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Abstract—In general, the analysis of microarray data requires
two steps: feature selection and classification. From a variety of fea-
ture selection methods and classifiers, it is difficult to find optimal
ensembles composed of any feature-classifier pairs. This paper pro-
poses a novel method based on the evolutionary algorithm (EA) to
form sophisticated ensembles of features and classifiers that can be
used to obtain high classification performance. In spite of the ex-
ponential number of possible ensembles of individual feature-clas-
sifier pairs, an EA can produce the best ensemble in a reasonable
amount of time. The chromosome is encoded with real values to
decide the weight for each feature-classifier pair in an ensemble.
Experimental results with two well-known microarray datasets in
terms of time and classification rate indicate that the proposed
method produces ensembles that are superior to individual classi-
fiers, as well as other ensembles optimized by random and greedy
strategies.

Index Terms—Classification, DNA microarray, ensemble, evolu-
tionary algorithm (EA), feature selection, real-valued encoding.

I. INTRODUCTION

DNA MICROARRAYS measure the expression levels of
thousands of genes simultaneously [1]. This measurement

process consists of either monitoring each gene multiple times
or using a single time point in different states (for example,
when dealing with diseases or types of tumors) [2]. It is impor-
tant to identify functionally related genes or to classify samples
by using informative genes. In this paper, we focus on the latter
case: the classification of DNA microarray data.

In this kind of classification, classifiers receive input vec-
tors from the feature selection step to make decisions. However,
it is difficult to choose appropriate feature selection methods
and classifiers because there are so many candidates. Cho and
Won explored seven feature selection methods and four clas-
sifiers in three benchmark datasets to systematically evaluate
the performance of both the feature selection methods, as well
as the machine learning classifiers [3]. The researchers used
to test different feature-classifier pairs, using various datasets,
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in order to construct robust classification systems. An artificial
neural network with principal component analysis (PCA) fea-
ture reduction was used on the small, round blue-cell tumor (SR-
BCTs) dataset [4], and it also used a well-known feature selec-
tion method (signal-to-noise ratio) based on [5] with a support
vector machine (SVM) on the ovarian tissue dataset [6].

The ensemble classifier enabled us to obtain a more reliable
solution than when using a single feature-classifier alone [7].
However, because not all ensembles yielded good classification
performance, it was necessary to find the optimal ensembles
in order to classify the samples accurately. In the neural net-
work domain, Zhou et al. reported that ensembles with many
classifiers were better than those with all classifiers [8]. There-
fore, forming an ensemble of all the feature-classifier pairs did
not prove to be a good heuristic. A straightforward method of
finding the optimal ensemble is to compare all the ensembles
and simply select the best one. However, the possible number
would be too large. Therefore, we used 42 feature-classifier
pairs, which resulted in possible ensembles. It would have
been almost impossible to enumerate all the ensembles with
even the most powerful computer.

In this paper, we propose a sophisticated method based on the
evolutionary algorithm (EA) approach. This is a robust search
method that requires little information to search effectively in a
large or poorly understood search space [9]. Kuncheva and Jain
used the genetic algorithm (GA) approach to design the classi-
fier fusion system which was tested on a nonbiological bench-
mark dataset. In their experiment, they fixed the number of clas-
sifiers and used the GA approach for generating disjoint feature
subsets (no feature overlapping), finding the best type of clas-
sifiers, and determining the inputs of each classifier [10]. Also,
there have been some studies that have used GA to select op-
timal genes for analyzing DNA microarray datasets [11], [12].
These studies fixed the classification algorithm and evolved a
subset of the genes.

In our experiments, the number of members in the ensemble
is not represented as a fixed number. Instead, we use randomly
selected initial chromosomes to represent ensembles of various
population sizes and parameters, and then search for the optimal
ensemble by using genetic operations. Real-value encoding is
proposed to improve the performance of binary encoding. The
approach can be used to determine the degree of participation
by each feature-classifier pair in an ensemble. The results are
then systematically evaluated in terms of performance and time
efficiency using two well-known benchmark datasets: the lym-
phoma cancer dataset and the colon cancer dataset.
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II. RELATED WORKS

A. DNA Microarrays

In general, DNA microarrays are composed of thousands of
individual DNA sequences. Using a robotic arrayer, these se-
quences can be printed in the form of a high-density array on a
glass microscope slide. Usually, the relative abundance of these
spotted DNA sequences (in two samples: DNA and RNA) may
be assessed by monitoring the differential hybridization of the
two samples to the sequences on the array. For the mRNA sam-
ples, the two samples can be reverse-transcribed into cDNA and
then labeled with mixed fluorescent dyes (red-fluorescent dye
Cy5 and green-fluorescent dye Cy3). After the hybridization
of these samples with the arrayed DNA probes, the slides can
be imaged using a scanner that produces fluorescence measure-
ments for each dye. The log ratio between the two intensities of
each dye can be used as the gene expression data

(1)

where Int(Cy5) and Int(Cy3) are the intensities of the red and
green colors. Since many genes can be put on the DNA mi-
croarray, it is possible to investigate the genome-wide informa-
tion in a short time.

B. The Ensemble Approach for DNA Microarrays

Many researchers have evaluated the performance of
up-to-date classification methods in their microarray exper-
iments, and they have provided guidelines for finding the
most appropriate classification tools in various situations.
Dudoit et al. compared the performance of different discrimi-
nation methods for the classification of tumors based on gene
expression data [13]. They reported that simple classifiers such
as linear discriminant analysis and the nearest neighbor method
performed remarkably well compared with more sophisticated
methods such as aggregated classification trees. However,
they did not include certain popular classifiers such as neural
networks or support vector machines.

Lee et al. extended this kind of work with more gene se-
lection techniques (3 methods), more classification methods
(21 methods), and more datasets (7 datasets) [14]. This study
showed that more sophisticated classifiers produced better
performance than conventional methods such as the K-nearest
neighbor (KNN), diagonal LDA (DLDA), and diagonal
quadratic discriminant analysis (DQDA). Also, the choice of
gene selection method had a large effect on performance.

Cho and Ryu proposed a classification framework that was
able to combine a pair of classifiers trained with mutually ex-
clusive features [15]. They conducted a thorough quantitative
comparison of 42 combinations of features (7 methods) and
classifiers (6 classifiers) in three benchmark datasets [3]. They
combined 3, 5, and 7 classifiers among the 42 classifiers using
the majority voting, weighted voting, and Bayesian combina-
tion methods. Their results showed that the ensemble classifiers
surpassed the basic classifiers.

Also, Tan and Gilbert observed that ensemble learning
(bagged and boosted decision trees) often performed better
than single decision trees when used with several datasets [16].
Dettling proposed a novel algorithm called BagBoosting, the
combination of two ensemble schemes (bagging and boosting),

which consistently lowered the misclassification error of plain
boosting and bagging [17]. Dettling and Buhlmann proposed
modifications and extensions of boosting classifiers for mi-
croarray gene expression data from several tissue or cancer
types [18]. Valentini et al. showed that bagged ensembles
of SVMs were more reliable and achieved equal or better
classification accuracy against a single SVM [19]. Table I
summarizes the ensemble-based methods for DNA microarray
classification.

Most of the ensemble-based studies have attempted to find
multiple subsets of feature and classifier pairs, but studies
mainly been conducted on ensembles for gene selection.
Li et al. constructed an ensemble of the feature subsets ex-
tracted from decision trees [20]. This method was used to select
relevant genes based on the ensemble decision. Xu and Zhang
proposed a method to select genes from the bootstraps of a
training set [21]. Compared with the single classifier method,
the selection of informative gene subsets for each member of
the ensemble classifier group is not a trivial problem because it
is possible that the gene subsets could be different. Although
most previous methods used one feature selection method for
the ensemble, we assign suitable different feature selection
methods to each member classifier automatically.

C. Evolutionary Algorithms (EAs) for the Ensemble Approach

EAs have been used to develop a neural network ensemble
from a trained pool of neural networks [32]. Stefano et al. used
GAs to determine the threshold values for selecting participa-
tion in a majority vote. In general, for each combination of clas-
sifier and class, there is a threshold that determines the partic-
ipation of the classifier [33]. GAs can be also used to adjust
the weights of neural networks in weighted voting [34], [35].
Sirlantzis et al. used GAs to find the optimal combination of
classifier ensembles and combination methods [36]. Liu et al.
used negative correlation learning and evolutionary learning to
address the issues of automatic determination of the number of
individual neural networks in an ensemble [37]. EAs are used in
many different areas of multiple classifier systems. To the best
of our knowledge, EAs have not been applied to determine op-
timal ensembles of feature selection and classifier pairs. Also,
most applications have been limited to handwritten digit recog-
nition and benchmark problems.

III. METHOD

The proposed method of searching for the optimal ensemble
with the EA approach is illustrated in Fig. 1. First, the gene ex-
pression data are normalized between 0 and 1 (by rescaling the
minimum value as 0 and the maximum value as 1) for feature
selection. The preprocessed data are then divided into training,
validation and test data. The training dataset is used for training
the classifiers and the validation dataset is used for finding the
optimal ensemble. For gene selection, informative genes are
selected by (seven in our case) different feature selection
methods, which are entered to (six in our case) different clas-
sifiers. The individual feature-classifier pairs are then exploited
to search for the best ensemble obtained by the EA with the val-
idation dataset.

The main reason that we adopt only a filter approach is to
increase the number of candidates for the number of ensem-
bles and the possibility of synergism. There are pos-
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TABLE I
RELEVANT METHODS FOR CLASSIFICATION OF DNA MICROARRAY DATA USING THE ENSEMBLE METHOD. (CNS: CENTRAL NERVOUS SYSTEM,

BSS/WSS: BETWEEN-GROUPS TO WITHIN-GROUPS SUMS OF SQUARES, PC: PEARSON CORRELATION, ED: EUCLIDEAN DISTANCE,
IG: INFORMATION GAIN, SN: SIGNAL-TO-NOISE RATIO, SP: SPEARMAN, CC: COSINE COEFFICIENT, MI: MUTUAL INFORMATION,

LDA: LINEAR DISCRIMINANT ANALYSIS, FLDA: FISHER’S LDA, FDA: FLEXIBLE DISCRIMINANT ANALYSIS, MDA: MIXTURE

DISCRIMINANT ANALYSIS, DT: DECISION TREE, MLP: MULTI-LAYER PERCEPTRON, SASOM: STRUCTURE ADAPTIVE SOM,
LOGISTIC: LOGISTIC REGRESSION, GPLS: GENERALIZED PARTIAL LEAST SQUARES, NN: NEURAL NETWORK,

PAM: PREDICTIVE ANALYSIS OF MICROARRAY, PDA: PENALIZED DISCRIMINANT ANALYSIS)

sible candidates in the filter approach. However, if we used the
wrapper approach, performance may have improved individ-
ually but there would have been only candidates. Though
the filter-based approach generally shows relatively low perfor-
mance compared with the wrapper-based approach in individual
classifiers, there is more possibility of performance improve-
ment in the ensemble.

When the best ensemble is found, performance is verified
by using a separate test dataset. As mentioned in [38], due to
the small number of samples available, leave-one-out cross val-
idation (LOOCV) is conducted to measure the generalization

performance of the proposed method. Although the LOOCV
method shows a low level of bias in general, it can be highly
variable. To reduce the level of variability, the LOOCV method
is repeated ten times.

The ensemble method is then used to solve the problems of
the single classifier. In general, an ensemble consists of a set of
individually trained classifiers whose predictions are combined
when classifying novel samples, for example

(2)



380 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 3, JUNE 2008

Fig. 1. Flowchart of the proposed method of searching for the optimal ensemble classifier.

Fig. 2. Structure of a chromosome. Each bit indicates whether the corresponding feature-classifier is part of the ensemble or not. In this example, an ensemble is
composed of three feature-classifier pairs: a MLP with Euclidean distance, a SVM (RBF) with mutual information, and a KNN (Cosine) with Spearman correlation.

where is the output of an ensemble, is the output of the th
feature-classifier, and is an ensemble function. In this paper,

refers to a majority voting function.
It has been reported that the ensemble is generally more ac-

curate than any of the individual classifiers belonging to the en-
semble [39]. Both theoretical and empirical studies have demon-
strated that a good ensemble can be obtained with the individual
classifiers that make their errors on different parts of the input
space [40]. If the individual feature-classifiers in the ensemble
produce their errors mutually exclusively, they can complement
each other, so the optimal ensemble can be produced. Therefore,
it is important to find complementary feature-classifier sets. We
use 42 feature-classifiers from 7 feature selection methods and
6 classifiers, yielding (about ) combinations of
the different ensemble classifiers. It may have been possible to
find the optimal ensemble by enumerating and comparing all the
combinations, but this would have taken too long. Since a more
efficient method is required, this paper exploits the EA to solve
the problem.

The GA can be applied effectively in order to solve combina-
torial optimization problems. Each classifier is generally named
after their feature selection method and the classification algo-
rithm used. For example, means that the base classifier uses
the first feature selection method to reduce the dimensionality
of data and the first classification algorithm to classify the re-
duced samples.

The structure of the chromosome used to find the optimal
ensemble is shown in Fig. 2 (binary encoding). Each chromo-
some consists of a 42-bit string, each part of which indicates
whether the corresponding feature-classifier pair is joined to the

ensemble or not. Each bit corresponds to a specific feature-clas-
sifier pair; for example, the first bit corresponds to an MLP with
Pearson correlation, the second bit to an MLP with Spearman
correlation, and so on. Fig. 2 shows an ensemble of the third
(an MLP with Euclidean distance), the 27th (a SVM (RBF)
with mutual information), and the 30th (KNN (Cosine) with
Spearman correlation) feature-classifier pairs. If any new fea-
ture-classifier pairs were to be added, the same process would
have to be repeated after changing the chromosome structure
with the number of individual feature-classifier pairs.

To determine possible performance differences, a real-valued
GA was also used. In this representation, each bit represents the
weight (real value, 0.0–1.0) for each feature-classifier pair in an
ensemble, which is multiplied to the decision of the classifier
for the final output. If the output of each feature-classifier pair
is (0 or 1 in binary classification) and the weight for each pair
is , the final decision is as follows:

(3)

In binary encoding, the fitness of each given chromosome
was evaluated by the accuracy of the corresponding ensemble
and the number of feature-classifiers in the ensemble. For sim-
plicity, we favored the ensemble with smaller number of fea-



KIM AND CHO: AN EVOLUTIONARY ALGORITHM APPROACH TO OPTIMAL ENSEMBLE CLASSIFIERS FOR DNA MICROARRAY DATA ANALYSIS 381

ture-classifiers. Hence, the fitness of a chromosome was defined
as follows:

(4)

where is a constant, is the number of feature-classifiers
in the ensemble, and is the accuracy of the corre-
sponding ensemble

#
#

(5)
In the real-valued GA, the fitness was defined using the
weighted sum of each pair’s output and the maximum value of
the weighted sum

(6)

In binary encoding, first, chromosomes were selected at
random. Each chromosome was evaluated with the fitness
function as shown in the equation. In general, chromosomes go
to a mating pool for genetic operations. Good chromosomes
have a higher chance of being selected than poor ones. We
used two different strategies for selection: the roulette wheel
and rank-based strategies. In the roulette wheel strategy, the
probability of being selected is in direct proportion to the fitness
of each chromosome. In the rank-based strategy, the probability
of being selected is directly proportional to each chromosome’s
order of fitness. In the mating pool, pairs of chromosomes were
selected, and then the chromosome information for each part
was exchanged by means of a crossover process, known as
one-point crossover. Some bits were also mutated according to
the mutation probability. The mutation operations consist of ad-
dition or deletion of the pair. Through these genetic operations,
the chromosomes eventually evolve into optimal ensembles.
Fig. 3 illustrates the operation of the genetic operators. After
finishing this stage, the chromosomes were evaluated and the
whole steps were repeated until a satisfactory solution was
found.

In the real-valued GA, the crossover operation is similar to
that of binary encoding with which the chromosome informa-
tion was exchanged by the point of crossover selected at random.
In mutation, the value selected was randomly changed with new
one (0.0–1.0).

Yao et al. also used a GA to search for a near-optimal subset
of classifiers for an ensemble [41]. In their GA, a chromosome
(binary string) represents the inclusion of classifiers to the en-
semble and its fitness is defined by recursive linear square (RLS)
algorithm as the mean square error of linear combination of
them. In our real-valued GA, a chromosome (real-value vector)
represents the weights of feature-classifier pairs and a new fit-
ness function for optimizing the weights is derived. Instead of
calculating the distance between actual and predicted outputs,
we consider the value ranged from the maximum weighted sum
of ensemble (every classifier yields 1) and 0 (every classifier
yields 0).

Although there are many sophisticated methods of combining
multiple classifiers, we used the majority voting method to com-
bine the feature-classifier pairs, because we wanted to focus our
attention on verifying the proposed method of searching for the
optimal ensemble. In future work, it would be interesting to in-
corporate the combining methods into the chromosome struc-
ture to be searched.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method for clas-
sification of the expression patterns from the DNA microarray,
we performed a series of experiments. To avoid overfitting, a
large number of experiments were conducted with LOOCV
which guaranteed fair judgment of the results. As mentioned
previously, the data were divided into three parts: training data
for training the classifiers, validation data for searching for
the optimal ensemble using EA and test data for evaluating
the proposed method. The process of training, validating, and
testing was repeated (the number of samples) times, and
the prediction errors were averaged. Both the base classifier
and the EA ensemble used training and validation data in the
training phase and were tested on the single test sample with
leave-one-out-cross-validation.

To compare the performance of the single classifiers and the
ensemble classifier optimized by the EA, the single classifiers
were trained using both the training and validation data and
tested using one single test sample. On the other hand, the en-
semble classifier optimized by EA used classifiers which were
only trained with training data. The selection of the ensemble
was based on the performance of the validation data. Finally, the
performance of the ensemble was tested on a single test sample.

It was expected that the ensemble would exploit more genes
than the single classifiers, and in that sense, the comparison
with the single classifiers would not be fair. However, it is well-
known in this field that more genes do not necessarily lead to
performance improvement [3], [5]. It might be possible to use
our approach to select the kind of informative genes that may
help induce performance improvement. Comparison with the
single classifiers was simply done to provide a general idea
about performance improvement when using the ensemble ap-
proach, and we also compared the proposed method with other
ensemble approaches.

As mentioned previously, we did not pour the best efforts
to optimize the base classifiers. Some parameters were chosen
according to the preliminary experimental results [3], so that
some of these parameters may have been suboptimal. Since it
is hard to obtain optimal single classifiers in general, we used
an approximated solution that showed the best published results
of single classifiers and bagging in the published literature for
the colon cancer dataset. The parameters of the SVM were then
determined by cross-validation methods.

A. Datasets

We used two well-known gene expression profiles: the lym-
phoma cancer dataset and colon cancer dataset. The diffuse large
B cell lymphoma (DLBCL) group was a heterogeneous group of
tumors, based on significant variations in morphology, clinical
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Fig. 3. Genetic operations in binary encoding. (a) Crossover. (b) Mutation (deletion and addition).

presentation, and response to treatment. Gene expression pro-
filing has revealed two distinct tumor subtypes of the DLBCL
group: germinal center B cell-like and activated B cell-like [22].
This lymphoma cancer dataset consisted of 24 GC B-like sam-
ples and 23 activated B-like samples (http://genome-www.stan
ford.edu/lymphoma) with 4026 genes.

The colon cancer dataset consisted of 62 samples of colon
epithelial cells taken from colon cancer patients [24]. Each
sample was taken both from regions with tumors and from
normal healthy parts of the colons of the same patients and
measured using high-density oligonucleotide arrays. Each
sample contained 2000 gene expression levels. Although the
original dataset consisted of 6000 gene expression levels, 4000
out of 6000 levels were removed due to insufficient confidence

in the measured expression levels. Forty of the 62 samples
came from regions with tumors and the remaining samples
came from normal regions (http://microarray.princeton.edu/on-
cology/affydata/index.html).

We then separated the lymphoma cancer dataset into 23
training samples, 23 validation samples, and 1 test sample for
LOOCV. Similarly, we divided the colon cancer dataset into 31
training samples, 30 validation samples, and 1 test sample. The
separation of samples was done randomly.

For gene selection, the genes were ranked according to
their feature scores that were calculated using the feature
selection functions (correlation analysis, distance measure,
entropy-based measure, and signal-to-noise ratio). Twenty-five
high score genes were selected for classification, since a pre-
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TABLE II
THE GENES OVERLAPPED BY PEARSON’S CORRELATION COEFFICIENT, THE COSINE COEFFICIENT, AND THE EUCLIDEAN DISTANCE

liminary study yielded the optimal number of genes as 25–30
[3]. The feature selection methods were performed on the
combined set of training data only.

B. Experimental Design

We designed four separate experiments: Performance of indi-
vidual classifiers, performance of the EA as an ensemble opti-
mization method, comparison of ensemble optimization and in-
dividual classifiers, and generalization performance of both the
ensembles and the individual classifiers.

In general, the “greedy ensemble” process sequentially adds
the feature-classifier pair that maximizes the accuracy of the
ensemble. The procedure is as follows.

1) Create an empty ensemble.
2) Add the best feature-classifier with the highest accuracy on

the validation data.
3) Score all possible single changes (using the addition of one

feature-classifier pair) of the ensemble. The score is based
on the performance of the ensemble on the validation data.

4) If there is a performance increase, add one with the best
increase to the ensemble and go back to step 3). If not,
terminate the process.

In a random search, a number of random ensembles were
evaluated with the validation data and the best one was selected.
The degree of error was assessed with the test data. The number
of random ensembles refers to the multiplication of the popu-
lation size and maximum generation of the EA. We conducted
statistical significance tests (student’s t-tests) for all the results.

is the number of experiments. The degrees of freedom are
defined as . If the -value is larger than the value
in t-table, it is statistically significant. and are the mean
and standard deviation values of group A. The t-value between
A and B is as follows:

(7)

For classification, we used a two-layered MLP with eight
hidden nodes, two output nodes, a learning rate of 0.01–0.50, a
momentum of 0.3–0.9, and 500 maximum iterations. The back-
propagation algorithm stopped training when it reached 98%
training accuracy, which should be reconsidered with respect
to overtraining. In the case of NN, we set as 6, and used the
Pearson correlation coefficients [KNN(P)] or the cosine coef-
ficients [KNN(C)] for the similarity measure. We used SVMs
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TABLE III
AVERAGE ACCURACY (%) OF THE INDIVIDUAL CLASSIFIERS FOR THE COLON DATASET (PC: PEARSON CORRELATION,

SC: SPEARMAN CORRELATION, ED: EUCLIDEAN DISTANCE, CC: COSINE COEFFICIENT, IG: INFORMATION GAIN,
MI: MUTUAL INFORMATION, SN: SIGNAL-TO-NOISE RATIO). TRAINED ON THE COMBINED TRAINING AND

VALIDATION SETS, AND TESTED ON THE SINGLE TEST SAMPLE WITH LEAVE-ONE-OUT-CROSS-VALIDATION

TABLE IV
AVERAGE ACCURACY (%) OF THE INDIVIDUAL CLASSIFIERS FOR THE LYMPHOMA DATASET.

TRAINED ON THE COMBINED TRAINING AND VALIDATION SETS, AND TESTED ON THE

SINGLE TEST SAMPLE WITH LEAVE-ONE-OUT-CROSS-VALIDATION

with linear [SVL(L)] or RBF [SVM(R)] kernel functions. The
penalty factor used over the slack variables was 10 (the default
value of the SVM software). In the SASOM, we used an initial
rectangular 4 4 map.

When searching for the optimal ensemble using the EA, we
used the roulette wheel and rank-based methods as the selection
operators. In rank-based selection, we assigned a higher rank
to the chromosomes whose number of 1 s was smaller than the
others for the tie-break. In the real-valued GA, roulette wheel se-
lection is used. Since the preliminary results showed some con-
vergence to a local minimum when the GA was run with fewer
than 100 chromosomes, we set the population size as 100. Ex-
periments were conducted with different crossover rates of 0.3,
0.5, 0.7, and 0.9, and mutation rates of 0.01 and 0.05. The GA
stopped when it found the perfect ensemble (100% accuracy) on
the validation dataset, or when the generation exceeded 10 000.
The constant level in the fitness function was 0.01. Because the
constant was used to provide a small advantage to that with
a simpler structure, it was determined to be a relatively small
value. If it was too large, we might have lost the one with the
highest accuracy.

C. Analysis of Results

Table II shows the IDs of some common genes that were over-
lapped by Pearson’s correlation coefficient, the cosine coeffi-
cient, and the Euclidean distance for the two datasets. Among
them, there were some genes which were also overlapped by
several feature selection methods. The number of overlapped
genes in the lymphoma dataset was 18. The number of over-

lapped genes in the colon dataset was 9. These overlapped genes
proved to be very informative.

Table III shows the average accuracy (the percentage of
correct classification) of the individual classifiers in the colon
dataset. Table IV shows the average accuracy (the percentage
of correct classification) of the individual classifiers in the
lymphoma dataset. These results reflect an average of ten runs.
Since the LOOCV group required high computational costs,
the number of runs was limited to ten.

In the colon dataset, the EA ensemble with real-value en-
coding showed better performance than the GA
with binary encoding and they performed better
than the greedy ensemble [ , the difference with
real-valued GA is significant

], random ensemble ,
and the best individual classifier methods.
“Random ensemble” means the best among 1 000 000 en-
sembles randomly chosen. In the lymphoma dataset, the
GA with real-value encoding showed better
performance than that with binary encoding
and they also performed better than the greedy ensemble
[ , the difference with real-valued GA is significant

],
random ensemble , and the best individual
classifier methods.

In general, bagging is a method of reducing variance, not
bias. It is different from both greedy selection and EA which
specifically aim to reduce bias. In our experiments, this is
why both greedy selection and bagging were needed for
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TABLE V
COMPARISON WITH OTHER STUDIES (�� �CROSS VALIDATION). (a) COLON, (b) LYMPHOMA

Fig. 4. Change of fitness with respect to the iterations (thick line shows an
average).

comparison purposes. Bagging showed
for the

colon dataset, and
for the lymphoma dataset.

Further analysis of the best solutions showed that the optimal
ensemble size was not constant. In the lymphoma dataset, the

Fig. 5. Comparison of generations that found the optimal ensembles with re-
spect to the population sizes for the lymphoma cancer dataset.

ensemble size was relatively high (1–14) compared with that
of the colon dataset (1–7). The optimized ensembles for the
two datasets were not the same. In the colon dataset, SVM
classifiers were not used, but in the lymphoma dataset, the
SVM classifiers were common components.
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Fig. 6. Comparison of generations that found the optimal ensembles with different parameters: selection strategies, crossover rates, and mutation rates. � axis:
crossover rate and � axis: generation. (a) Roulette wheel selection and 0.01 of mutation rate. (b) Roulette wheel selection and 0.05 of mutation rate. (c) Rank-based
selection and 0.01 of mutation rate. (d) Rank-based selection and 0.05 of mutation rate.

Table V summarizes the performance comparison with
other studies. Although Dettling and Buhlmann conducted
the LOOCV method for the colon dataset [18], we could find
no experiments that used bagging with the LOOCV method
in the literature. However, a comparison confirmed that the
proposed method (real-valued GA) performed better than
the 1-NN, logitboost and classification tree methods, which
assured that the proposed method was competitive. Although
the data partitioning and other conditions are different, the
real-valued GA outperforms the state-of-the art performance on
the colon dataset (88.1%). Also, in the lymphoma dataset, the
performance of real-valued GA is higher than the best results
(97.6%) in the literature.

Determining the number of features and classifiers is a very
important issue in ensemble research [42]. In general, the ex-
periment designer needs to determine the maximum number of
feature selection and classification algorithms for the ensemble.
In our experiments, the maximum number of feature selection
methods was seven and that of the classifiers was six. The EA
searches for the optimal ensembles were composed of only sub-
sets, and the final solutions discovered by the proposed method
showed that only the subsets of all the feature selection methods
and classifiers were used for the ensemble. The numbers of fea-
ture selection methods and classifiers for the optimal ensemble
were determined by the EA.

We found that the average fitness level for the lymphoma
cancer dataset increased as iteration went on, as shown in Fig. 4.
After about 150 generations, they seemed to converge. The fact

that we were not able to obtain satisfactory performance with the
individual feature-classifiers (even after significant effort) indi-
cates that there is room for improvement by using ensembles.

We also ran experiments using various parameters of the
proposed method. Figs. 5 and 6 show satisfactory ensembles
in most cases. Fig. 5 shows the generations that discovered the
optimal ensemble with respect to the population size for the
lymphoma cancer dataset, suggesting that larger population
sizes identified optimal ensembles faster than smaller popula-
tions on average. Fig. 6 shows the generations that discovered
the optimal ensemble with respect to various crossover rates,
mutation rates, and selection strategies. In most cases, the
EA found the optimal ensemble robustly. On average, the
rank-based selection method Fig. 6(c) and (d) found the op-
timal ensemble using fewer generations than the roulette wheel
selection method Fig. 6(a) and (b).

The practical usefulness of the proposed method lies in its
time-efficiency. When we experimented with all the ensembles
composed of only 25 feature-classifier pairs (about en-
sembles), it took about 1 h. This means that we were able to
evaluate 9320 ensembles per second. It would have been im-
possible to try evaluating all the ensembles of 42 feature-clas-
sifier pairs (about ensembles). On the other hand, it
took less than 5 min using the EA, when we used 2000 chro-
mosomes with 1000 generations. We were usually able to find
the optimal ensemble within 100 generations with 2000 chro-
mosomes, and 900 generations with 100 chromosomes, as sum-
marized in Table VI.
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TABLE VI
COMPARISON OF THE TIME REQUIRED TO SEARCH FOR THE OPTIMAL ENSEMBLE (IN THE GA,

THE ROULETTE WHEEL SELECTION METHOD AND THE MAJORITY VOTING METHOD)

V. CONCLUDING REMARKS

This paper deals with a novel application of EA to a
fascinating field of bioinformatics, and reports promising,
state-of-the-art results [18] in analyzing DNA microarray
datasets. The EA is improved with better encoding scheme for
chromosomes and a statistical -test is conducted to show the
superiority to other approaches for ensembles. By comparing
the performance with previous publications that used the same
datasets, we confirmed that the proposed method provided the
competitive, state-of-the-art results. The EA-based ensemble
classifier could produce better performance if there was enough
diversity in the classification algorithms and feature selection
methods. Also, this method can perform well without any
prior knowledge about feature selection and classification
algorithms.

Furthermore, the proposed method has the following biolog-
ical implications.

• With the proposed scheme, even a novice could build the
optimal ensemble composed of many different algorithms
and feature extraction methods given the dataset. Also,
the proposed scheme could provide minimal ensembles
without redundancy or irrelevant components.

• The informative genes extracted from the ensemble can be
used by biologists for future analysis to find relevant gene
subsets. This would provide insights into building ensem-
bles manually for very complicated problems.

In this paper, only binary classification problems were con-
sidered for the experiments but multiclass problems will be in-
vestigated in the future. There are some works for multiclass
classification of gene expression data [43]. More exploration on
the possibility of new genetic operators, selection methods, and
combination methods needs to be done in future work.
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