22]. In gene expression classification, the

ensemble of heterogeneous or homogenous members (a

pair of feature selection and classification algorithm) is

proposed to exploit synergism of multiple models [15, 23–

25].

Reduction of dimensionality has been one of the

important problems in the domain of image classification,

bioinformatics and biometrics. Recently, two-dimensional

LDA (2D linear discriminant analysis) is successful for

face recognition and Tao et al. [56] propose a prepro-

cessing step for the 2DLDA for gait recognition problem.

In [57], they report that Fisher’s LDA has a tendency to

merge together nearby classes if the dimension of the

projected subspace is strictly lower than c-1 for the c-class

classification task. Zhang et al. [58] unify spectral analysis-

based dimensionality reduction algorithms with a frame-

work, named ‘‘patch alignment’’. There are novel appli-

cations with the dimensional reduction algorithms in

cartoon animations [59, 60].

Semi-supervised learning combines the labeled and

unlabeled training samples to increase the generalization

ability of models. It shows that the semi-supervised

learning performs well on the multi-labeled image

classification problems [46, 47]. In the gene expression

data, there are some works on the use of prior knowledge

with the semi-supervised learning for cancer outcome

prediction problems [48, 49]. In the approach, the authors

used the prior knowledge, protein–protein interaction net-

work to guide the semi-supervised learning. In the hyper-

graph approach, the labeled and unlabeled samples are used

to build a graph based on their similarities. Using an iter-

ative algorithm, the labels of the unlabeled data and the

weights have been optimized [50–52]. The approach has

been used for the image classification [53] and cartoon

animation [54, 55].

Semi-supervised learning has been an important tool to

improve the performance on the combined sets of the

labeled and unlabeled samples. In this paper, we used four

gene expression datasets (colon, breast, prostate, and

lymphoma). They are all labeled but the number of samples

is very small. If there are a large number of unlabeled

samples, then that could be very useful for the semi-

supervised learning. However, the public datasets do not

provide enough unlabeled samples and the design of new

experiments for the semi-supervised learning needs addi-

tional data or prior knowledge. In this work, we focus on

the development of new algorithm with the small number

of labeled samples.

Clustering algorithms discover the hidden structure of

the data by grouping samples based on similarity. If the

number of clusters is known, the most popular technique is

K-means algorithm. It is possible to use kernel instead of

standard distance measure and the technique is named as

‘‘kernel K-means’’ [61]. Recently, non-negative matrix

factorization (NMF) has been widely used for document

mining, image understanding and audio analysis [62]. To

improve the convergence speed of NMF, gradient-descent

approach is proposed [63, 64].

3 Proposed method

The proposed method is composed of two steps: training

and meta-classifier learning. In the training phase, N fea-

ture selection methods rank all genes based on different

criteria. Only top-ranked genes are used to generate train-

ing datasets for each selection method. M learning methods

are repeated for N different training sets, and finally there

are M 9 N base classifiers learned. The next step is to form

a meta-classifier with the classifiers.

The meta-classification includes ensemble searching and

learning meta-level classifier. For the ensemble, it is not

possible to enumerate all the ensembles to find the best one

because of the large search space. It is necessary to use an

optimization to find the best subset of the base classifiers

for an ensemble. There are several parameter choices for
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the optimization procedures such as encoding of solution

and optimization algorithms. The representative approach

is to use the evolutionary computation strong for the global

search.

Meanwhile, the meta-classifier uses the decision from all

the base classifiers as inputs and produces the final outcome.

It is known that the number of classes for the problem is two

for the cancer problem. Based on the fact, it is possible to

cluster the training samples into two groups based on the

arrays of predictions from the multiple classifiers. After the

clustering, each cluster is mapped into one of the two

classes. To classify a new instance, it is necessary to get the

predictions from the multiple classifiers and assign the

vector of predictions into one of the two groups using the

clusters. Figure 3 illustrates these two steps in detail.

3.1 M 9 N base classifiers feature selection

3.1.1 Feature selection

In this step, we use nine gene selection methods based on

different criteria. They are categorized into similarity-

based, information-theoretic and global ranking. In simi-

larity-based methods, the value of each gene is evaluated

based on the similarity to ideal vectors (Fig. 4). If there is a

gene that shows the same characteristics with the ideal

vectors, this means that we can classify the training sam-

ples correctly with only the single gene. Because it is not

common to classify samples correctly using only single

gene, this vector is called as ‘‘ideal’’ one. The length of the

ideal vector is equal to the number of samples.

• Positive ideal vector: if the ith sample is ‘‘Tumor’’, the

ith entry of the vector is 1; otherwise, the value is 0.

• Negative ideal vector: it is opposite to the positive ideal

vector. If the sample is ‘‘normal’’, the ith value of the

vector is 1.

The ideal vector is used as a reference to measure each

gene’s discriminative capability [25]. If there are ten

training samples (five from tumor and five from normal

samples), the gene’s ideal expression values might be all

one for the tumor and zero for normal. The closeness

between the ideal vector and the each gene’s expression

values can be used in the gene selection algorithms.

We can sort the genes in accordance with the similarity

between the gene’s values for training samples and ideal

vectors [26]. Because we have the two ideal vectors, there

are two different rankings based on positive and negative

ideal vectors. Finally, half of the genes are chosen from the

rankings by the positive ideal vector, and others are from

the one by the negative ideal vector. For example, if we

decide to select 20 genes, 10 genes are very close to the

positive ideal vectors and 10 genes are very close to the

negative ones. There are four different similarity measures

used: inverse of Euclidean distance measure, Pearson

correlation, cosine coefficient and Spearman correlation.
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In information-theoretic methods, they use the infor-

mation theory to rank the genes. They are information gain

and mutual information. Because the gene expression

values are continuous, it is necessary to convert them into

discrete value. For each gene, a threshold value for the

conversion is determined to maximize information gain

[11]. In the following formula, k is the total number of

classes, nl is the number of values in the left partition, nr is

the number of values in the right partition, li is the number

of values that belong to class i in the left partition, and ri is

the number of values that belong to class i in the right

partition. The information gain of a gene is defined as

follows:

IGðgiÞ ¼
Xk

i¼1

li

P
log

li

nl

þ ri

P
log

ri

nr

� �

�
Xk

i¼1

li þ ri

P

� �
log

li þ ri

P

� �
ð1Þ

For each gene, it is possible to separate the training

samples into two categories (right and left partitions) with a

threshold value. If the gene value for the sample is higher

than the threshold, the sample is categorized into right

partition and vice versa. Based on the ‘‘impurity’’ of

samples in the category, the information gain calculates the

discrimination ability of the gene. If the partitioning sep-

arates samples perfectly, the gene has the maximum

information gain. The equation has been used in famous

decision tree learning algorithm C4.5 and other open-

source gene selection program, RANKGENE.

Mutual information provides information on the

dependency relationship between two probabilistic vari-

ables of events. If two events are completely independent,

the mutual information is 0. The more they are related, the

higher the mutual information is. It is based on the ratio

between Pr(A)Pr(B) and Pr(A,B) = Pr(A)Pr(B|A) or

Pr(B)Pr(A|B). If the A and B are independent, the Pr(B|A)

and Pr(A|B) are equal to Pr(B) and Pr(A), respectively. In

that case, the logarithm term becomes zero. Mutual infor-

mation has been used in several bioinformatics papers

[24–26] (T: Tumor, N: Normal).

MIðgiÞ ¼ MIðgi� lðgÞ; NÞ þMIðgi� gi; TÞ
þMIðgi\gi;NÞ þMIðgi\gi; TÞ

MIðgi [ gi;NÞ ¼ Pðgi [ gi;NÞ log10

Pðgi [ gi;NÞ
Pðgi [ giÞ � PðNÞ

ð2Þ

If we calculate the mean l and standard deviation r
from the distribution of gene expressions within their

classes, the signal-to-noise ratio (SNR) of gene gi is defined

as follows. It is a simple measure to rank the genes based

on mean and standard deviation of samples from a

homogenous class [38].

SNRðgiÞ ¼
jlNðgiÞ � lTðgiÞj
rNðgiÞ þ rTðgiÞ

ð3Þ

In global ranking methods, the ranking of genes is

determined based on the results of the seven gene selection

methods (four similarity-based methods, IG, MI and SNR).

There are two variants for the ranking methods. In the first

method, it is determined based on the number of times that

each gene is selected from the seven approaches (ED, PC,

CC, SP, IG, MI, and SNR). If the gene is chosen by IG and

MI, the score of the gene is two. For the second method,

the ranking of each gene is summed over the seven
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Fig. 4 An example of similarity-based gene selection [IV means the

ideal vector. There are two ideal vectors (positive and negative). In

the positive IV, it interprets the normal sample as one and tumor

sample as zero. If there is a gene expression like the positive IV, that

is the ideal gene to classify the samples into tumor and normal.

However, in real word, the genes are not expressed in that way. So,

the name of the vector is ‘‘ideal.’’ The negative IV is just inversion of

the positive IV. For each gene, it calculates the similarity between

expression values of the genes and the ideal one]
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methods (sum of the scored values). This method is a kind

of hybrid gene selection algorithms and proposed in this

paper.

3.1.2 Classification algorithms

We consider the following six classification methods (KNN

variants, SVML, and MLP) for building ensembles. We

choose them because they have been widely used for the

gene expression classification research. Instead of the six

algorithms, we can replace some of them with other

classifiers.

K-nearest neighbor is one of the most common meth-

ods for instance-based induction. Given an input vector,

KNN extracts the k closest vectors in the reference set

based on similarity measures, and makes a decision for

the label of the input vector using the labels of the

k-nearest neighbors. In this paper, many similarity mea-

sures were used such as the inverse of Euclidean distance

(KNNE), Pearson correlation (KNNP), cosine coefficients

(KNNC) and Spearman correlation (KNNS) [24]. They

are KNN variants. If the k is not 1, the final outcome is

based on the majority voting of the k-nearest neighbors.

In the binary mode, it outputs 0 or 1 as the final outcome.

In the real-valued mode, it outputs real values ranging

from 0 to 1. For example, if k is 3 and two of the nearest

neighbors agree that the sample is tumor (1), the final

outcome is 0.66.

A feed-forward multi-layer perception is an error

backpropagation neural network that can be applied to

pattern recognition problems. It requires engineering

regarding the architecture of the model (the number of

hidden layers, hidden nodes, and so on). In this classifi-

cation problem, the number of output nodes is two (normal

and tumor nodes). If the output from the normal node is

larger than that from the tumor node, the sample is clas-

sified as normal. In the binary mode, 0 (normal) and 1

(tumor) are the outputs. In the real-value mode, real values

ranging from 0 to 1 are the outputs.

Support vector machine classifies the data into two

classes. SVM builds up a hyperplane as the decision sur-

face in such a way as to maximize the margin of separation

between normal and tumor samples. In this paper, linear

kernel (SVML) is used. In the real-value output mode, the

output of SVM is normalized as a real value between 0

(normal) and 1 (tumor).

3.2 Meta-classifiers with evolutionary ensembles

From the training phase, we get M 9 N classifiers. For

each training sample, there are M 9 N predictions from the

base classifiers but it is necessary to combine them to

produce final outcome. A simple straightforward approach

is to find the best subset of base classifiers and use them to

predict the final results as a committee. It is a combinatorial

optimization problem with large search space and there are

several papers on applying evolutionary computation to the

problem [5, 30–34].

The next step is to form an ensemble of them auto-

matically. The possible number of ensembles is 2M9N.

From the base classifier learning, it produces M 9 N dif-

ferent models. If all the models participate in the ensemble,

size of the ensemble is M 9 N. For each base classifier,

there are two options (include or not include the classifier).

In total, there are 2M9N ensembles. The size of ensembles

is ranging from 0 to M 9 N. An evolutionary algorithm is a

machine learning method for optimization. Initially, it

randomly generates a population of solutions encoded as

binary or real-valued vectors. Each solution is evaluated by

a predefined objective measure (fitness function). Like the

natural evolutionary mechanism, this algorithm adopts the

survival of the fittest, crossover and mutations of solutions.

From the genetic operations, a new population of solutions

is generated. This is repeated until the maximum number of

generation is reached (Fig. 5).

3.2.1 Encodings of ensembles and combination methods

An encoding is the representation of a solution (in this

paper, the solution is an ensemble) in the evolutionary

algorithm. In the binary encoding of ensembles, if the bit is

‘‘1’’, the classifier participates in the ensemble and ‘‘0’’

indicates non-participation. With abstract-level output of

classifiers, majority voting is used as a combination

method. In the real-value encoding of ensembles, it

encodes the weights of each classifier in the ensemble.

Based on [35], the output information that various

classification algorithms produce can be divided into two

levels. In the abstract level, a classifier only outputs a

unique label (cancer or normal). In the measurement level,

a classifier attributes each label a measurement value to

address the degree that the sample has the label. In this

Generate a Population of Ensembles Randomly

Evaluation

Genetic Operations (Selection, Crossover, and 
Mutation)

New Population of Ensembles

Maximum Generation?
No

Fig. 5 Searching for ensembles by evolutionary algorithms
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study, we use only the two levels. If we use the two dif-

ferent levels of information from the base classifiers and

the two encoding schemes for the evolutionary algorithms,

there are four combinations.

• Binary classifier’s output ? binary ensemble encoding:

the final outcome is calculated by the majority voting of

members participated in the ensemble.

• Real-valued classifier’s output ? binary ensemble

encoding: the final outcome is based on the sum of

outputs of members participated in the ensemble

divided by the number of members. If the outcome is

\0.5, it is classified as normal.

• Binary classifier’s output (op) ? real-valued ensemble

encoding: This compares the sum of weights in the

ensemble (t and n, each represents ‘‘Tumor (T)’’ and

‘‘Normal (N)’’). If n is larger than t, the sample is

classified as normal. This equation has been used in [5].

t ¼
X

op¼T

wi

n ¼
X

op¼N

wi

ð4Þ

• Real-valued classifier’s output ? real-valued ensemble

encoding: the final outcome is the weighted sum of

classifier’s outputs (op) divided by the sum of weights

in the ensemble. If the outcome (of ) is \0.5, it is

classified as normal. This equation is newly proposed

in this paper.

of ¼
P

wi � opiP
wi

ð5Þ

3.2.2 Fitness functions

It is important to measure the value of ensembles in the

evolutionary algorithms. Figure 6 illustrates an example of

fitness calculation.

• Accuracy (F1): a simple fitness function is to use accuracy

of the ensemble on the training samples. This simply

considers the number of correctly classified samples

divided by the total number of training samples [32–34].

• Confidence (F2): this is sum of confidence of ensembles

for the true class label of the training samples. In the

accuracy measure, this gives the same scores regardless

of the confidence of classification.

• Accuracy 9 confidence (F3)

• Minimum description length (MDL) principle (F4): in

this measure, the final fitness value is the F1-

C 9 (ensemble size). This prefers the ensemble with

higher accuracy and the least number of members. C (in

this paper, 0.01) is a constant value [5, 31].

3.2.3 Types of evolutionary algorithms

The genetic algorithm has been widely used as a repre-

sentative method of evolutionary algorithms. Recently,

there are new types of evolutionary algorithms to increase

the diversity of population and avoid premature conver-

gence. This kind of method is referred to as speciation

algorithms [18]. The deterministic crowding genetic algo-

rithm (DCGA) is one of the most successful algorithms for

the speciation.

In DCGA, the diversity of the population is maintained

with a special selection mechanism. At first, two ensembles

are chosen as parents and they produce two children with

genetic operators (crossover and mutation). The following

step is to calculate distance between children and parents.

For each parent, one child is assigned to maximize overall

similarity, and only the fittest one between the parent and

child survives to the next generation. In this way, similar

individuals with less fitness are culled from the population.

In this paper, we also define a hybrid method based on

other evolutionary algorithms. This method chooses the

best ensemble from the final populations of binary GA,

binary DCGA, real-valued GA, and real-valued DCGA.

Among the best ensembles from the four evolutionary runs,

it chooses the one with the highest fitness.

P
Confidence

P
Accuracy

6.06.07.07.01111 ++++=++++=

Fig. 6 An example of fitness

functions (it shows calculation

of F1 and F2. F3 is defined as

the multiplication of F1 and F2.

In F4, the size of ensemble is

included in the fitness function)
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3.3 Meta-classifiers with clustering

Evolutionary computation is promising for the optimi-

zation of the ensemble, but we need to determine the

type of evolutionary algorithms, representations and

operators. Also, because it is based on population-based

search, we should evaluate multiple candidates to guide

the search.

In this paper, we propose to use clustering algorithm to

group training samples based on the predictions of the

M 9 N classifiers. The number of clusters is fixed to the

number of classes known from the training samples. In the

clustering, the label of the training samples is ignored and

only features of each sample (predictions of classifiers) are

used. After the clustering, it is possible to identify the label

of each cluster from the samples assigned. If there is a new

instance classified from the M 9 N classifiers, the distance

between the outcome vector for the sample and two central

vectors is used to assign it to one of them. In sum, the first

step is to get the classification results from the multiple

classifiers and they are used to group samples into clusters.

For the clustering, a simple farthest first is used [27, 28].

In the meta-classifier learning, it removes instances with

missing class. Because the next step is unsupervised

learning, it removes class attributes for the clustering

algorithm. After running the clustering algorithm defined,

it is necessary to find the minimum error mapping of

classes to clusters considering all possible classes to cluster

assignments. The farthest-first clustering is an approxi-

mated solution to maximize the radius of clusters which is

known as NP-hard. Unlike other clustering algorithm, the

cost function for the optimization is ‘‘maximum cluster

radius.’’ Initially, it picks a data point randomly. The next

choice should be the point farthest from it. Then, it chooses

the point farthest from the first two. It is repeated until the

algorithm obtains k points (the same with the number of

clusters). The first k points are cluster centers and

remaining points are assigned to the closest center. Gonz-

alez used a farthest-first traversal as an approximation

algorithm for the below cost function [29].

The farthest-first clustering is a very simple method

compared to other clustering algorithms. For the two class

problem, the algorithm selects a training sample randomly

and assigns it as the center of the first cluster. It selects the

farthest training sample from the center and assigns the

sample as the center of the second cluster. Meta-learning

usually trains a classifier to produce the final predictions

using the outputs (predictions) of the base classifiers. In the

gene expression data problem, the number of sample is

relatively small. It is important to avoid over-fitting on the

training samples. In the context of meta-learning, the

simple farthest-first clustering is appropriate to avoid the

over-training problems.

Because all the training samples are assigned into one of the

cluster, it is possible to check the most popular labels for each

centroid. If ‘‘normal’’ samples are prevalent in one cluster, it is

possible to label the cluster as ‘‘normal.’’ In this way, the

unsupervised clustering can be used for supervised classifica-

tion. A new sample can be classified into one of classes based

on the distances to the centroids of each cluster (Fig. 7).

Because the clustering is running on meta-level (making the

final decision based on other classifier’s initial decisions), it is

necessary to make a pool of classifiers that produce 1st stage

decisions. We need to assume the majority decision making if

we use the clustering in the context of the classification. If the

numbers are balanced, it is possible to run the clustering

algorithm again. Because the clustering algorithms are based

on the random initialization, it is possible to get slightly dif-

ferent statistics if they are balanced.

In the first stage, different feature selection methods are

used to select small number of relevant features. The next

step is to learn multiple machine learning models from the

different sets of features. If the number of feature selection

is N and M classifier are used, there are total M 9 N pair of

them. The number of features for the meta-level learning is

M 9 N and each feature stores normalized output from the

pair (Table 1). The farthest-first clustering algorithm is

applied to the meta-level training samples, and finally

unseen test sample is classified (Fig. 8).

4 Results

4.1 Experimental settings

The expression level of each gene is normalized to 0–1. For

each gene, we found the maximum (max) and minimum

Fig. 7 The classification of the new sample (The new sample is

classified as ‘‘black’’ category because it is close to the centroid of the

cluster identified as ‘‘black.’’). It is necessary to apply the dimen-

sionality reduction methods and classification on the new sample. As

a result, we can get the meta-level data (the dimension is M 9 N) to

be used as an input to the meta-level classifier
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expression values (min) from the samples. The gene

expression value (g) is adjusted to (g - min)/(max -

min). In the gene selection, the number of top-ranked genes

is 25 for all datasets. There is no report on the optimal

number of genes, but a previous study suggests that 25 be

reasonable [24]. For information gain gene selection, we

implemented it based on the RANKGENE source code and

our IG method showed the same results with the RANK-

GENE [11, 36]. We used LIBSVM for the SVM classifi-

cation [37]. The datasets and parameters of classification

algorithms are summarized in Tables 2 and 3.

In the evolutionary algorithms, the population size is 20,

the maximum number of generation is 100, crossover rate

is 0.9 and mutation rate is 0.01. C for fitness function F4 is

0.001. The type of crossover operator is one-point

crossover. In the binary encoding, the mutation operator

converts 0–1 or 1–0. In the real-value encoding, the weight

is replaced with a randomly generated one. The final results

are an average of 100 runs. For each of 10 runs, the gene

expression data are randomly separated to the training

dataset (2/3) and test dataset (1/3).

4.2 Classification accuracy

Table 4 summarizes the accuracy of 54 feature selection–

classification algorithm pairs (N = 9 and M = 6). For each

dataset, the best pair, feature selection method and classi-

fication algorithm are different. For example, KNNP-CC is

Table 1 An example of training samples for the meta-classifier (each

row represents one training sample and the column is corresponding

to the outputs from each pair of classifier ? feature selection. For

example, KNNE classifier with Euclidean distance outputs 0.666 on

(P - 1)th training samples)

Sample ID KNNE -ED KNNP -ED KNNC-ED KNNS-ED MLP-ED SVML-ED KNNE-PC … SVML-G2 Class

0 1.0 1.0 1.0 1.0 0.997 0.622 0.666 … 1 Tumor

1 0.0 0.0 0.0 0.0 0.136 0.446 0.0 … 0 Normal

2 1.0 1.0 1.0 1.0 0.477 0.642 1.0 … 1 Tumor

… … … … … … … … … … …
P - 1 0.666 1.0 1.0 0.0 0.013 0.516 0.333 … 0.333 Tumor

P 1.0 1.0 1.0 0.667 0.987 0.637 1.0 … 1.000 Tumor

In the figure, the shaded two samples are centroids of clusters

Randomly Choose One Training Sample

Assign the Training Sample
as Centroid of the First Cluster

Calculate the Euclidean Distance from Each Training 
Sample to the First Centroid

Choose the Farthest Training Sample and Assign It as 
Centroid of the Second Cluster

Assign Remaining Samples to the Closest Cluster 
Centroids

Identify the “Class” of the Cluster based on the Class 
Distribution of the Assigned Samples

Fig. 8 Farthest-first clustering algorithm for binary classification

problems

Table 2 Summary of datasets used

# of genes # of samples

Colon [38] 2,000 62

Prostate [39] 1,2600 102

Breast [40] 2,4481 97

Lymphoma [41] 4,026 45

Colon: http://microarray.princeton.edu/oncology/affydata/index.html

Prostate: http://www.broadinstitute.org/cgi-bin/cancer/publications/

pub_paper.cgi?mode=view&paper_id=75

Breast: http://www.rii.com/publications/2002/vantveer.html

Lymphoma: http://llmpp.nih.gov/lymphoma/

Table 3 Parameters of classification algorithms

Classifier Parameter Value

MLP # of input nodes 25

# of hidden nodes 8

# of output nodes 2

Learning rate 0.05

Momentum 0.7

Learning algorithm Back propagation

KNN k 3

SVM Kernel function Linear
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the best one for the colon cancer dataset, but it is not the

best for other three datasets. MLP is the best only for the

lymphoma, while MI is the best only for the prostate

dataset.

How do we choose a pair from the 54 feature selection–

classification algorithms before we see the results on test

samples (depicted in Table 4)? Choosing a pair based on

test accuracy is not realistic because the test cases are

unseen in the training phase. The easiest way is to ran-

domly choose a pair without any information. An alterna-

tive method is to choose a pair based on training accuracy.

Table 5 summarizes the performance of the strategies. The

random strategy showed the lowest accuracy on test sam-

ples. The second strategy (choose one according to training

accuracy) showed unstable accuracy on test samples. For

the breast and lymphoma, it showed better accuracy than

random choice, but it did not for the colon and prostate.

This is because of over-fitting on the training samples.

Table 6 summarizes the test accuracy of ensembles

found by evolutionary algorithms. It shows the results for

all combinations of the control parameters. Table 7

summarizes the average accuracy of individual classifiers

and ensembles found by evolutionary algorithms. It shows

that the ensembles outperform the individual classifiers

for all datasets. Table 8 shows the effect of real/binary

outputs of member classifiers. For the colon and breast, it

improved the performance but did not work for the

prostate and lymphoma. Overall, setting the classifier’s

output as a real value is more effective than a binary one.

Also it is important to use proper representation of

Table 4 Accuracy of feature

selection–classification

algorithm pairs (on test

samples) (average of 10 runs)

(bolded number means the best

accuracy)

ED PC CC SP IG MI SNR G1 G2 AVG

(a) Colon

KNNE 84.3 83.3 84.8 82.4 81.0 82.9 82.9 83.8 83.3 83.2

KNNP 87.1 86.2 88.1 84.3 84.8 83.8 85.2 85.2 86.7 85.7

KNNC 87.1 87.1 88.1 84.8 84.8 85.2 85.7 85.2 85.7 86.0

KNNS 86.7 87.1 85.2 86.7 85.7 85.2 86.2 85.2 84.3 85.8

MLP 80.0 82.9 78.5 79.0 80.0 83.8 83.3 81.0 80.5 81.1

SVML 85.7 85.2 85.7 83.3 83.3 84.8 85.2 84.3 84.8 84.7

AVG 85.2 85.3 85.2 83.4 83.3 84.3 84.8 84.1 84.2 84.4

(b) Prostate

KNNE 90.0 90.9 90.0 89.4 91.2 91.2 88.8 89.1 85.0 89.5

KNNP 90.0 92.4 92.1 89.1 91.8 93.8 90.3 90.3 82.4 90.2

KNNC 91.5 92.1 91.5 89.1 92.4 92.9 90.9 92.1 87.9 91.1

KNNS 89.7 92.1 90.6 90.0 92.1 93.5 91.8 90.3 80.3 90.0

MLP 85.9 89.1 90.3 90.6 92.6 92.1 88.8 89.7 85.0 89.3

SVML 90.0 93.2 93.2 91.5 93.8 94.1 92.1 93.8 91.2 92.5

AVG 89.5 91.6 91.3 90.0 92.3 92.9 90.4 90.9 85.3 90.5

(c) Breast

KNNE 79.1 79.7 76.6 78.8 75.9 76.6 75.9 76.3 76.3 77.2

KNNP 73.8 74.4 70.3 77.2 71.3 74.7 74.7 73.4 72.2 73.5

KNNC 78.8 79.1 77.2 77.2 74.4 77.5 74.7 74.7 75.9 76.6

KNNS 72.2 76.9 70.6 76.9 72.8 77.8 77.2 71.9 67.8 73.8

MLP 75.9 79.1 77.2 74.7 74.4 76.6 78.1 77.2 73.4 76.3

SVML 74.1 76.6 73.8 70.9 74.7 75.3 75.3 74.4 74.4 74.4

AVG 75.6 77.6 74.3 75.9 73.9 76.4 76.0 74.6 73.3 75.3

(d) Lymphoma

KNNE 93.3 93.3 90.0 90.7 92.0 92.7 94.7 95.3 94.7 93.0

KNNP 90.0 92.7 91.3 91.3 94.0 91.3 94.7 90.7 86.7 91.4

KNNC 92.7 93.3 92.7 90.0 91.3 91.3 96.0 94.7 86.7 92.1

KNNS 90.7 94.7 94.7 90.0 93.3 92.0 94.0 90.7 86.0 91.8

MLP 94.0 93.3 93.3 88.7 92.7 92.0 95.3 95.3 95.3 93.3

SVML 92.0 90.7 90.0 90.7 90.0 90.0 92.7 91.3 94.0 91.3

AVG 92.1 93.0 92.0 90.2 92.2 91.6 94.6 93.0 90.6 92.1
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evolutionary algorithm together with the proper combi-

nation scheme.

Figure 9 shows the performance of classification

algorithms for colon, prostate, breast and lymphoma

cancers. The algorithms are used to combine the results

from the 54 base classifiers. Except the evolutionary

ensembles, all classifiers are used for the meta-classifi-

cation (learning the classifier using the outputs from

other classifiers). Dagging creates a number of disjoint,

stratified folds out of the data and feeds each chunk of

data to a copy of the supplied base classifier (in this

paper, artificial neural network) [42, 43]. Decorate

exploits specially constructed artificial training examples

for building diverse ensembles of classifiers. NNGE is

similar to nearest neighbor algorithm using non-nested

generalized exemplars, hyperpipe contains all points of

each category (records attribute bounds), SPEGASOS

stands for stochastic variant of primal estimated sub-

gradient solver for SVM and Bayesian network repre-

sents joint distribution of variables using graphical

models.

For colon cancer, the best one is dagging with multi-

layer perceptron (MLP) with 88.1 % accuracy. The

proposed method is 87.62 % and the evolutionary

ensemble is 86.8 %. It is clear that the dagging and

clustering are good at classifying the colon cancer

dataset than other alternatives. For prostate, the best

classification algorithms are NNGE and SPEGASOS.

However, there is small difference between the proposed

clustering-based meta-classifier and the best one. In the

breast cancer data, the best classifier is decorate with

80.91 %. The proposed method records 80.3 % slightly

lower than the best one while the evolutionary ensem-

bles show 77.9 % accuracy. Finally, there is no differ-

ence between the proposed method and evolutionary

ensembles for the lymphoma data. It is interesting that

Bayesian network is the best for the dataset. Although

the structure of network was learnt from data, it is

similar to naive Bayesian classifier. Although the pro-

posed clustering-based method is not always the best, it

shows higher accuracy for the four datasets. For exam-

ple, the dagging (MLP) is very good at the colon cancer

but a bit lower than the proposed method in the breast

cancer.

Figure 10 shows the distribution of predictions (each

cross represents a training sample) over SVML classifiers

with different feature selection methods. Although they are

highly correlated, there are overlapped areas making clas-

sification difficult. The figure shows the behavior of the

farthest-first clustering algorithm. They are located to

maximize the radius of clusters. Figure 11 shows a com-

parison of clustering algorithms used for the meta-classifier

learning.

Table 9 summarizes the ranks of 40 ensembles and 54

individual classifiers sorted by average accuracy over the

four gene expression datasets. The ensemble outper-

formed the best individual pair of feature selection and

classification. From the 1st rank to 38th rank, there are

only two individual classifiers. It is clear that the classi-

fier’s output as real values is beneficial to the performance

of ensembles. The best ensemble was found by real-val-

ued GA with F4 fitness function and real-valued classi-

fier’s outputs. The proposed meta-classifier with

clustering outperforms the evolutionary ensembles

regardless of their representations and types. Table 10

shows the performance comparison with other works

published in the field of bioinformatics. It shows that the

proposed method works very well compared to other

methods. In the prostate cancer dataset, it performs the

best. Researchers use different evaluation methods to test

their work (for example, n-fold cross-validation, LOOCV,

and random partitions). In this work, we adopt random

partitioning (2/3 training, 1/3 test) followed from [15].

5 Conclusion and future works

In this paper, we proposed a meta-classifier with clus-

tering algorithm to combine the outputs from multiple

Table 5 Choice of the pair from 54 candidates (average of 10 runs)

Choose a pair

based on test

accuracy

(IDEAL)a

Choose a

pair

randomly

(RANDOM)

Choose a pair based

on training accuracy

(T_ACCURACY)

Colon 88.1 ± 0.38 84.4 ± 0.21 79.0 ± 0.00

Prostate 94.1 ± 0.32 90.5 ± 0.27 89.0 ± 0.31

Breast 79.7 ± 0.93 75.3 ± 0.25 79.1 ± 0.00

Lymphoma 96.0 ± 0.33 92.1 ± 0.23 92.5 ± 0.20

Statistical significance test IDEAL RANDOM T_ACCURACY

IDEAL

Colon p = 0.001 p = 0.001

Prostate p = 0.001 p = 0.001

Breast p = 0.001 p = 0.1

Lymphoma p = 0.001 p = 0.001

RANDOM

Colon p = 0.001

Prostate p = 0.001

Breast p = 0.001

Lymphoma p = 0.001

a Choosing a pair based on test accuracy is not a realistic method
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feature-classification algorithm pairs. It shows that the

proposed method is simple with small number of

parameters to be determined and highly accurate com-

pared to other alternatives on four real microarray data.

Although the clustering algorithm is simple to be

implemented, it works well on the combination prob-

lems. Although the evolutionary computation approach is

promising, there are several parameters to be determined

and sometimes it suffers from the over-fitting to the

training samples.

Table 6 Accuracy of

ensembles found by

evolutionary algorithms (on test

samples, average of 100 runs)

Bold values indicate the best

accuracy for the dataset

Classifier’s

output

Fitness

function

Evolutionary algorithms AVG

Binary

GA

Real-value

GA

Binary

DCGA

Real-value

DCGA

Hybrid

(a) Colon

Real F1 87.0 87.4 87.0 87.0 86.6 87.0

Real F2 87.2 87.5 86.7 87.4 86.7 87.1

Real F3 87.1 87.4 86.8 87.1 86.8 87.0

Real F4 86.9 87.5 86.7 87.2 86.7 87.0

Binary F1 87.0 87.0 86.6 87.0 87.0 86.9

Binary F2 86.7 86.8 85.7 86.2 85.7 86.2

Binary F3 86.3 87.1 85.3 86.6 85.3 86.1

Binary F4 86.7 87.1 86.6 86.9 86.6 86.8

AVG 86.9 87.2 86.4 86.9 86.4 86.8

(b) Prostate

Real F1 93.1 92.9 93.0 92.8 93.1 93.0

Real F2 92.8 93.0 92.9 92.8 92.9 92.9

Real F3 92.8 93.1 92.8 92.9 92.8 92.9

Real F4 93.1 93.0 92.7 93.0 92.7 92.9

Binary F1 93.0 93.0 93.0 92.9 93.0 93.0

Binary F2 93.1 93.1 93.0 93.2 93.0 93.1

Binary F3 93.3 93.0 93.5 93.2 93.5 93.3

Binary F4 93.2 93.0 92.6 93.0 92.6 92.9

AVG 93.0 93.0 92.9 93.0 92.9 93.0

(c) Breast

Real F1 78.5 78.3 78.3 78.6 78.5 78.4

Real F2 78.1 78.4 78.0 78.3 78.0 78.2

Real F3 78.3 78.1 78.1 78.4 78.1 78.2

Real F4 78.8 78.5 78.8 78.7 78.8 78.7

Binary F1 77.8 77.2 77.5 77.0 77.8 77.5

Binary F2 77.1 77.1 77.6 77.6 77.6 77.4

Binary F3 77.2 77.0 77.9 76.9 77.9 77.4

Binary F4 77.8 77.2 78.6 77.0 78.6 77.8

AVG 77.9 77.7 78.1 77.8 78.2 77.9

(d) Lymphoma

Real F1 93.2 93.5 93.5 93.4 93.2 93.4

Real F2 93.4 93.5 93.5 93.3 93.5 93.5

Real F3 93.5 93.4 93.3 93.5 93.3 93.4

Real F4 93.1 93.4 93.6 93.3 93.6 93.4

Binary F1 93.1 93.7 93.4 93.6 93.1 93.4

Binary F2 93.2 93.7 93.7 93.8 93.6 93.6

Binary F3 93.6 93.8 93.7 93.7 93.7 93.7

Binary F4 93.5 93.3 93.5 93.5 93.5 93.5

AVG 93.3 93.5 93.5 93.5 93.5 93.5
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It showed that the proposed method outperformed

other evolutionary alternatives and results published in

the literatures. The proposed method showed robust

Table 7 Comparison of averaged performance between single clas-

sifiers and ensembles found by evolutionary algorithms

AVG of 54 feature

selection–classification

algorithm pairs

AVG of 40 ensembles

found by evolutionary

algorithms

Colon 84.4 86.8

Prostate 90.5 93.0

Breast 75.3 77.9

Lymphoma 92.1 93.5

Table 8 Effect of classifier’s outputs of feature selection–classifica-

tion algorithm pairs

Real-value classifier’s

output

Binary classifier’s

output

Colon 87.0 86.5

Prostate 93.0 93.1

Breast 78.4 77.5

Lymphoma 93.4 93.5

Fig. 9 Comparison with other meta-classifiers and evolutionary

ensembles (average of 10 runs) (The purpose of this figure is to

show that the clustering-based approach shows relatively stable

results compared to other candidates. For the four datasets, the

proposed method is always in the top three among the ten methods.)

Fig. 10 Visualization of prediction results from two classifiers on

colon cancer dataset
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classification accuracy over four widely used microarray

datasets. Those results indicate the careful choice of

meta-classifiers in the multiple classifier system is key

points to get the high accuracy. To show the effective-

ness and accuracy of the proposed method, we compared

several alternatives by changing the fitness function,

representation (binary and real), combination methods

(abstract and measurement levels), and evolutionary

algorithms (GA and DCGA).

In this paper, we applied the proposed method to binary

classification problems but it can be extended to multi-class

problems. In the case, the base classifier with binary clas-

sification has to be modified to handle the multi-class

cases. The correlation of classifiers provides with useful

information to combine multiple classifiers [44] and it is

promising to selectively choose classifiers highly corre-

lated. In this work, the topology of artificial neural network

is fixed but it is possible to evolve the architecture with

weight parameters simultaneously.

FF FC KM DC HC IB EM XM CW

FF

Colon p=0.001 p=0.002 p=0.01 p=0.001
Prostate p=0.001 p=0.5 p=0.001 p=0.001
Breast p=0.01 p=0.001 p=0.001 p=0.001

Lymphoma p=0.05 p=0.02 p=0.001

Fig. 11 Comparison of

different clustering algorithms

with statistical significance test

results [It shows that FF, FC,

KM, DC and HC are

significantly better than other

four clustering algorithms (IB,

EM, XM and CW). For FF, FC,

KM, DC, and HC, there is no

statistically significant

difference on their

performance.]

Table 9 Average accuracy over the four gene expression datasets

Rank Combination

methods

Fitness

function

Evolutionary

algorithms

Accuracy on

test samples

1 Clustering (farthest First) 88.6

2 Dagging (MLP) 88.4

3 Clustering (simple K-means) 88.2

4 Measurement F4 Real GA 88.1

5 Measurement F2 Real GA 88.1

6 Measurement F4 Real DCGA 88.0

7 Measurement F1 Real GA 88.0

8 Measurement F3 Real GA 88.0

9 Measurement F3 Real DCGA 88.0

10 Measurement F1 GA 88.0

Table 10 Comparison with other works [15] (2/3 training and 1/3

test datasets) (average over multiple runs)

Method Test accuracy

Colon

Bagboosting 83.9

Boosting 80.9

Random forest 85.1

SVM 85.0

PAM 88.1

DLDA 87.1

kNN 83.6

Evolutionary ensembles 86.8

Proposed method 87.6

Prostate

Bagboosting 92.5

Boosting 91.3

Random forest 91.0

SVM 92.1

PAM 83.5

DLDA 85.8

kNN 89.4

Evolutionary ensembles 93.0

Proposed method 93.1

Bold values indicate the best accuracy for the dataset
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